首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have previously shown that Chinese hamster ovary cells made polyamine deficient by treatment with alpha-methylornithine, an inhibitor of ornithine decarboxylase, grow exponentially in culture at low densities at one-half the rate observed in untreated (control) cultures. In this study, the cell cycle of polyamine-limited cells was examined by using thymidine autoradiography, mitotic index analysis, and fraction labeled mitoses analysis. We found that the longer doubling time of inhibitor-treated cultures was a consequence of increases in the lengths of the G1 and S phases. The expansion of the S phase was proportional to the increase in doubling time (twofold), whereas the G1 phase was lengthened by slightly more than a factor of 2. The lengths of the G2 and M phases were essentially unchanged. Putrescine stimulated the growth of inhibitor-treated cultures and restored the cell cycle parameters to those of untreated cells.  相似文献   

2.
The ability of glycopeptides, isolated from bovine cerebral cortex, to alter cell division was studied by cell-cycle analyses. The results showed that glycopeptides arrested baby hamster kidney (BHK)-21 cells and Chinese hamster ovary (CHO) cells in the G2 phase of the cell cycle. Upon removal of the growth inhibition from arrested BHK-21 cells, the mitotic index in colchicine-treated cultures increased from 5 to 40% within 6 h and the increase in mitotic activity was accompanied by a complete doubling of all arrested cells within this 6- h time period. Determination of DNA content in growth-arrested BHK-21 cells showed that growth-arrested cells contained about twice the DNA of control cell cultures. Although CHO cells treated in a like manner with growth inhibitor could not be arrested for the same length of time as BHK-21 cells (18 h vs. 72 h before initiation of escape) and to the same degree (60% of the cell population vs. 99% of BHK-21 cells), the escape kinetics of CHO cells did indicate a G2 arrest. Approximately 3.5 h after escape began, CHO cell numbers in treated cultures attained the cell numbers found in control cultures. This rapid growth phase occurring in less than 4 h indicated that the growth inhibitor induced a G2 arrest-point in CHO cells that was not lethal since the entire arrested cell population divided.  相似文献   

3.
Variation of Interferon Production During the Cell Cycle   总被引:1,自引:0,他引:1       下载免费PDF全文
The capacity of cells to produce interferon has been found to depend on the phase in the cell cycle at which virus infection took place. Monolayer cultures of L cells were synchronized by the double thymidine-block method. Such synchronously growing cultures were used to study the ability of cells to produce interferon when they were infected with ultraviolet-inactivated Newcastle disease virus (UV-NDV) at different phases of the cell cycle. In all instances, interferon was detected early and reached a maximum at about 16 hr after infection. However, the levels of interferon found in medium of cultures infected at early post-deoxyribonucleic acid (DNA) synthetic (G2) and to some extent at late G2 phases of the cell cycle were comparatively lower than those found in cultures infected at the early DNA synthetic (S) phase. There appeared also in these infected growing cultures a transient period when interferon production was apparently delayed. This period corresponded interestingly with the time of mitotic burst. Infection of thymidine- or 1-beta-d-arabino-furanosylcytosine-inhibited cultures with UV-NDV also led to similar interferon response as that observed in growing cultures infected at early S. However, no transient delay of interferon production was demonstrated in these cultures.  相似文献   

4.
Circadian variations in the frequency of mitoses and the number of nuclei labed with thymidine-H3 in sarcoma-37 of mice were investigated. It was shown that the circadian rhythm of mitotic activity was composed of diurnal variations in the frequency of labeled and unlabeled mitoses. The G2-phase of mitotic cycle of the cells with labeled mitosis was approximately one hour. The G2-phase of the cells with unlabed mitosis lasted four hours and more. It is suggested that there are two cell populations in sarcoma-37.  相似文献   

5.
The factors that control oncornavirus formation were analyzed in Friend leukemia cells that undergo hematopoiesis when treated with dimethyl sulfoxide. Suspension cultures of Ostertag FSD-1 cell line were found to enter a G or resting state at the end of their proliferative phase and to simultaneously cease producing helper and dependent components of Friend virus. Whereas the decline in virus production is at least 100-fold, rates of cellular RNA and protein synthesis are only slightly lower in resting than in growing cells. Both resting and growing cells contain similarly large concentrations of the viral proteins P(30) and P(12). Dimethyl sulfoxide induces hemoglobin synthesis in growing cells, but its effects on virus production appear to be indirect results of its action to inhibit cell growth and thus to delay entry of cells into the G resting state. Furthermore, variant cell lines were obtained with differing abilities to synthesize virus or hemoglobin. Some lines no longer produce infectious virus, although they all harbor murine leukemia virus genes which are expressed to varying extents. The major internal protein of these oncornaviruses, P(30), is synthesized in large amounts by all of the cell lines. These results suggest that Friend virus production is not coinduced with erythroid differentiation, as had been proposed, but rather is controlled by a cellular growth cycle.  相似文献   

6.
Large quantities of mitotic cells may be collected by mitotic detachment from a population of Chinese hamster ovary cells growing on positively charged dextran microcarriers in suspension culture. Exponentially growing cells are treated for 2.5 h with colcemid and mitotic cells are detached from the microcarriers by increasing the stirring speed. A yield of 4-6% of the total population is obtained and, of the cells collected, 85-95% are arrested in metaphase. Using this means to synchronize cells we have determined the cell cycle dependence of the toxic and mutagenic effects of 5-bromo-2'-deoxyuridine (BUdR) and ethyl methanesulfonate (EMS). Mutation was measured at two independent loci: resistance to 6-thioguanine and resistance to ouabain. Both mutagens were more toxic during S phase as compared to G1 or G2 or mitosis. BUdR induced significant mutation only during S phase. The maximum induction of 6-thioguanine resistance was observed in cultures treated 10 h after plating of mitotic cells (2 h into S phase), while the maximum induction of ouabain resistance was observed in cultures treated 10-12 h after plating of mitotic cells (2-4 h into S phase). EMS induced significant mutation at all points in the cell cycle. Mutation induction reached a minimum during S phase but the magnitude of difference between any two points in the cell cycle was found to be less than two-fold.  相似文献   

7.
To study the relationship between cell growth control, cell contact, and protein secretion, we examined the production of plasminogen activator, procollagen, and fibronectin by Chinese hamster ovary (CHO) fibroblasts, both as a function of position in the cell cycle and as a function of cell density. CHO fibroblasts that were synchronized at hourly intervals throughout the cell cycle by mitotic selection in an automated roller bottle apparatus secreted plasminogen activator only during the G2 and M phases of the cell cycle (10–14 h after mitotic selection). Cell-associated plasminogen activator activity was variable during G1 and S, but was greatly reduced during G2 and M. In contrast, secretion of the connective tissue matrix proteins, procollagen and fibronectin, was controlled by cell density rather than by cell cycle position. Type III procollagen and fibronectin were secreted throughout the cell cycle with no pronounced variations. Type I procollagen was not secreted by cycling cells and was observed in confluent cultures only after 24–48 h. To correlate these changes in protein secretion patterns with cell shape and contact, we used scanning electron microscopy (SEM) to study the appearance of CHO cells after mitotic selection. Actively dividing cells retained a high proportion of rounded, ruffled, and blebbed cells during all phases of the cell cycle. Only with increased cell density in contact-inhibited confluent cultures did most cells begin to flatten and spread. Thus, secretion of and attachment to extracellular matrix did not occur in rapidly dividing cells, but appeared to require the increased cell-cell contact and spreading that accompanies contact inhibition of growth. On the other hand, increased secretion of plasminogen activator was directly related to cell division and may be part of a sequence of events that allows cells growing in culture to loosen extracellular attachments in preparation for rounding and cytokinesis.  相似文献   

8.
Experiments were performed to study the influence of hypoxic pretreatment on the radiation response of A431 human squamous carcinoma cells. Reaeration for 10 min after chronic hypoxia (greater than 2 h) was found to enhance the radiosensitivity of A431 cells, and the maximal effect was seen for those cells reaerated after 12 h of hypoxia. The radiosensitivity enhancement for reaerated cells after 12 h of hypoxia was maximized by 5 min after the return to aerobic conditions and reached the control level by 12 h of reaeration. This enhanced radiosensitive state was characterized by a reduced shoulder region and increased slope of the radiation dose-response curve for cells in both the exponential and plateau phases of growth. There was a slight increase in the number of G1 and decrease in the number of S and G2 + M cells for both exponential- and plateau-phase cultures following 12 h hypoxic treatment. Although growth inhibition induced by 12 h of hypoxia was seen for cells in the exponential phase, there was no cell number change in the plateau-phase culture after hypoxia. Plating efficiency (PE) of cells in both growth phases was reduced by 30% after hypoxia. Furthermore, in the exponential-phase culture, the extent of reduction in PE after hypoxia was similar among cells in different phases of the cell cycle. Although S-phase cells in exponentially growing cultures were relatively more resistant to radiation than G1 and G2 + M cells, the cell age-response pattern was the same whether the cells had been aerobic or hypoxic before reaeration and irradiation. Furthermore, the enhancement ratio associated with reaeration after 12 h of hypoxia for these three subpopulations of cells was 1.3. Our results indicate that the increase in radiosensitivity due to reaeration after chronic hypoxia is unlikely to be related to the changes of cell cycle stage and growth phase during hypoxic treatment.  相似文献   

9.
The epidermal cell cycle of the pupal mesonotum of Galleria was investigated by the determination of mitotic indices, [3H]thymidine incorporation and flow-cytophotometric analysis during the first 48 h after pupation.Immediately after the pupal ecdysis nearly all epidermal cells are arrested in G2. Thereafter only a few mitoses occur, leading to a slow increase in the number of G1 nuclei. With the onset of a mitotic wave at a pupal age of 21 h this increase becomes more rapid. On day 2, the cell population reaches a plateau in the number of G1 (resp. G2) cells, reflecting a steady state between mitotic activity and DNA synthesis.A comparison of these cell cycle changes with known data of the time course of reprogramming and ecdysteroid titre leads to the conclusion that there is no causal relationship between DNA synthesis and cellular determination in the sense of a quantal cell cycle, and that DNA synthesis can precede the definite rise in ecdysteroid titre.  相似文献   

10.
The influence of a polish anticancer drug on the cell cycle using Allium test was studied. Methods of aceto-orcein squash slides, curve of labelled mitoses after 3H-thymidine incubation and cytophotometrics after Feulgen's reaction were employed. Ledakrin acts strongly antimitotically, but it does not block the cell cycle completely. The cytostatic activity of ledakrin results from its action on the interphase. The phases G1 and S are prolonged while M is unchanged after 6h incubation with ledakrin. During postincubation in water without ledakrin it was noted, at the beginning, that the mitotic activity decreases and it is brought about the lengthening of S and G2 phases. The duration of the cell cycle phases returns to the control level during further postincubation. The results of analysis of chromatin aberrations and the micronucleus test point to a mutagenic effect of ledakrin.  相似文献   

11.
The cell kinetic parameters of K-562 leukemia cells were studied using microwell cultures in which growth was initiated from a single cell. Total population growth was studied by direct enumeration, 3H-thymidine labelling, and flow cytometry. Clonogenic cell growth was studied by replating and 3H-thymidine suicide. In 7-day clones of K-562 cells, durations of the total cell cycle, G1, S, G2, and M phases were 20.8 h, 3.5 h, 12.9 h, 3.3 h, and 1.1 h, respectively; the growth fraction was 0.92 and the cell loss factor was 0.084. Study of colony-forming cells by replating indicated that clonogenic cells comprised 40% of total cells. 3H-Thymidine suicide showed that cell-cycle duration for these cells was 22.5 h and that S-phase duration was 11.7 h.  相似文献   

12.
Effects of alkylating antitumor drugs on resting (G0 phase of cell cycle) and proliferating (G1, S, G2 and M phases) hepatocytes were studied in regenerating mouse liver. Cell cycle kinetics (fraction of labeled mitoses, labeling and mitotic indices) were determined by 3H-thymidine autoradiography. Dipin and fotrin as a DNA-damaging agents attack mainly resting (G0) and proliferating (G1) cells. Effect of the damage results in the inhibition of DNA synthesis and G2 phase arrest in the following mitotic cycle. An alkylating drug phopurin as well as ara-C both suppress the mitotic progression in proliferating hepatocytes and do not influence the resting cells.  相似文献   

13.
The rate at which P19 embryonal carcinoma cells in monolayer culture become anchorage dependent during differentiation induced by retinoic acid (RA) was investigated. In both nonsynchronized cultures and cultures synchronized by mitotic selection, the ability to grow in semisolid medium, characteristic of the malignant stem cell, decreased after a lag period of about 12 hr in the continuous presence of RA, prior to an increase in cell generation time. However, striking differences between synchronized and nonsynchronized cultures were observed in their commitment to differentiation following RA removal. After only 2 hr of exposure to RA, synchronized cells continued a program of differentiation in which they became anchorage dependent, while at least 24 hr of exposure was required for exponentially growing cells to become similarly committed. Induction of anchorage dependence by RA was also strikingly cell cycle dependent; 2 or 4 hr of exposure of synchronized cells to RA in G1 phase, when the intrinsic capacity for soft agar growth is low, was sufficient to commit cells to anchorage dependence, but a similar exposure in S phase was not. Together, these results suggested that interactions between cells in different cell cycle phases in asynchronous cultures influenced commitment since exposure to RA for more than one cycle (13 hr) was required for all cells to become anchorage dependent. Increased plasminogen activator secretion and epidermal growth factor binding, markers of certain differentiated cell types, increased only 3 and 5 days after RA addition, respectively, and were not induced by pulsed exposure to RA of less than 24 hr, even in synchronized cells.  相似文献   

14.
A new method to discriminate G1, S, G2, M, and G1 postmitotic cells   总被引:1,自引:0,他引:1  
A new flow cytometric method combining light scattering measurements, detection of bromodeoxyuridine (BrdU) incorporation via fluorescent antibody, and quantitation of cellular DNA content by propidium iodide (PI) allows identification of additional compartments in the cell cycle. Thus, while cell staining with BrdU-antibodies and PI reveals the G1, S, and G2 + M phases of the cell cycle, differences in light scattering allow separation of G2 phase cells from M phase cells and subdivision of G1 phase into two compartments, i.e., G1A representing postmitotic cells which mature to G1B cells ready to initiate DNA synthesis. The method involves fixation of cells in 70% ethanol, extraction of histones with HC1, and thermal denaturation of DNA. This treatment appears to enhance the differences in chromatin structure of cells in the various phases of the cell cycle to the extent that cells could be separated on the basis of the 90 degrees scatter. Mitotic cells show much lower scatter than G2 phase cells, and G1 postmitotic cells (G1A) show lower scatter than G1 cells about to enter the S phase (G1B). Light scattering is correlated with chromatin condensation, as judged by microscopic evaluation of cells sorted on the basis of light scatter. The method has the advantage over the parental BrdU/DNA bivariate analysis in allowing the G2 and M phases of the cell cycle to be separated and the G1 phase to be analyzed in more detail. The method may also allow separation of unlabeled S phase cells from mitotic cells and distinguish between labeled and unlabeled mitotic cells.  相似文献   

15.
Cells of root meristems of Vicia faba were labelled with tritiatedthymidine and treated with colchicine or IAA or both. The effectsof these compounds on the duration of the mitotic cycle andits constituent phases have been determined using the labelledmitoses wave method of Quastler and Sherman. Colchicine shortensthe mitotic cycle of the cells in interphase at the time oftreatment; it appears to stimulate cells in G1 or early S tocomplete interphase faster than untreated cells. The affectedcells arrive at mitosis 9–12 h after the beginning oftreatment and contribute to the increase in mitotic index seenafter treatment with colchicine. Treatment with IAA did notaffect cells in G2 but it delayed cells in S; this results ina temporary fall in M.I. The effect of IAA in prolonging interphasewas also seen in roots treated with colchicine and IAA; thetetraploid cells induced by colchicine take longer to reachmetaphase than cells treated only with colchicine. The resultssuggest that colchicine and IAA affect different phases of thecell cycle.  相似文献   

16.
We have measured the kinetics of specific globin mRNA and Friend virus (FV) RNA synthesis by hybridization to immobilized cDNA after induction of differentiation of two erythroleukemia cell lines (F4N, B8) by butyrate and Me2SO. The induction with butyrate in these cell lines occurs very rapidly (16–24 h). Cell cycle analysis was made of the populations throughout induction by flow cytofluorometry. The kinetics of commitment of cell populations to terminal differentiation by butyrate was determined by removal of inducer at various times and scoring of benzidine staining cells (hemoglobin producing). In addition, the cell cycle dependence of commitment was determined by flow sorting out of G1 and S+G2 cells various times after addition of inducer and scoring benzidine-stained colonies after growth in methylcellulose. Cells exposed to inducer were also sorted by cell cycle phase using an elutriator rotor. The amount of globin mRNA synthesis in the different cell populations was then determined.
1. 1. It was found that an 8–12 h period in butyrate was required before (a) globin specific mRNA was synthesized; and (b) commitment to differentiation occurred. The time course of globin mRNA synthesis was positively correlated with G1 arrest, as has been also found by others.
2. 2. The increase of FV RNA synthesis was not found during G1 arrest. It occurred early and before commitment.
3. 3. Commitment of cells to irreversible differentiation upon butyrate induction occurs only during the G1 phase of the cell cycle.
4. 4. Globin mRNA synthesis occurs first only in G1 cells.
5. 5. Globin mRNA is synthesized later in all phases of the cell cycle.
These data suggest that (a) commitment to differentiation and globin mRNA accumulation are coupled; and (b) that both events occur only in G 1 cells after a pre-commitment phase of about 12 h.  相似文献   

17.
Erythropoietin (Epo) inhibits apoptosis in murine proerythroblasts infected with the anemia-inducing strain of Friend virus (FVA cells). We have shown that the apoptotic process in FVA cell populations deprived of Epo is asynchronous as a result of a heterogeneity in Epo dependence among individual cells. Here we investigated whether apoptosis in FVA cells correlated with cell cycle phase or stabilization of p53 tumor suppressor protein. DNA analysis in nonapoptotic FVA cell subpopulations cultured without Epo demonstrated little change in the percentages of cells in G1,S, and G2/M phases over time. Analysis of the apoptotic subpopulation revealed high percentages of cells in G1 and S, with few cells in G2/M at any time. When cells were sorted from G1 and S phases prior to culture without Epo, apoptotic cells appeared at the same rate in both populations, indicating that no prior commitment step had occurred in either G1 or S phase. Steady-state wild-type p53 protein levels were very low in FVA cells compared with control cell lines and did not accumulate in Epo-deprived cultures; however, p53 protein did accumulate when FVA cells were treated with the DNA-damaging agent actinomycin D. These data indicate that erythroblast apoptosis caused by Epo deprivation (i) occurs throughout G1 and S phases and does not require cell cycle arrest, (ii) does not have a commitment event related to cell cycle phase, and (iii) is not associated with conformational changes or stabilization of wild-type p53 protein.  相似文献   

18.
The duration of the cellular cycle and the diurnal rhythm of the amount of mitosis were studied in young rats in normality and under the influence of thyroxin. The parenchymal and connective-tissue cells of the liver and cells of the liver and the cells of the oesophagus epithelium basal layer were studied. It was found that under the influence of thyroxin there occured a shortening of the periods of the cellular cycle and a 3--6 h shift to the left of the diurnal rhythm curve of the amount of mitoses. In thyroxinized animals the 21--95% increase of the amount of mitoses in the period of maximum values of the mitotic index during a day was observed as compared with control animals. A conclusion is made about the diurnal rhythm of sensitivity of G0-phase cells to the synchronizing factor, suggesting the decisive significance of the state of the cell population in the interaction of the tissue and hormone cells. The data obatained in the work show that the thyroid hormones regulate the cellular reproduction in the organism by stimulating the cells in the division cycle, synchronization of greater amount of cells by the moment of beginning of the mitotic cycle at a definite time of day and by shortening the period of the cell mitotic cycle.  相似文献   

19.
We correlated cell cycle progression and vimentin expression at the single cell level by multiparameter flow cytometry in populations of MPC-11 cells enriched in different cell cycle phases by centrifugal elutriation and subsequently treated with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Synchronized, untreated cultures showed a uniform, synchronous progression through the cell cycle during further cultivation. A 6-h TPA treatment of G1-phase-enriched cultures induced both a partial G1-phase arrest in the same cycle and a moderate fraction of cells to become vimentin positive. However, nearly all cells of the cultures enriched in S- or in G2/M-phase cells could be arrested by TPA treatment at the earliest in the G1 phase of the second cell cycle and displayed higher fractions of positive cells as well as higher average levels of vimentin. After 20 h of treatment, the G1-phase arrest was almost complete. In terms of fractions of vimentin-positive cells as well as of average cellular vimentin content, the differences between the cultures resembled, albeit on a higher level, those between the respective cultures treated with TPA for 6 h. These observations might explain the striking bimodal distribution of individual cellular vimentin content detectable in G1-phase fractions of asynchronous, TPA-treated cultures. The pattern of vimentin mRNA accumulation in synchronized cultures after short-term TPA treatment strongly suggests that the cell cycle-dependent pattern of vimentin expression is caused, at least in part, by different levels of vimentin mRNA accumulated in the cells. Since proteinaceous mediator(s) are obviously involved in TPA-induced vimentin expression in MPC-11 cells, cell cycle-dependent vimentin expression in these cells may be dependent on cell cycle-dependent regulation of the activity and/or concentration of such mediator(s).  相似文献   

20.
The dependence of gamma-radiation-induced neoplastic transformation frequency on position in the cell cycle was measured for a human hybrid cell line (HeLa X skin fibroblast). The end point used was the induction of a tumor-associated antigen which in these cells correlates with tumorigenicity. Induction was measured in cells at G2, M, and mid-G1 phases and compared with the frequency induced in asynchronous cells. For studies of cells in G2 phase, the cells of an asynchronous population were collected for 3 h post-irradiation using the mitotic shake-off technique. For studies of cells in M and mid-G1 phases, cells were collected by mitotic harvest and then treated at the appropriate time. The data show that cells in G2 and M phase are very radiosensitive in terms of both cell killing and induction of neoplastic transformation compared to cells in mid-G1 or asynchronous populations. At a dose of 1 Gy, the transformation frequency was 10- to 20-fold higher for cells in M and G2 phase than for cells in mid-G1 or for asynchronous cells. However, the data indicate that the transformation frequencies were similar in the different phases of the cell cycle when correlated with surviving fraction. The results indicate that transformation frequency is more sensitive to changes in dose than is cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号