首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precise regulation of the intracellular concentration of chloride [Cl?]i is necessary for proper cell volume regulation, transepithelial transport, and GABA neurotransmission. The Na–K–2Cl (NKCCs) and K–Cl (KCCs) cotransporters, related SLC12A transporters mediating cellular chloride influx and efflux, respectively, are key determinants of [Cl?]i in numerous cell types, including red blood cells, epithelial cells, and neurons. A common “chloride/volume-sensitive kinase”, or related system of kinases, has long been hypothesized to mediate the reciprocal but coordinated phosphoregulation of the NKCCs and the KCCs, but the identity of these kinase(s) has remained unknown. Recent evidence suggests that the WNK (with no lysine = K) serine–threonine kinases directly or indirectly via the downstream Ste20-type kinases SPAK/OSR1, are critical components of this signaling pathway. Hypertonic stress (cell shrinkage), and possibly decreased [Cl?]i, triggers the phosphorylation and activation of specific WNKs, promoting NKCC activation and KCC inhibition via net transporter phosphorylation. Silencing WNK kinase activity can promote NKCC inhibition and KCC activation via net transporter dephosphorylation, revealing a dynamic ability of the WNKs to modulate [Cl?]. This pathway is essential for the defense of cell volume during osmotic perturbation, coordination of epithelial transport, and gating of sensory information in the peripheral system. Commiserate with their importance in serving these critical roles in humans, mutations in WNKs underlie two different Mendelian diseases, pseudohypoaldosteronism type II (an inherited form of salt-sensitive hypertension), and hereditary sensory and autonomic neuropathy type 2. WNKs also regulate ion transport in lower multicellular organisms, including Caenorhabditis elegans, suggesting that their functions are evolutionarily-conserved. An increased understanding of how the WNKs regulate the Na–K–2Cl and K–Cl cotransporters may provide novel opportunities for the selective modulation of these transporters, with ramifications for common human diseases like hypertension, sickle cell disease, neuropathic pain, and epilepsy.  相似文献   

2.
Haukioja E 《Oecologia》2003,136(2):161-168
Leaf maturation in mountain birch (Betula pubescens ssp. czerepanovii) is characterized by rapid shifts in the types of dominant phenolics: from carbon-economic flavonoids aglycons in flushing leaves, via hydrolysable tannins and flavonoid glycosides, to carbon-rich proanthocyanidins (condensed tannins) in mature foliage. This shift accords with the suggested trade-offs between carbon allocation to plant defense and growth, but may also relate to the simultaneous decline in nutritive leaf traits, such as water, proteins and sugars, which potentially limit insect growth. To elucidate how birch leaf quality translates into insect growth, I introduce a simple model that takes into account defensive compounds but also acknowledges insect demand for nutritive compounds. The effects of defensive compounds on insect growth depend strongly on background variation in nutritive leaf traits: compensatory feeding on low nutritive diets increases the intake of defensive compounds, and the availability of growth-limiting nutritive compounds may modify the effects of defenses. The ratio of consumption to larval growth (both in dry mass) increases very rapidly with leaf maturation: from 2.9 to 9.8 over 2 weeks in June-July, and to 15 by August. High concentrations in mature birch leaves of "quantitative" defenses, such as proanthocyanidins (15-20% of dry mass), presumably prevent further consumption. If the same compounds had also protected half-grown leaves (which supported the same larval growth with only one third of the dry matter consumption of older leaves), the same intake of proanthocyanidins would have demanded improbably high concentrations (close to 50%) in young leaves. The model thus suggests an adaptive explanation for the high levels of "quantitative" defenses, such as proanthocyanidins, in low-nutritive but not in high-nutritive leaves because of the behavioral responses of insect feeding to leaf nutritive levels.  相似文献   

3.
Soils contain the greatest reservoir of biodiversity on Earth, and the functionality of the soil ecosystem sustains the rest of the terrestrial biosphere. This functionality results from complex interactions between biological and physical processes that are strongly modulated by the soil physical structure. Using a novel combination of biochemical and biophysical indicators and synchrotron microtomography, we have discovered that soil microbes and plant roots microengineer their habitats by changing the porosity and clustering properties (i.e., spatial correlation) of the soil pores. Our results indicate that biota act to significantly alter their habitat toward a more porous, ordered, and aggregated structure that has important consequences for functional properties, including transport processes. These observations support the hypothesis that the soil–plant–microbe complex is self-organized.  相似文献   

4.
《Anthrozo?s》2013,26(4):194-202
ABSTRACT

A sample of 514 adults completed a postal questionnaire measuring both their empathy with humans (using the Mehrabian and Epstein (1972) Questionnaire for the Measurement of Emotional Empathy) and their empathy with non-human animals (using the Animal Empathy Scale, developed for this study). There was a significant, but modest correlation between the two scales (Kendall's tau=0.26, p<0.001), indicating that although the two types of empathy measure are in some way linked, they are unlikely to tap a single, unitary construct. This conclusion is reinforced by the finding that human- and animal-oriented empathy exhibit different levels of association with different potential sources of variation. Animal-oriented empathy was related to the current ownership of pets (U=19825.5, p<0.0001) and to the ownership of pets during childhood (U= 10271.0, p<0.01), while human-oriented empathy was related to currently having a child or children at home (U= 21020.5, p<0.05).  相似文献   

5.
The inhibition of lactate dehydrogenase at high pyruvate concentration was studied in three ways. First, a rapid decrease in the rate of the enzyme reaction was observed; secondly, the rate of formation of a pyruvate-NAD(+) compound was followed by the change in E(325); thirdly, the rate of quenching of the protein fluorescence was measured. The data obtained at pH6.0 at different temperatures and ionic strengths as functions of pyruvate, NAD(+) and enzyme concentrations show that the extent of inhibition can be correlated with the reversible formation of a compound between pyruvate and enzyme-bound NAD(+). It is suggested that the detailed kinetic analysis of the formation of this abortive ternary compound will give pertinent information about properties of the enzyme-NAD(+) compound involved in the normal catalytic process.  相似文献   

6.
Using the chain build-up procedure based on the program ECEPP, we have computed the lowest energy structures for two terminally blocked subsequences from the antigenic circumsporozoite protein of Plasmodium berghei, that is known to cause malaria in animals. The full antigenic sequence is an octapeptide proline-rich tandem repeat, (Pro–Pro–Pro–Pro–Asn–Pro–Asn–Asp)2. We computed the structures for the first octapeptide plus one Pro from the second octapeptide, terminally blocked CH3CO–Pro–Pro–Pro–Pro–Asn–Pro–Asn–Asp–Pro–NHCH3 as well as the first octpeptide with an additional three Pro residues from the adjoining unit, i.e., CH3CO–Pro–Pro–Pro–Pro–Asn–Pro–Asn–Asp–Pro–Pro–Pro–NHCH3. We find that the first sequence adopts a number of different low energy structures, the most probable of which has a probability of occurrence of 56 %. Addition of two more Pro residues results in the adoption a single, unique lowest energy structure that has a probability of occurrence of over 95 % without solvation effects and 86 % when solvation effects are included in the calculations. We predict that this structure may be the one recognized as a major antigenic determinant.  相似文献   

7.
1. Starvation for 3 days produces a decrease in methaemoglobin-reductase and glutathione-reductase activities, but it does not alter the glucose 6-phosphate-dehydrogenase activity of the rat erythrocyte. 2. The feeding of a protein-free diet for 11 days causes greater changes in the first two enzymes and also a diminution of the third. Under this experimental condition slight decreases in protein and haemoglobin contents were noted. 3. The experimental animals did not show methaemoglobinaemia, probably because the activity of methaemoglobin diaphorase is preserved. 4. The GSH content was not affected but the stability of the tripeptide in the presence of an oxidizing agent was diminished.  相似文献   

8.
The Henry–Michaelis–Menten (HMM) mechanism of enzymatic reaction is studied by means of perturbation theory in the reaction rate constant k 2 of product formation. We present analytical solutions that provide the concentrations of the enzyme (E), the substrate (S), as well as those of the enzyme-substrate complex (C), and the product (P) as functions of time. For k 2 small compared to k ?1, we properly describe the entire enzymatic activity from the beginning of the reaction up to longer times without imposing extra conditions on the initial concentrations E o and?S o , which can be comparable or much different.  相似文献   

9.
Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time. Lake level apparently is limited by leakage through a permeable layer in the northeast caldera wall. The deepest drowned beach approximately corresponds to the base of the permeable layer. Among a group of lake filling models, our preferred one is constrained by the drowned beaches, the permeable layer in the caldera wall, and paleoclimatic data. We used a precipitation rate 70% of modern as a limiting case. Satisfactory models require leakage to be proportional to elevation and the best fit model has a linear combination of 45% leakage proportional to elevation and 55% of leakage proportional to elevation above the base of the permeable layer. At modern precipitation rates, the lake would have taken 420 yr to fill, or a maximum of 740 yr if precipitation was 70% of the modern value. The filling model provides a chronology for prehistoric passage zones on postcaldera volcanoes that ceased erupting before the lake was filled.  相似文献   

10.
This paper concerns ODE modeling of the hypothalamic–pituitary– adrenal axis (HPA axis) using an analytical and numerical approach, combined with biological knowledge regarding physiological mechanisms and parameters. The three hormones, CRH, ACTH, and cortisol, which interact in the HPA axis are modeled as a system of three coupled, nonlinear differential equations. Experimental data shows the circadian as well as the ultradian rhythm. This paper focuses on the ultradian rhythm. The ultradian rhythm can mathematically be explained by oscillating solutions. Oscillating solutions to an ODE emerges from an unstable fixed point with complex eigenvalues with a positive real parts and a non-zero imaginary parts. The first part of the paper describes the general considerations to be obeyed for a mathematical model of the HPA axis. In this paper we only include the most widely accepted mechanisms that influence the dynamics of the HPA axis, i.e. a negative feedback from cortisol on CRH and ACTH. Therefore we term our model the minimal model. The minimal model, encompasses a wide class of different realizations, obeying only a few physiologically reasonable demands. The results include the existence of a trapping region guaranteeing that concentrations do not become negative or tend to infinity. Furthermore, this treatment guarantees the existence of a unique fixed point. A change in local stability of the fixed point, from stable to unstable, implies a Hopf bifurcation; thereby, oscillating solutions may emerge from the model. Sufficient criteria for local stability of the fixed point, and an easily applicable sufficient criteria guaranteeing global stability of the fixed point, is formulated. If the latter is fulfilled, ultradian rhythm is an impossible outcome of the minimal model and all realizations thereof. The second part of the paper concerns a specific realization of the minimal model in which feedback functions are built explicitly using receptor dynamics. Using physiologically reasonable parameter values, along with the results of the general case, it is demonstrated that un-physiological values of the parameters are needed in order to achieve local instability of the fixed point. Small changes in physiologically relevant parameters cause the system to be globally stable using the analytical criteria. All simulations show a globally stable fixed point, ruling out periodic solutions even when an investigation of the ‘worst case parameters’ is performed.  相似文献   

11.
A theoretical study based on quasi-static approximation is performed to investigate the location-dependent local field enhancement around the dielectric shell-coated gold nanosphere. Our calculation results show that the local field distribution near a gold nanoparticle can be altered greatly by coating with a dielectric shell. Because of the polarizability of the dielectric shell, increasing azimuth angle along the inner surface leads to the increase of the local field, which is opposite to that of the outer surface. Furthermore, the location-dependent local field enhancement and resonance frequency at both the inner and outer surfaces can also be modulated by varying the shell thickness and shell dielectric constant. These calculation results about the location-dependent local field enhancement show the potential of dielectric-coated metallic nanostructure for single-molecule detection based on surface-enhanced Raman scattering and surface enhanced fluorescence.  相似文献   

12.
Current advances in the emerging field of synthetic biology and the improvements in key technologies promise great impacts, not only on future scientific development, but also on the economy. In this paper we will adopt the triple helix concept for analyzing the early stages of a new field of science and innovation, namely synthetic biology. Synthetic biology is based on the creation and assembly of parts in order to create new and more complex structures and functions. These features of synthetic biology raise questions related to standardization and intellectual property, but also to security and public perception issues that go beyond the classical biotechnology discussions. These issues concern all involved actors in the synthetic biology field and affect the interrelationship between science, industry and policy. Based on the results of the recently finished EU FP-6 funded project TESSY (http://www.tessy-europe.de), the article analyzes these issues. Additionally, it illustrates the setting of clear framework conditions for synthetic biology research and development and the identification and definition of common goals for the future development of the field which will be needed for efficient science–industry–policy interaction. It was shown that it will be crucial to develop approaches that consider the needs of science and industry, on the one hand, and comply with the expectations of society, on the other hand. As synthetic biology is a global activity, the involvement of national decision-makers in international initiatives will further stimulate the development of the field.  相似文献   

13.
Two families are described in which the Ehlers–Danlos syndrome is apparently transmitted as an X-linked recessive character. The results of tests for the Xg blood groups and for colour vision show that the locus for the Ehlers–Danlos syndrome is not close to that for the Xg groups nor very close to the locus for deutan colour-blindness.The clinical features of this variety of the Ehlers–Danlos syndrome include considerable hyperextensibility of the skin and a bruising tendency.  相似文献   

14.
The insertion–deletion polymorphism of the serotonin transporter gene (SLC6A4) was studied using the polymerase chain reaction (PCR) in eight populations from the Volga–Ural region (the Bashkir, Chuvash, Tatar, Udmurt, Mari, Mordovian, and Komi populations and the population of Russians living in the Arkhangel'skii raion of Bashkortostan). For this polymorphic system, the pattern of distribution of main population parameters was established in the region studied. Depending on population ethnicity, specific trends were revealed in the pattern of frequencies of alleles and genotypes of geneSLC6A4.  相似文献   

15.
16.
In the past five years, there have been a series of papers in the journal Evolution debating the relative significance of two theories of evolution, a neo-Fisherian and a neo-Wrightian theory, where the neo-Fisherians make explicit appeal to parsimony. My aim in this paper is to determine how we can make sense of such an appeal. One interpretation of parsimony takes it that a theory that contains fewer entities or processes, (however we demarcate these) is more parsimonious. On the account that I defend here, parsimony is a ‘local’ virtue. Scientists’ appeals to parsimony are not necessarily an appeal to a theory’s simplicity in the sense of it’s positing fewer mechanisms. Rather, parsimony may be proxy for greater probability or likelihood. I argue that the neo-Fisherians appeal is best understood on this interpretation. And indeed, if we interpret parsimony as either prior probability or likelihood, then we can make better sense of Coyne et al. argument that Wright’s three phase process operates relatively infrequently.  相似文献   

17.
Chetyrbotskiy  V. A.  Chetyrbotskiy  A. N.  Levin  B. V. 《Biophysics》2020,65(6):1036-1045

A numerical simulation of the spatial–temporal dynamics of a multi-parameter system has been developed. The components of this system are plant biomass, the mobile and stationary forms of mineral nutrition elements, rhizosphere microorganisms, and environmental parameters (temperature, humidity, and acidity). Parametric identification and verification of the adequacy of the model were carried out based on the experimental data on the growth of Krasnoufimskaya-100 spring wheat on peat lowland soil. The results are represented by temporal distributions of biomass from agricultural crops and the findings on the contents of the main nutrition elements within the plant (nitrogen, phosphorus, and potassium). An agronomic assessment and interpretation of the results are given.

  相似文献   

18.
Widely accepted concepts and definitions concerning the driving forces of upward water fluxes, such as osmotic pressure (OP) and water potential (WP), were analyzed in the soil–plant–atmosphere system. It is emphasized that, at present, there are no physically correct definitions of the mentioned parameters, because such a concept as the heat pressure of molecules in a liquid has not been introduced. Physical definitions of OP and WP are presented. It is demonstrated that WP is not a driving force for water fluxes at the water–vapor interface. The fundamental difference in mechanisms of diffusion fluxes and active transport across the biological membranes is analyzed. The biological specificity of driving forces at the soil–root and leaf–air interfaces is described.  相似文献   

19.
Experimental and theoretical studies indicate that water molecules between redox partners can significantly affect their electron-transfer and possibly also the triplet–triplet energy transfer (TTET) properties when in the vicinity of chromophores. In the present work, the interaction of an intervening water molecule with the peridinin triplet state in the peridinin–chlorophyll a–protein (PCP) from Amphidinium carterae is studied by using orientation selective 2H electron spin echo envelope modulation (ESEEM) spectroscopy, in conjunction with quantum mechanical calculations. This water molecule is located at the interface between the chlorophyll and peridinin pigments involved in the photoprotection mechanism (Chl601(602)–Per614(624), for nomenclature see reference [1]), based on TTET. The characteristic deuterium modulation pattern is observed in the electron spin-echo envelopes for the PCP complex exchanged against 2H2O. Simulations of the time- and frequency-domain two-pulse and three-pulse ESEEM require two types of coupled 2H. The more strongly coupled 2H has an isotropic coupling constant (aiso) of − 0.4 MHz. This Fermi contact contribution for one of the two water protons and the precise geometry of the water molecule at the interface between the chlorophyll and peridinin pigments, resulting from the analysis, provide experimental evidence for direct involvement of this structured water molecule in the mechanism of TTET. The PCP antenna, characterised by a unity efficiency of the process, represents a model for future investigations on protein- and solvent-mediated TTET in the field of natural/artificial photosynthesis.  相似文献   

20.
Sepiapterin reductase (EC 1.1.1.153; SPR) is an enzyme involved in the biosynthesis of tetrahydrobiopterin; and SPR has been identified as a member of the NADP(H)-preferring short-chain dehydrogenase/reductase (SDR) family based on its catalytic properties for exogenous carbonyl compounds and molecular structure. To examine possible differences in the catalytic sites of SPR for exogenous carbonyl compounds and the native pteridine substrates, we investigated by site-directed mutagenesis the role of the highly conserved Ser–Tyr–Lys triad (Ser and YXXXK motif) in SPR, which was shown to be the catalytic site of SDR-family enzymes. From the analysis of catalytic constants for single- and double-point mutants against the triad, Ser and YXXXK motif, in the SPR molecule, participate in the reduction of the carbonyl group of both pteridine and exogenous carbonyl compounds. The Ser and the Tyr of the triad may co-act in proton transfer and stabilization for the carbonyl group of substrates, as was demonstrated for those in the SDR family. But either the Tyr or the Ser of SPR can function alone for proton transfer to a certain extent and show low activity for both substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号