首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Fatty acid-binding proteins (FABPs) facilitate the diffusion of fatty acids within cellular cytoplasm. Compared with C57Bl/6J mice maintained on a high-fat diet, adipose-FABP (A-FABP) null mice exhibit increased fat mass, decreased lipolysis, increased muscle glucose oxidation, and attenuated insulin resistance, whereas overexpression of epithelial-FABP (E-FABP) in adipose tissue results in decreased fat mass, increased lipolysis, and potentiated insulin resistance. To identify the mechanisms that underlie these processes, real-time PCR analyses indicate that the expression of hormone-sensitive lipase is reduced, while perilipin A is increased in A-FABP/aP2 null mice relative to E-FABP overexpressing mice. In contrast, de novo lipogenesis and expression of genes encoding lipoprotein lipase, CD36, long-chain acyl-CoA synthetase 5, and diacylglycerol acyltransferase are increased in A-FABP/aP2 null mice relative to E-FABP transgenic animals. Consistent with an increase in de novo lipogenesis, there was an increase in adipose C16:0 and C16:1 acyl-CoA pools. There were no changes in serum free fatty acids between genotypes. Serum levels of resistin were decreased in the E-FABP transgenic mice, whereas serum and tissue adiponectin were increased in A-FABP/aP2 null mice and decreased in E-FABP transgenic animals; leptin expression was unaffected. These results suggest that the balance between lipolysis and lipogenesis in adipocytes is remodeled in the FABP null and transgenic mice and is accompanied by the reprogramming of adipokine expression in fat cells and overall changes in plasma adipokines.  相似文献   

2.
The availability of mice containing an adipocyte lipid-binding protein (ALBP/aP2) gene disruption allowed for a direct examination of the presumed role of lipid-binding proteins in the mobilization and trafficking of intracellular fatty acids. Total body and epididymal fat pad weights, as well as adipose cell morphology, were unaltered in male ALBP/aP2 disrupted mice when compared to their wild-type littermates. Analysis of adipocytes isolated from wild-type and ALBP/aP2 null mice revealed that a selective 40- and 13-fold increase in the level of the keratinocyte lipid-binding protein (KLBP) mRNA and protein, respectively, accompanied the ALBP/aP2 gene disruption. Although KLBP protein was significantly up-regulated, the total lipid-binding protein level decreased 8 -fold as a consequence of the disruption. There was no appreciable difference in the rate of fatty acid influx or esterification in adipocytes of wild-type and ALBP/aP2 null animals. To the contrary, basal lipolysis decreased approximately 40% in ALBP/aP2 nulls as compared to wild-type littermates. The glycerol release from isproterenol-stimulated ALBP/aP2 null fat cells was similarly reduced by approximately 35%. Consistent with a decrease in basal efflux, the non-esterified fatty acid (NEFA) level was nearly 3-fold greater in adipocytes from ALBP/aP2 nulls as compared to wild-type animals. The significant decrease in both basal and isoproterenol-stimulated lipolysis in adipose tissue of ALBP/aP2 null mice supports the model whereby intracellular lipid-binding proteins function as lipid chaperones, facilitating the movement of fatty acids out of the fat cell.  相似文献   

3.
4.
Body fat content is controlled, at least in part, by energy charge of adipocytes. In vitro studies indicated that lipogenesis as well as lipolysis depend on cellular ATP levels. Respiratory uncoupling may, through the depression of ATP synthesis, control lipid metabolism of adipose cells. Expression of some uncoupling proteins (UCP2 and UCP5) as well as other protonophoric transporters can be detected in the adipose tissue. Expression of other UCPs (UCP1 and UCP3) can be induced by pharmacological treatments that reduce adiposity. A negative correlation between the accumulation of fat and the expression of UCP2 in adipocytes was also found. Ectopic expression of UCP1 in the white fat of aP2-Ucp1 transgenic mice mitigated obesity induced by genetic or dietary factors. In these mice, changes in lipid metabolism of adipocytes were associated with the depression of intracellular energy charge. Recent data show that AMP-activated protein kinase may be involved in the complex changes elicited by respiratory uncoupling in adipocytes. Changes in energy metabolism of adipose tissue may mediate effects of treatments directed against adiposity, dyslipidemia, and insulin resistance.  相似文献   

5.
Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is a recessive disorder characterized by an almost complete loss of adipose tissue, insulin resistance, and fatty liver. BSCL2 is caused by loss-of-function mutations in the BSCL2/seipin gene, which encodes seipin. The essential role for seipin in adipogenesis has recently been established both in vitro and in vivo. However, seipin is highly upregulated at later stages of adipocyte development, and its role in mature adipocytes remains to be elucidated. We therefore generated transgenic mice overexpressing a short isoform of human BSCL2 gene (encoding 398 amino acids) using the adipocyte-specific aP2 promoter. The transgenic mice produced ~150% more seipin than littermate controls in white adipose tissue. Surprisingly, the increased expression of seipin markedly reduced the mass of white adipose tissue and the size of adipocytes and lipid droplets. This may be due in part to elevated lipolysis rates in the transgenic mice. Moreover, there was a nearly 50% increase in the triacylglycerol content of transgenic liver. These results suggest that seipin promotes the differentiation of preadipocytes but may inhibit lipid storage in mature adipocytes.  相似文献   

6.
Lou PH  Gustavsson N  Wang Y  Radda GK  Han W 《PloS one》2011,6(10):e26671

Background

Secretion of insulin and glucagon is triggered by elevated intracellular calcium levels. Although the precise mechanism by which the calcium signal is coupled to insulin and glucagon granule exocytosis is unclear, synaptotagmin-7 has been shown to be a positive regulator of calcium-dependent insulin and glucagon secretion, and may function as a calcium sensor for insulin and glucagon granule exocytosis. Deletion of synaptotagmin-7 leads to impaired glucose-stimulated insulin secretion and nearly abolished Ca2+-dependent glucagon secretion in mice. Under non-stressed resting state, however, synaptotagmin-7 KO mice exhibit normal insulin level but severely reduced glucagon level.

Methodology/Principal Findings

We studied energy expenditure and metabolism in synaptotagmin-7 KO and control mice using indirect calorimetry and biochemical techniques. Synaptotagmin-7 KO mice had lower body weight and body fat content, and exhibited higher oxygen consumption and basal metabolic rate. Respiratory exchange ratio (RER) was lower in synaptotagmin-7 KO mice, suggesting an increased use of lipid in their energy production. Consistent with lower RER, gene expression profiles suggest enhanced lipolysis and increased capacity for fatty acid transport and oxidation in synaptotagmin-7 KO mice. Furthermore, expression of uncoupling protein 3 (UCP3) in skeletal muscle was approximately doubled in the KO mice compared with control mice.

Conclusions

These results show that the lean phenotype in synaptotagmin-7 KO mice was mostly attributed to increased lipolysis and energy expenditure, and suggest that reduced glucagon level may have broad influence on the overall metabolism in the mouse model.  相似文献   

7.
Monoglyceride lipase (MGL) influences energy metabolism by at least two mechanisms. First, it hydrolyzes monoacylglycerols (MG) into fatty acids and glycerol. These products can be used for energy production or synthetic reactions. Second, MGL degrades 2-arachidonoyl glycerol (2-AG), the most abundant endogenous ligand of cannabinoid receptors (CBR). Activation of CBR affects energy homeostasis by central orexigenic stimuli, by promoting lipid storage, and by reducing energy expenditure. To characterize the metabolic role of MGL in vivo, we generated an MGL-deficient mouse model (MGL-ko). These mice exhibit a reduction in MG hydrolase activity and a concomitant increase in MG levels in adipose tissue, brain, and liver. In adipose tissue, the lack of MGL activity is partially compensated by hormone-sensitive lipase. Nonetheless, fasted MGL-ko mice exhibit reduced plasma glycerol and triacylglycerol, as well as liver triacylglycerol levels indicative for impaired lipolysis. Despite a strong elevation of 2-AG levels, MGL-ko mice exhibit normal food intake, fat mass, and energy expenditure. Yet mice lacking MGL show a pharmacological tolerance to the CBR agonist CP 55,940 suggesting that the elevated 2-AG levels are functionally antagonized by desensitization of CBR. Interestingly, however, MGL-ko mice receiving a high fat diet exhibit significantly improved glucose tolerance and insulin sensitivity in comparison with wild-type controls despite equal weight gain. In conclusion, our observations implicate that MGL deficiency impairs lipolysis and attenuates diet-induced insulin resistance. Defective degradation of 2-AG does not provoke cannabinoid-like effects on feeding behavior, lipid storage, and energy expenditure, which may be explained by desensitization of CBR.  相似文献   

8.
Fatty acid binding proteins (FABPs) are low-molecular-mass, soluble, intracellular lipid carriers. Previous studies on adipocytes from adipocyte fatty acid binding protein (A-FABP)-deficient mice have revealed that both basal and isoproterenol-stimulated lipolysis were markedly reduced (Coe et al. 1999. J. Lipid Res. 40: 967-972). Herein, we report the construction of transgenic mice overexpressing the FABP5 gene encoding the epithelial fatty acid binding protein (E-FABP) in adipocytes, thereby allowing evaluation of the effects on lipolysis of increased FABP levels and of type specificity. In adipocytes from FABP5 transgenic mice, the total FABP protein level in the adipocyte was increased to 150% as compared to the wild type due to a 10-fold increase in the level of E-FABP and an unanticipated 2-fold down-regulation of the A-FABP. There were no significant differences in body weight, serum FFA, or fat pad mass between wild-type and FABP5 transgenic mice. Importantly, both basal and hormone-stimulated lipolysis increased in adipocytes from the FABP5 transgenic animals. The molecular composition of the fatty acid pool from either the intracellular compartment or that effluxed from the adipocyte was unaltered. These results demonstrate that there is a positive relationship between lipolysis and the total level of FABP but not between lipolysis and a specific FABP type.  相似文献   

9.
Lipolysis leads to the breakdown of stored triglycerides (TAG) to release free fatty acids (FFA) and glycerol which is utilized by energy expenditure pathways to generate energy. Therefore, a decrease in lipolysis augments fat accumulation in adipocytes which promotes weight gain. Conversely, if lipolysis is not complemented by energy expenditure, it leads to FFA induced insulin resistance and type-2 diabetes. Thus, lipolysis is under stringent physiological regulation, although the precise mechanism of the regulation is not known. Deletion of inositol hexakisphosphate kinase-1 (IP6K1), the major inositol pyrophosphate biosynthetic enzyme, protects mice from high fat diet (HFD) induced obesity and insulin resistance. IP6K1-KO mice are lean due to enhanced energy expenditure. Therefore, IP6K1 is a target in obesity and type-2 diabetes. However, the mechanism/s by which IP6K1 regulates adipose tissue lipid metabolism is yet to be understood. Here, we demonstrate that IP6K1-KO mice display enhanced basal lipolysis. IP6K1 modulates lipolysis via its interaction with the lipolytic regulator protein perilipin1 (PLIN1). Furthermore, phosphorylation of IP6K1 at a PKC/PKA motif modulates its interaction with PLIN1 and lipolysis. Thus, IP6K1 is a novel regulator of PLIN1 mediated lipolysis.  相似文献   

10.
11.
Cytoplasmic fatty acid-binding proteins (FABPs) are a family of proteins, expressed in a tissue-specific manner, that bind fatty acid ligands and are involved in shuttling fatty acids to cellular compartments, modulating intracellular lipid metabolism, and regulating gene expression. Several members of the FABP family have been shown to have important roles in regulating metabolism and have links to the development of insulin resistance and the metabolic syndrome. Recent studies demonstrate a role for intestinal FABP in the control of dietary fatty acid absorption and chylomicron secretion. Heart FABP is essential for normal myocardial fatty acid oxidation and modulates fatty acid uptake in skeletal muscle. Liver FABP is directly involved in fatty acid ligand signaling to the nucleus and interacts with peroxisome proliferator-activated receptors in hepatocytes. The adipocyte FABP (aP2) has been shown to affect insulin sensitivity, lipid metabolism and lipolysis, and has recently been shown to play an important role in atherosclerosis. Interestingly, expression of aP2 by the macrophage promotes atherogenesis, thus providing a link between insulin resistance, intracellular fatty acid disposition, and foam cell formation. The FABPs are promising targets for the treatment of dyslipidemia, insulin resistance, and atherosclerosis in humans.  相似文献   

12.
Biochemical and cell-based studies have identified the G0S2 (G0/G1 switch gene 2) as a selective inhibitor of the key intracellular triacylglycerol hydrolase, adipose triglyceride lipase. To better understand the physiological role of G0S2, we constructed an adipose tissue-specific G0S2 transgenic mouse model. In comparison with wild type animals, the transgenic mice exhibited a significant increase in overall fat mass and a decrease in peripheral triglyceride accumulation. Basal and adrenergically stimulated lipolysis was attenuated in adipose explants isolated from the transgenic mice. Following fasting or injection of a β3-adrenergic agonist, in vivo lipolysis and ketogenesis were decreased in G0S2 transgenic mice when compared with wild type animals. Consequently, adipose overexpression of G0S2 prevented the “switch” of energy substrate from carbohydrates to fatty acids during fasting. Moreover, G0S2 overexpression promoted accumulation of more and larger lipid droplets in brown adipocytes without impacting either mitochondrial morphology or expression of oxidative genes. This phenotypic change was accompanied by defective cold adaptation. Furthermore, feeding with a high fat diet caused a greater gain of both body weight and adiposity in the transgenic mice. The transgenic mice also displayed a decrease in fasting plasma levels of free fatty acid, triglyceride, and insulin as well as improved glucose and insulin tolerance. Cumulatively, these results indicate that fat-specific G0S2 overexpression uncouples adiposity from insulin sensitivity and overall metabolic health through inhibiting adipose lipolysis and decreasing circulating fatty acids.  相似文献   

13.
Cardiotrophin-1 (CT-1) is a member of the gp130 family of cytokines. We observed that ct-1(-/-) mice develop mature-onset obesity, insulin resistance, and hypercholesterolemia despite reduced calorie intake. Decreased energy expenditure preceded and accompanied the development of obesity. Acute treatment with rCT-1 decreased blood glucose in an insulin-independent manner and increased insulin-stimulated AKT phosphorylation in muscle. These changes were associated with stimulation of fatty acid oxidation, an effect that was absent in AMPKα2(-/-) mice. Chronic rCT-1 treatment reduced food intake, enhanced energy expenditure, and induced white adipose tissue remodeling characterized by upregulation of genes implicated in the control of lipolysis, fatty acid oxidation, and mitochondrial biogenesis and genes typifying brown fat phenotype. Moreover, rCT-1 reduced body weight and corrected insulin resistance in ob/ob and in high-fat-fed obese mice. We conclude that CT-1 is a master regulator of fat and glucose metabolism with potential applications for treatment of obesity and insulin resistance.  相似文献   

14.
15.
Visceral fat accretion is a hallmark of aging and is associated with aging-induced metabolic dysfunction. PPARγ agonist was reported to improve insulin sensitivity by redistributing fat from visceral fat to subcutaneous fat. The purpose of this study was to investigate the underlying mechanisms by which aging affects adipose tissue remodeling in a type 2 diabetic animal model and through which PPARγ activation modulates aging-related fat tissue distribution. At the ages of 21, 31 and 43 weeks, OLETF rats as an animal model of type 2 diabetes were evaluated for aging-related effects on adipose tissue metabolism in subcutaneous and visceral fat depots. During aging, the ratio of visceral fat weight to subcutaneous fat weight (V/S ratio) increased. Aging significantly increased the mRNA expression of genes involved in lipogenesis such as lipoprotein lipase, fatty acid binding protein aP2, lipin 1, and diacylglycerol acyltransferase 1, which were more prominent in visceral fat than subcutaneous fat. The mRNA expression of adipose triglyceride lipase, which is involved in basal lipolysis and fatty acid recycling, was also increased, more in visceral fat compared to subcutaneous fat during aging. The mRNA levels of the genes associated with lipid oxidation were increased, whereas the mRNA levels of genes associated with energy expenditure showed no significant change during aging. PPARγ agonist treatment in OLETF rats resulted in fat redistribution with a decreasing V/S ratio and improved glucose intolerance. The genes involved in lipogenesis decreased in visceral fat of the PPARγ agonist-treated rats. During aging, fat distribution was changed by stimulating lipid uptake and esterification in visceral fat rather than subcutaneous fat, and by altering the lipid oxidation.  相似文献   

16.
17.
H Shi  D Dirienzo  M B Zemel 《FASEB journal》2001,15(2):291-293
We have demonstrated previously a regulatory role for intracellular Ca2+ ([Ca2+]i) in adipocyte lipogenesis and lipolysis and have recently reported that 1,25-(OH)2-D increases adipocyte [Ca2+]i, which causes increased lipogenesis and decreased lipolysis. We have now tested the hypothesis that suppressing 1,25-(OH)2-D by increasing dietary calcium will suppress adipocyte [Ca2+]i, thereby facilitating weight loss by stimulating lipolysis and inhibiting lipogenesis in calorically (Kcal)-restricted (70% of ad lib) aP2-agouti transgenic (aP2-a) mice. Mice (aP2-a) exhibiting a pattern of obesity gene expression similar to humans were fed a low-Ca (0.4%)/high-fat/high-sucrose diet for six weeks, resulting in a 27% and twofold increase in body weight and total fat pad mass, respectively, with a twofold increase in adipocyte [Ca2+]i pad lib or Kcal-restricted (70% of ad lib) on this diet either unsupplemented (basal) or with 25% or 50% of the protein replaced by non-fat dry milk (medium or high) dairy or supplemented with CaCO3 to 1.2% Ca for six weeks. Adipocyte [Ca2+]i was unaffected by Kcal restriction but was reduced markedly by all three high Ca diets (290 vs. 130 nM, p2+]i and thereby reduce energy storage and increase thermogenesis during Kcal restriction.  相似文献   

18.
The fat‐1 gene, derived from Caenorhabditis elegans, encodes for a fatty acid n‐3 desaturase. In order to study the potential metabolic benefits of n‐3 fatty acids, independent of dietary fatty acids, we developed seven lines of fat‐1 transgenic mice (C57/BL6) controlled by the regulatory sequences of the adipocyte protein‐2 (aP2) gene for adipocyte‐specific expression (AP‐lines). We were unable to obtain homozygous fat‐1 transgenic offspring from the two highest expressing lines, suggesting that excessive expression of this enzyme may be lethal during gestation. Serum fatty acid analysis of fat‐1 transgenic mice (AP‐3) fed a high n‐6 unsaturated fat (HUSF) diet had an n‐6/n‐3 fatty acid ratio reduced by 23% (P < 0.025) and the n‐3 fatty acid eicosapentaenoic acid (EPA) concentration increased by 61% (P < 0.020). Docosahexaenoic acid (DHA) was increased by 19% (P < 0.015) in white adipose tissue. Male AP‐3‐fat‐1 line of mice had improved glucose tolerance and reduced body weight with no change in insulin sensitivity when challenged with a high‐carbohydrate (HC) diet. In contrast, the female AP‐3 mice had reduced glucose tolerance and no change in insulin sensitivity or body weight. These findings indicate that male transgenic fat‐1 mice have improved glucose tolerance likely due to increased insulin secretion while female fat‐1 mice have reduced glucose tolerance compared to wild‐type mice. Finally the inability of fat‐1 transgenic mice to generate homozygous offspring suggests that prolonged exposure to increased concentrations of n‐3 fatty acids may be detrimental to reproduction. J. Cell. Biochem. 107: 809–817, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Adipocyte fatty acid binding protein 4, aP2, contributes to the pathogenesis of several common diseases including type 2 diabetes, atherosclerosis, fatty liver disease, asthma, and cancer. Although the biological functions of aP2 have classically been attributed to its intracellular action, recent studies demonstrated that aP2 acts as an adipokine to regulate systemic metabolism. However, the mechanism and regulation of aP2 secretion remain unknown. Here, we demonstrate a specific role for lipase activity in aP2 secretion from adipocytes in vitro and ex vivo. Our results show that chemical inhibition of lipase activity, genetic deficiency of adipose triglyceride lipase and, to a lesser extent, hormone-sensitive lipase blocked aP2 secretion from adipocytes. Increased lipolysis and lipid availability also contributed to aP2 release as determined in perilipin1-deficient adipose tissue explants ex vivo and upon treatment with lipids in vivo and in vitro. In addition, we identify a nonclassical route for aP2 secretion in exosome-like vesicles and show that aP2 is recruited to this pathway upon stimulation of lipolysis. Given the effect of circulating aP2 on glucose metabolism, these data support that targeting aP2 or the lipolysis-dependent secretory pathway may present novel mechanistic and translational opportunities in metabolic disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号