首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
2.
3.
The present studies were directed to examine the effects of beta-adrenergic and cholinergic stimulation on gastrin release and to assess the potential role of gastrin-releasing peptide in exerting these effects, utilizing incubated rat antral mucosa. Rat antral mucosa was incubated at 37 degrees C in Krebs-Henseleit bicarbonate buffer, pH 7.4, continuously gassed with 95% O2-5% CO2. After 1 h media were sampled for radioimmunoassay measurement of gastrin content. Inclusion of carbachol (2.5 X 10(-6) M) in culture medium increased medium gastrin concentration by 106 +/- 28% (P less than 0.01); addition of specific antibodies to gastrin-releasing peptide to the culture medium did not affect carbachol-stimulated gastrin release. Inclusion of isoproterenol (10(-9) M) in culture medium did not affect somatostatin release into the medium, but increased medium gastrin by 234 +/- 24% (P less than 0.001). However, in contrast to carbachol, addition of antibodies to gastrin-releasing peptide to culture medium decreased isoproterenol-stimulated gastrin release by 67 +/- 9% (P less than 0.001). Results of these studies indicate that, under the conditions of these experiments, beta-adrenergic, but not muscarinic, stimulation of gastrin release may be mediated, at least in part, through gastrin-releasing peptide.  相似文献   

4.
5.
6.
Female rats were subjected to operations aimed at reducing the amount of oxyntic gland mucosa draining its acid secretion to the antrum. The rats were provided either with Heidenhain or Pavlov pouches reducing the oxyntic mucosa draining its secretion to the antrum by about 50% or subjected to various degrees (75, 90 and 100%) of fundectomy. Ten weeks following surgery, plasma levels of gastrin and somatostatin were assayed. At the same time, antral mucosal content of gastrin and somatostatin was determined as well as the mucosal density of these hormone-producing cells. There was a relationship between the amount of acid-secreting mucosa removed and the ensuring plasma concentration of gastrin. Thus, a stepwise increase in plasma gastrin was found with the highest levels obtained in rats subjected to 90 or 100% fundectomy. The somatostatin concentration in plasma was reduced only in rats subjected to fundectomy with the most sustained decrease in animals in which all oxyntic gland mucosa had been removed. There was also a relationship between the amount of acid-secreting mucosa removed and the gastrin content of the antral mucosa. An inverse relationship seemed to exist between antral gastrin and somatostatin concentrations. However, a significant decrease in somatostatin concentration of the antral mucosa was seen only in rats subjected to a fundectomy. The number of gastrin cells in the antral mucosa was increased in fundectomized rats only, with the largest density seen in rats deprived of all oxyntic mucosa. A corresponding decrease in the number of somatostatin cells was noticed. Our results would suggest an apparent functional relationship between antral gastrin and somatostatin cells, where the antral acid load (or pH) appears to be the major factor of physiological significance.  相似文献   

7.
8.
In enzymatically dispersed enriched rat parietal cells we studied the effect of pertussis toxin on prostaglandin E2 (PGE2)- or somatostatin-induced inhibition of H(+)-production. Parietal cells were incubated in parallel in the absence (control cells) and presence of pertussis toxin (250 ng/ml; 4 h). [14C]Aminopyrine accumulation by both pertussis toxin-treated and control cells was used as an indirect measure of H(+)-production after stimulation with either histamine, forskolin or dibutyryl adenosine 3',5'-cyclic monophosphate (dbcAMP) alone and in the presence of PGE2 (10(-9)-10(-7) M) or somatostatin (10(-9)-10(-6) M). PGE2 inhibited histamine- and forskolin-stimulated [14C]aminopyrine accumulation but failed to alter the response to dbcAMP. Somatostatin was less effective and less potent than PGE2 in inhibiting stimulation by histamine or forskolin and reduced the response to dbcAMP. Pertussis toxin completely reversed inhibition by both PGE2 and somatostatin on histamine- and forskolin-stimulated H(+)-production but failed to affect inhibition by somatostatin of the response to dbcAMP. After incubation of crude control cell membranes with [32P]NAD+, pertussis toxin catalysed the incorporation of [32P]adenosine diphosphate (ADP)-ribose into a membrane protein of molecular weight of 41,000, the known molecular weight of the inhibitory subunit of adenylate cyclase (Gi alpha). Pertussis toxin treatment of parietal cells prior to the preparation of crude membranes almost completely prevented subsequent pertussis toxin-catalysed [32P]ADP ribosylation of the 41,000 molecular weight protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Gastrin, somatostatin, H+/K(+)-ATPase and carbonic anhydrase are principal elements of acid secretion. We investigated in the conscious sheep the effect of 24 h omeprazole (an H+/K(+)-ATPase inhibitor) infusion on these elements at the level of synthesis, storage and secretion. Omeprazole inhibited acid secretion-pH increased from 3.0 to 7.1 at 24 h. Plasma amidated and glycine extended gastrin increased 3-fold while the ratio of amidated to glycine extended gastrins (4:1) remained unchanged. Despite the increase in circulating gastrin, antral gastrin concentration and mRNA did not change significantly. Gastrin-17 (amidated and glycine extended) was the predominant form in the circulation and antrum, although there were preferential increases in larger forms following omeprazole treatment. Omeprazole had no effect on somatostatin mRNA or peptide levels in the fundus. Similarly, plasma somatostatin remained unchanged. However, antral somatostatin increased significantly (63%) following omeprazole treatment accompanied by a 4-fold increase in its mRNA. Fundic H+/K(+)-ATPase mRNA was unchanged but a significant increase (87%) in carbonic anhydrase II mRNA was observed. Omeprazole induced hypergastrinaemia occurred without a measurable reduction in storage or increased synthesis of gastrin at 24 h. Increased antral somatostatin synthesis and storage may result from stimulation by plasma gastrin on antral D cells, independent of acid. The rise in carbonic anhydrase II mRNA in the absence of any change in H+/K(+)-ATPase mRNA may reflect the differential sensitivity of the genes encoding these two enzymes to the stimulatory action of gastrin.  相似文献   

10.
Gastroduodenal ulcerations have worldwide distribution and the infection with Helicobacter pylori (HP) has been implicated in pathogenesis of this disease. The HP infection is usually accompanied by hypergastrinemia and enhanced generation of prostaglandins (PG), both implicated in the pathogenesis of peptic ulcerations but no study has been undertaken to assess the relationship between the HP infection and coexpression of gastrin and cyclooxygenases (COX), the rate limiting enzymes in the PG production. Since HP infection, usually accompanying peptic ulcerations, results in increased release of gastrin, a potent gastric mitogen that might be capable to induce COX-2 and to generate PG, we decided 1) to compare the seroprevalence of HP and its cytotoxic protein, CagA, in gastric ulcer patients with those in age- and gender-matched controls; 2) to determine the gene expression of gastrin and its receptors (CCK(B)-R) at the margin of gastric ulcer and in the mucosa of antrum and corpus before and after successful eradication of HP, 3) to assess the plasma levels and gastric luminal contents of gastrin before and after HP eradication and 4) to examine the mRNA and enzyme protein expression of COX-1 and COX-2 as well as the PGE2 generation in ulcer margin tissue and gastric antral and fundic mucosa before and after the HP eradication. The trial material included 20 patients with gastric ulcer and 40 age- and gender-matched controls. Anti-HP and anti-CagA IgG seroprevalence was estimated by specific antisera using ELISA tests. Gene expressions of gastrin, CCK(B)-R, COX-1 and COX-2 were examined using RT-PCR with beta-actin as a reference and employing Western blotting for COX-2 expression, while gastrin and PGE2 were measured by RIA. All gastric ulcers were located at smaller curvature within the antral mucosal area. The seroprevalence of HP, especially that expressing CagA, was significantly higher in gastric ulcers (85%) than in controls (62.5%). Both gastrin and CCK(B)-R mRNA were detected by RT-PCR in ulcer margin and gastrin mRNA was overexpressed in remaining antral mucosa, while CCK(B)-R mRNA was overexpressed in fundic mucosa of HP infected patients. Similarly, COX-2 mRNA and protein were found in margin of gastric ulcer and in the HP infected antral and fundic mucosa but not in the mucosa of HP eradicated patients in whom ulcers completely healed and gastrin was expressed only in antrum, CCK(B)-R only in corpus, while COX-1 was detected both in antrum and corpus. HP positive gastric ulcer patients showed about three times higher levels of plasma immunoreactive gastrin and about 50% higher luminal gastrin contents than the HP negative controls and this increased plasma and luminal gastrin was normalized following the HP eradication. A significant fall in gastrin and CCK(B)-R mRNA expression was noticed six weeks after HP eradication in gastric antral and fundic mucosa, while COX-2 mRNA completely disappeared after this treatment. We conclude that 1) HP infected gastric ulcer margin coexpresses gastrin, its receptors (CCK(B)-R), and COX-2; 2) HP infection may be implicated in gastric ulceration via increased release of gastrin that could be responsible for the overexpression of COX-2 that in turn could help ulcer healing through the stimulation of mucosal cell growth, restoration of the glandular structure and angiogenesis in the ulcer area and 3) gastrin produced in HP infected antral mucosa seems to be involved in the induction of COX-2 and PG production by this enzyme and this may contribute to the ulcer healing.  相似文献   

11.
12.
Somatostatin and gastrin release into the gastric lumen in rats   总被引:1,自引:0,他引:1  
Somatostatin and gastrin release into the gastric lumen was investigated in anaesthetized, vagally intact rats. The stomach was perfused at a flow rate of 0.5 mL.min-1. During perfusion with 0.1 M HCl or buffers of varying pH the somatostatin ans gastrin concentrations in the perfusate were less than 10 pg.mL -1 and approximately 30 pg.mL-1, respectively. Peptone caused a gastrin concentrations in the perfusate were less than 10 pg.mL-1 and approximately 30 pg.mL-1, respectively. Peptone caused a slight pH-independent increase in somatostatin release; gastrin release was unchanged despite an increase in serum gastrin from a basal of 15 +/- 4 to 155 +/- 34 pg.mL-1 during peptone stimulation. intravenous infusion of carbachol (1 microgram.kg-1.min-1) strongly stimulated luminal somatostatin and gastrin release (from 5 +/- 1 to 192 +/- 52 pg.mL-1 and from 27 +/- 5 to 198 +/- 41 pg.mL-1, respectively) during perfusion with 0.1 M HCl. Phosphate buffer perfusion at pH 7.5 abolished the cholinergic-mediated somatostatin release but the gastrin response was unaffected. It is suggested that changes of luminal hormone concentrations in the rat stomach do not reflect the secretory activity of the endocrine cells in the gastric mucosa.  相似文献   

13.
Antral gastrin is the hormone known to stimulate acid secretion and proliferation of the gastric corpus epithelium. Patients with mutations in the multiple endocrine neoplasia type 1 (MEN1) locus, which encodes the protein menin, develop pituitary hyperplasia, insulinomas, and gastrinomas in the duodenum. We previously hypothesized that loss of menin leads to derepression of the gastrin gene and hypergastrinemia. Indeed, we show that menin represses JunD induction of gastrin in vitro. Therefore, we examined whether conditional deletion of Men1 (Villin-Cre and Lgr5-EGFP-IRES-CreERT2), with subsequent loss of menin from the gastrointestinal epithelium, increases gastrin expression. We found that epithelium-specific deletion of Men1 using Villin-Cre increased plasma gastrin, antral G cell numbers, and gastrin expression in the antrum, but not the duodenum. Moreover, the mice were hypochlorhydric by 12 mo of age, and gastric somatostatin mRNA levels were reduced. However, duodenal mRNA levels of the cyclin-dependent kinase inhibitor p27(Kip1) were decreased, and cell proliferation determined by Ki67 staining was increased. About 11% of the menin-deficient mice developed antral tumors that were negative for gastrin; however, gastrinomas were not observed, even at 12 mo of age. No gastrinomas were observed with conditional deletion of Men1 in the Lgr5 stem cells 5 mo after Cre induction. In summary, epithelium-specific deletion of the Men1 locus resulted in hypergastrinemia due to antral G cell hyperplasia and a hyperproliferative epithelium, but no gastrinomas. This result suggests that additional mutations in gene targets other than the Men1 locus are required to produce gastrin-secreting tumors.  相似文献   

14.
15.
Summary Somatostatin cells in the stomach of the rat have a characteristic shape and distribution. In the antral mucosa they occur together with gastrin cells and enterochromaffin cells at the base of the glands. In the oxyntic mucosa they are scattered along the entire glands with some predominance in the zone of parietal cells. Throughout the gastric mucosa the somatostatin cells possess long and slender processes that emerge from the base of the cell and end in clublike swellings. Such processes appear to contact a certain proportion of neighbouring gastrin cells in the antral mucosa and parietal cells in the oxyntic mucosa.Exogenous somatostatin given by intravenous infusion to conscious rats counteracted the release of gastrin stimulated by feeding, elevated antral pH or vagal excitation. Gastrin causes parietal cells to secrete HCl and endocrine cells in the oxyntic mucosa to mobilise and synthesise histamine. Somatostatin is known to block the response of the parietal cells to gastrin. In contrast, somatostatin did not block the response of the histamine-storing endocrine cells to gastrin, perhaps because these endocrine cells lack receptors to somatostatin. Conceivably, somatostatin in the gastric mucosa has a paracrine mode of action. The observations of the present study suggest that somatostatin may affect some, but not all of the various cell types in the stomach. Under physiological conditions this selectivity may be achieved in the following ways: 1) Communication may be based on direct cell-to-cell contact. 2) Only certain cell types are supplied with somatostatin receptors.  相似文献   

16.
Recently we have shown the release of bombesin-like immunoreactivity (BLI) from the isolated perfused rat stomach. In these experiments we have shown that BLI secretion is stimulated by acetylcholine. Gastric inhibitory peptide (GIP) exerts an inhibitory effect which is dependent on the intraluminal pH. The present study was designed to examine further the exact cholinergic mechanisms and to study the interaction between cholinergic and histaminergic mechanisms as well as the effect of the intraluminal pH. Acetylcholine elicited a dose-dependent increase in BLI and gastrin secretion (10(-6) M and 2 X 10(-6)M), whereas somatostatin release was suppressed at luminal pH 7. Blockade of muscarinic cholinergic receptors by atropine (10(-5)M) and nicotinic cholinergic receptors by hexamethonium (10(-5) M) abolished the effect of acetylcholine on all three peptides. Reduction of the intraluminal pH to 2 also abolished acetylcholine-induced stimulation of BLI and gastrin secretion and the inhibition of somatostatin secretion. Changes of intraluminal pH per se had no effect on the secretion of either peptide. Somatostatin (10(-7) M) reduced both BLI and gastrin secretion during stimulation with acetylcholine. The addition of the H2-receptor antagonist cimetidine (10(-5) M) abolished the effect of both doses of acetylcholine on BLI and somatostatin secretion and also the effect of the lower dose of acetylcholine (10(-6) M) on gastrin secretion during luminal pH 7. At luminal pH 2 cimetidine did not alter BLI and somatostatin secretion in response to acetylcholine, however, gastrin release was augmented in the presence of cimetidine. These data demonstrate that the effect of acetylcholine on BLI, gastrin, and somatostatin secretion is mediated by muscarinic and nicotinic cholinergic receptors and also by histamine H2-receptors. Somatostatin inhibits cholinergically induced BLI secretion. The cholinergic effects on BLI, somatostatin and gastrin secretion are abolished during an acidic intragastric pH. In this isolated perfused rat stomach model the inhibitory effect of intraluminal acid on gastrin secretion is, at least in part, mediated by H2-receptors. This suggests that the secretion of bombesin, a potential peptidergic neurotransmitter is modulated by neural, endocrine and local tissue factors and also by alterations of intragastric pH.  相似文献   

17.
A single duodenal ulcerogenic dose of cysteamine administered into rats induced time-dependent depletion of immunoreactive somatostatin in the gastric corporeal, antral, and duodenal mucosa with a parallel increase (up-regulation) of somatostatin binding sites. The concentration of somatostatin binding sites returned to the control level in the corporeal mucosa when measured at 24 hrs; however, in the duodenal mucosa there was only a partial return to the control level. Somatostatin binding sites in the antral mucosa did not return to control level even after 24 hrs. Except for the duodenum mucosal immunoreactive gastrin level was unaffected by cysteamine administration, but corporeal mucosal gastrin I binding sites were diminished (down-regulation) after 24 hrs.  相似文献   

18.
Atrial natriuretic peptide (ANP) as well as its receptor, NPR-A, have been identified in gastric antral mucosa, suggesting that ANP may act in a paracrine fashion to regulate gastric secretion. In the present study, we have superfused antral mucosal segments obtained from rat stomach to examine the paracrine pathways linking ANP and somatostatin secretion in this region.ANP (0.1 pM to 0.1 microM) caused a concentration-dependent increase in somatostatin secretion (EC(50), 0.3 nM). The somatostatin response to ANP was unaffected by the axonal blocker tetrodotoxin but abolished by addition of the selective NPR-A antagonist, anantin. Anantin alone inhibited somatostatin secretion by 18+/-3% (P<0.005), implying that endogenous ANP, acting via the NPR-A receptor, stimulates somatostatin secretion. Somatostatin (1 pM to 1 microM) caused a concentration-dependent decrease in ANP secretion (EC(50), 0.7 nM) that was abolished by addition of the somatostatin subtype 2 receptor (sst2) antagonist, PRL2903. Neutralization of ambient somatostatin with somatostatin antibody (final dilution 1:200) increased basal ANP secretion by 70+/-8% (P<001), implying that endogenous somatostatin inhibits ANP secretion. We conclude that antral ANP and somatostatin secretion are linked by paracrine feedback pathways: endogenous ANP, acting via the NPR-A receptor, stimulates somatostatin secretion, and endogenous somatostatin, acting via the sst2 receptor, inhibits ANP secretion.  相似文献   

19.
Effect of starvation on endocrine cells in the rat stomach   总被引:1,自引:0,他引:1  
The influence of food deprivation on gastric G- and D-cells and on parietal cells was studied in the rat. In fed controls and groups of rats fasted for 12 and 96 h G-, D- and parietal cell densities, somatostatin and gastrin concentration in antral and fundic specimens and serum gastrin were compared. Gastrin in antral mucosa, serum gastrin, G-cell density as well as antral D-cell density decreased in long-term fasted rats by 52%, 90%, 58% and 42%, respectively. Fundic D-cell density remained unchanged. After 96 h starvation somatostatin concentration slightly increased in antral mucosa (+35%; P less than 0.05), but decreased in fundic mucosa (-40%; P less than 0.05). Parietal cell density was not influenced by prolonged fasting. These findings demonstrate that changes in D-cell morphology and mucosal somatostatin content are not parallel and that the rat gastric D-cell is less dependent on food in the gastric lumen than the G-cell. The unaltered fundic D-cell density reflects the functional activity of gastric D-cell which has also been shown to be independent of the presence or absence of food.  相似文献   

20.
Somatostatin is a potent inhibitor of gastrin secretion and gene expression. Menin is a 67-kDa protein product of the multiple endocrine neoplasia type 1 (MEN1) gene that when mutated leads to duodenal gastrinomas, a tumor that overproduces the hormone gastrin. These observations suggest that menin might normally inhibit gastrin gene expression in its role as a tumor suppressor. Since somatostatin and ostensibly menin are both inhibitors of gastrin, we hypothesized that somatostatin signaling directly induces menin. Menin protein expression was significantly lower in somatostatin-null mice, which are hypergastrinemic. We found by immunohistochemistry that somatostatin receptor-positive cells (SSTR2A) express menin. Mice were treated with the somatostatin analog octreotide to determine whether activation of somatostatin signaling induced menin. We found that octreotide increased the number of menin-expressing cells, menin mRNA, and menin protein expression. Moreover, the induction by octreotide was greater in the duodenum than in the antrum. The increase in menin observed in vivo was recapitulated by treating AGS and STC cell lines with octreotide, demonstrating that the regulation was direct. The induction required suppression of protein kinase A (PKA) since forskolin treatment suppressed menin protein levels and octreotide inhibited PKA enzyme activity. Small-interfering RNA-mediated suppression of PKA levels raised basal levels of menin protein and prevented further induction by octreotide. Using AGS cells, we also showed for the first time that menin directly inhibits endogenous gastrin gene expression. In conclusion, somatostatin receptor activation induces menin expression by suppressing PKA activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号