首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 301 毫秒
1.
Cytokines are secreted signaling proteins that play an essential role in propagating and regulating immune responses during experimental autoimmune encephalomyelitis (EAE), the mouse model of the neurodegenerative, autoimmune disease multiple sclerosis (MS). EAE pathology is driven by a myelin-specific T cell response that is activated in the periphery and mediates the destruction of myelin upon T cell infiltration into the central nervous system (CNS). Cytokines provide cell signals both in the immune and CNS compartment, but interestingly, some have detrimental effects in the immune compartment while having beneficial effects in the CNS compartment. The complex nature of these signals will be reviewed.  相似文献   

2.
Multiple sclerosis (MS) is a chronic autoimmune condition of the central nervous system (CNS) characterized by acute inflammatory relapses, chronic neuro-axonal degeneration, and subsequent disability progression. T cells – in interaction with B cells and CNS-resident glial cells – are key initiators and drivers of neurodegeneration in MS. However, it is not entirely clear how encephalitogenic T cells orchestrate the local immune response within the brain and how they overtake disease stage-specific roles in MS pathogenesis. This review highlights recent advances in understanding direct and indirect T cell–neuron interactions in inflammatory and progressive MS. Finally, we discuss new diagnostic tools such as neurofilament light chain (NfL), which is on the cusp of becoming a key factor in clinical and therapeutic decision-making.  相似文献   

3.
Larochelle C  Alvarez JI  Prat A 《FEBS letters》2011,585(23):3770-3780
The presence of the blood-brain barrier (BBB) restricts the movement of soluble mediators and leukocytes from the periphery to the central nervous system (CNS). Leukocyte entry into the CNS is nonetheless an early event in multiple sclerosis (MS), an inflammatory disorder of the CNS. Whether BBB dysfunction precedes immune cell infiltration or is the consequence of perivascular leukocyte accumulation remains enigmatic, but leukocyte migration modifies BBB permeability. Immune cells of MS subjects express inflammatory cytokines, reactive oxygen species (ROS) and enzymes that can facilitate their migration to the CNS by influencing BBB function, either directly or indirectly. In this review, we describe how immune cells from the peripheral blood overcome the BBB and promote CNS inflammation in MS through BBB disruption.  相似文献   

4.
Most of the axons in the vertebrate nervous system are surrounded by a lipid-rich membrane called myelin, which promotes rapid conduction of nerve impulses and protects the axon from being damaged. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS characterized by infiltration of immune cells and progressive damage to myelin and axons. One potential way to treat MS is to enhance the endogenous remyelination process, but at present there are no available treatments to promote remyelination in patients with demyelinating diseases.Sulfasalazine is an anti-inflammatory and immune-modulating drug that is used in rheumatology and inflammatory bowel disease. Its anti-inflammatory and immunomodulatory properties prompted us to test the ability of sulfasalazine to promote remyelination. In this study, we found that sulfasalazine promotes remyelination in the CNS of a transgenic zebrafish model of NTR/MTZ-induced demyelination. We also found that sulfasalazine treatment reduced the number of macrophages/microglia in the CNS of demyelinated zebrafish larvae, suggesting that the acceleration of remyelination is mediated by the immunomodulatory function of sulfasalazine. Our data suggest that temporal modulation of the immune response by sulfasalazine can be used to overcome MS by enhancing myelin repair and remyelination in the CNS.  相似文献   

5.
Multiple sclerosis (MS) is no longer considered to be simply an autoimmune disease. In addition to inflammation and demyelination, axonal injury and neuronal loss underlie the accumulation of disability and the disease progression. Specific treatment strategies should thus aim to act within the central nervous system (CNS) by interfering with both neuroinflammation and neurodegeneration. Specific treatment strategies to autoimmune neurological disorders should aim to act within the CNS by interfering with both neuroinflammation and neurodegeneration. The cumulative effect of Glatiramer acetate (GA; Copaxone(R), Copolymer 1), an approved drug for the treatment of MS, reviewed herewith, draws a direct linkage between anti-inflammatory immunomodulation, neuroprotection, neurogenesis, and therapeutic activity in the CNS. GA treatment augmented the three processes characteristic of neurogenesis, namely, neuronal progenitor cell proliferation, migration, and differentiation. The newborn neurons manifested massive migration through exciting and dormant migratory pathways, into injury sites in brain regions, which do not normally undergo neurogenesis, and differentiated to mature neuronal phenotype, thus, counteracting the neurodegenerative course of disease. The plausible mechanism underlying this multifactorial effect is the induction of GA-reactive T cells in the periphery and their infiltration into the CNS, where they release immunomodulatory cytokines and neurotrophic factors in the injury site.  相似文献   

6.
Integrity of the blood-brain barrier is essential for the normal functioning of CNS. Its disruption contributes to the pathobiology of various inflammatory neurodegenerative disorders. We have shown that the HMG-CoA reductase inhibitor (lovastatin) attenuated experimental autoimmune encephalomyelitis (EAE, an inflammatory disease of CNS) in rodents by inhibiting the infiltration of mononuclear cells into the CNS. Here, using an in vitro system, we report that lovastatin inhibits endothelial-monocyte cell interaction by down-regulating the expression of vascular cell adhesion molecule-1 and E-selectin by inhibiting the phosphoinositide 3 kinase (PI3-kinase)/protein kinase B (Akt)/nuclear factor-kappa B (NF-kappaB) pathway in endothelial cells. It inhibits tumor necrosis factor alpha (TNFalpha)-induced PI3-kinase, Akt and NF-kappaB activation in these cells. Co-transfection of constitutively active forms of PI3-kinase and Akt reversed the lovastatin-mediated inhibition of TNFalpha-induced adhesion, as well as activation of NF-kappaB, indicating the involvement of the PI3-kinase/Akt pathway in the interaction of adhesion molecules and the process of adhesion. This study reports that lovastatin down-regulates the pathway affecting the expression and interaction of adhesion molecules on endothelial cells, which in turn restricts the migration and infiltration of mononuclear cells thereby attenuating the pathogenesis of inflammatory diseases.  相似文献   

7.
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS). Neither the antigenic target(s) nor the cell population(s) responsible for CNS tissue destruction in MS have been fully defined. The objective of this study was to simultaneously determine the antigen (Ag)-specificity and phenotype of un-manipulated intrathecal CD4+ and CD8+ T cells of patients with relapsing-remitting and progressive MS compared to subjects with other inflammatory neurological diseases. We applied a novel Ag-recognition assay based on co-cultures of freshly obtained cerebrospinal fluid T cells and autologous dendritic cells pre-loaded with complex candidate Ag''s. We observed comparably low T cell responses to complex auto-Ag''s including human myelin, brain homogenate, and cell lysates of apoptotically modified oligodendroglial and neuronal cells in all cohorts and both compartments. Conversely, we detected a strong intrathecal enrichment of Epstein-Barr virus- and human herpes virus 6-specific (but not cytomegalovirus-specific) reactivities of the Th1-phenotype throughout all patients. Qualitatively, the intrathecal enrichment of herpes virus reactivities was more pronounced in MS patients. This enrichment was completely reversed by long-term treatment with the IL-2 modulating antibody daclizumab, which strongly inhibits MS disease activity. Finally, we observed a striking discrepancy between diminished intrathecal T cell proliferation and enhanced cytokine production of herpes virus-specific T cells among progressive MS patients, consistent with the phenotype of terminally differentiated cells. The data suggest that intrathecal administration of novel therapeutic agents targeting immune cells outside of the proliferation cycle may be necessary to effectively eliminate intrathecal inflammation in progressive MS.  相似文献   

8.
Multiple sclerosis (MS) is a disabling inflammatory demyelinating disease of the central nervous system (CNS) that primarily affects young adults. Available therapies can inhibit the inflammatory component of MS but do not suppress progressive clinical disability. An alternative approach would be to inhibit mechanisms that drive the neuropathology of MS, which often includes the death of oligodendrocytes, the cells responsible for myelinating the CNS. Identification of molecular mechanisms that mediate the stress response of oligodendrocytes to optimize their survival would serve this need. This study shows that the neurotrophic cytokine leukemia inhibitory factor (LIF) directly prevents oligodendrocyte death in animal models of MS. We also demonstrate that this therapeutic effect complements endogenous LIF receptor signaling, which already serves to limit oligodendrocyte loss during immune attack. Our results provide a novel approach for the treatment of MS.  相似文献   

9.
10.
Multiple Sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS) with a presumed autoimmune etiology. Approved treatments for MS are immunoregulatory and are able to reduce the inflammatory components of the disease. However, these treatments do not suppress progressive clinical disability. Approaches that directly protect myelin-producing oligodendrocytes and enhance remyelination are likely to improve long-term outcomes and reduce the rate of axonal damage. Galanin (GAL) is a bioactive neuropeptide that is widely distributed throughout the nervous system and has diverse neuromodulatory effects. In this study, using the cuprizone (CPZ) demyelination model of MS, we demonstrate that GAL has pronounced neuroprotective effects with respect to demyelination and remyelination. Using our GAL transgenic mouse (GAL-Tg), we identified a novel attenuation of OLs against CPZ induced demyelination, which was exerted independently of progenitor cells. Alleviation of myelin breakdown in the GAL-Tg mice was observed to be significant. Furthermore, we observed changes in the expression of the GAL receptor GalR1 during the demyelination and remyelination processes. Our data strongly indicate that GAL has the capacity to influence the outcome of primary insults that directly target OLs, as opposed to cases where immune activation is the primary pathogenic event. Taken together, these results suggest that GAL is a promising next-generation target for the treatment of MS.  相似文献   

11.
Multiple sclerosis (MS) is a chronic neurodegenerative disease of the CNS in which an unrelenting attack from the innate and adaptive arms of the immune system results in extensive demyelination, loss of oligodendrocytes and axonal degeneration. This review summarizes advances in the understanding of the cellular and molecular pathways involved in neurodegeneration following autoimmune-mediated inflammation in the CNS. The mechanisms underlying myelin and axonal destruction and the equally important interaction between degenerative and repair mechanisms are discussed. Recent studies have revealed that the failure of CNS regeneration may be in part a result of the presence of myelin-associated growth inhibitory molecules in MS lesions. Successful therapeutic intervention in MS is likely to require suppression of the inflammatory response, in concert with blockade of growth inhibitory molecules and possibly the mobilization or transplantation of stem cells for regeneration.  相似文献   

12.
Multiple sclerosis (MS) is a chronic demyelinating disease of the human central nervous system (CNS). The condition predominantly affects young adults and is characterised by immunological and inflammatory changes in the periphery and CNS that contribute to neurovascular disruption, haemopoietic cell invasion of target tissues, and demyelination of nerve fibres which culminate in neurological deficits that relapse and remit or are progressive. The main features of MS can be reproduced in the inducible animal counterpart, experimental autoimmune encephalomyelitis (EAE). The search for new MS treatments invariably employs EAE to determine drug activity and provide a rationale for exploring clinical efficacy. The preclinical development of compounds for MS has generally followed a conventional, immunotherapeutic route. However, over the past decade, a group of compounds that suppress EAE but have no apparent immunomodulatory activity have emerged. These drugs interact with the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-isoxazolepropionic acid (AMPA)/kainate family of glutamate receptors reported to control neurovascular permeability, inflammatory mediator synthesis, and resident glial cell functions including CNS myelination. The review considers the importance of the glutamate receptors in EAE and MS pathogenesis. The use of receptor antagonists to control EAE is also discussed together with the possibility of therapeutic application in demyelinating disease.  相似文献   

13.
Multiple sclerosis (MS) is a debilitating inflammatory disease of the central nervous system (CNS) characterized by local destruction of the insulating myelin surrounding neuronal axons. With more than 200 million MS patients worldwide, the absence of treatments that prevent progression or induce repair poses a major challenge. Anti-inflammatory therapies have met with limited success only in preventing relapses. Previous screening of human serum samples revealed natural IgM antibodies that bind oligodendrocytes and promote both cell signaling and remyelination of CNS lesions in an MS model involving chronic infection of susceptible mice by Theiler's encephalomyelitis virus and in the lysolecithin model of focal demyelination. This intriguing result raises the possibility that molecules with binding specificity for oligodendrocytes or myelin components may promote therapeutic remyelination in MS. Because of the size and complexity of IgM antibodies, it is of interest to identify smaller myelin-specific molecules with the ability to promote remyelination in vivo. Here we show that a 40-nucleotide single-stranded DNA aptamer selected for affinity to murine myelin shows this property. This aptamer binds multiple myelin components in vitro. Peritoneal injection of this aptamer results in distribution to CNS tissues and promotes remyelination of CNS lesions in mice infected by Theiler's virus. Interestingly, the selected DNA aptamer contains guanosine-rich sequences predicted to induce folding involving guanosine quartet structures. Relative to monoclonal antibodies, DNA aptamers are small, stable, and non-immunogenic, suggesting new possibilities for MS treatment.  相似文献   

14.
The factors contributing to chronic relapsing inflammatory disease processes of the central nervous system (CNS) and demyelination are poorly understood. In addition to cellular immune reactions, humoral factors such as antibodies might quantitatively or qualitatively influence the disease process. We therefore investigated the effects of administration of a monoclonal antibody specific for a CNS autoantigen on both acute and chronic experimental autoimmune encephalomyelitis (EAE) in mice and rats. This monoclonal antibody, 8-18C5, specific for a myelin/oligodendrocyte glycoprotein, was observed to accelerate clinical and pathologic changes of CNS autoimmune disease. In SJL mice with chronic relapsing EAE, injection of antibody into animals recovering from an attack induced fatal relapses; in Lewis rats, acute EAE was enhanced and associated with a hyperacute inflammatory response with demyelination, a feature not commonly seen in acute EAE. The demonstration that relapses and demyelination can be induced by administration of a white matter-reactive monoclonal antibody offers new possibilities to study processes resulting in CNS damage during autoimmune disease. Furthermore, these findings support the immunopathogenic potential of antibody to myelin components in inflammatory CNS disease processes and, specifically, in causing demyelination.  相似文献   

15.
An active involvement of blood-brain barrier endothelial cell basement membranes in development of inflammatory lesions in the central nervous system (CNS) has not been considered to date. Here we investigated the molecular composition and possible function of the extracellular matrix encountered by extravasating T lymphocytes during experimental autoimmune encephalomyelitis (EAE).Endothelial basement membranes contained laminin 8 (alpha4beta1gamma1) and/or 10 (alpha5beta1gamma1) and their expression was influenced by proinflammatory cytokines or angiostatic agents. T cells emigrating into the CNS during EAE encountered two biochemically distinct basement membranes, the endothelial (containing laminins 8 and 10) and the parenchymal (containing laminins 1 and 2) basement membranes. However, inflammatory cuffs occurred exclusively around endothelial basement membranes containing laminin 8, whereas in the presence of laminin 10 no infiltration was detectable. In vitro assays using encephalitogenic T cell lines revealed adhesion to laminins 8 and 10, whereas binding to laminins 1 and 2 could not be induced. Downregulation of integrin alpha6 on cerebral endothelium at sites of T cell infiltration, plus a high turnover of laminin 8 at these sites, suggested two possible roles for laminin 8 in the endothelial basement membrane: one at the level of the endothelial cells resulting in reduced adhesion and, thereby, increased penetrability of the monolayer; and secondly at the level of the T cells providing direct signals to the transmigrating cells.  相似文献   

16.
MS (multiple sclerosis) is a chronic autoimmune and neurodegenerative pathology of the CNS (central nervous system) affecting approx. 2.5 million people worldwide. Current and emerging DMDs (disease-modifying drugs) predominantly target the immune system. These therapeutic agents slow progression and reduce severity at early stages of MS, but show little activity on the neurodegenerative component of the disease. As the latter determines permanent disability, there is a critical need to pursue alternative modalities. VIP (vasoactive intestinal peptide) and PACAP (pituitary adenylate cyclase-activating peptide) have potent anti-inflammatory and neuroprotective actions, and have shown significant activity in animal inflammatory disease models including the EAE (experimental autoimmune encephalomyelitis) MS model. Thus, their receptors have become candidate targets for inflammatory diseases. Here, we will discuss the immunomodulatory and neuroprotective actions of VIP and PACAP and their signalling pathways, and then extensively review the structure–activity relationship data and biophysical interaction studies of these peptides with their cognate receptors.  相似文献   

17.
Many modulators of inflammation, including chemokines, neuropeptides, and neurotransmitters signal via G protein-coupled receptors (GPCR). GPCR kinases (GRK) can phosphorylate agonist-activated GPCR thereby promoting receptor desensitization. Here we describe that in leukocytes from patients with active relapsing-remitting multiple sclerosis (MS) or with secondary progressive MS, GRK2 levels are significantly reduced. Unexpectedly, cells from patients during remission express even lower levels of GRK2. The level of GRK2 in leukocytes of patients after stroke, a neurological disorder with paralysis but without an autoimmune component, was similar to GRK2 levels in cells from healthy individuals. In addition, we demonstrate that the course of recombinant myelin oligodendrocyte glycoprotein (1-125)-induced experimental autoimmune encephalomyelitis (EAE), an animal model for MS, is markedly different in GRK2(+/-) mice that express 50% of the GRK2 protein in comparison with wild-type mice. Onset of EAE was significantly advanced by 5 days in GRK2(+/-) mice. The earlier onset of EAE was associated with increased early infiltration of the CNS by T cells and macrophages. Although disease scores in the first phase of EAE were similar in both groups, GRK2(+/-) animals did not develop relapses, whereas wild-type animals did. The absence of relapses in GRK2(+/-) mice was associated with a marked reduction in inflammatory infiltrates in the CNS. Recombinant myelin oligodendrocyte glycoprotein-induced T cell proliferation and cytokine production were normal in GRK2(+/-) animals. We conclude that down-regulation of GRK2 expression may have important consequences for the onset and progression of MS.  相似文献   

18.
The sequential emergence of specific T lymphocyte-mediated immune reactivity directed against multiple distinct myelin epitopes (epitope spreading) has been associated with clinical relapses in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Based on this association, an appealing and plausible model for immune-mediated progression of the advancing clinical course in MS and EAE has been proposed in which epitope spreading is the cause of clinical relapses in T cell-mediated CNS inflammatory diseases. However, the observed association between epitope spreading and disease progression is not universal, and absolute requirements for epitope spreading in progressive EAE have not been tested in the absence of multiple T cell specificities, because most prior studies have been conducted in immunocompetent mouse strains that possessed broad TCR repertoires. Consequently, the precise nature of a causal relationship between epitope spreading and disease progression remains uncertain. To determine whether relapsing or progressive EAE can occur in the absence of epitope spreading, we evaluated the course of disease in mice which possessed only a single myelin-specific TCR. These mice (transgenic/SCID +/+) exhibited a progressive and sometimes remitting/relapsing disease course in the absence of immune reactivity to multiple, spreading myelin epitopes. The results provide direct experimental evidence relevant to discussions on the mechanisms of disease progression in MS and EAE.  相似文献   

19.
Multiple sclerosis (MS) is a chronic inflammatory disease resulting in demyelination and axonal loss within the CNS. An autoimmune reaction directed against myelin antigens contributes to the disease process. As the CNS has long been considered an immune privileged site, how such an immune response can develop locally has remained enigmatic. Recent data, mostly based on the study of animal models for MS, have shown that the CNS is in fact more permissive to the development of immune responses than previously thought. This observation is counterbalanced by the fact that immune tolerance to myelin antigens can be induced outside the CNS. This review focuses on the mechanisms preventing CNS autoimmunity, which act in three separate tissues. In the thymus, expression of CNS autoantigens promotes partial protection, notably through elimination of autoreactive T cells. In the secondary lymphoid organs, the remaining autoreactive T cells are kept under control by the naturally occurring regulatory T cells of the CD4(+)Foxp3(+) phenotype. In the CNS, multiple mechanisms including the local activation of regulatory T cells further limit autoimmunity. A better understanding of the induction of regulatory T cells, of their mechanisms of action, and of approaches to manipulate them in vivo may offer new therapeutic opportunities for MS patients.  相似文献   

20.
Multiple sclerosis (MS), an inflammatory, demyelinating disease of the central nervous system (CNS), is thought to be caused by a T cell-mediated attack on CNS myelin and axons. Recombinant interferon (IFN)-beta is an established treatment of multiple sclerosis, and is known to reduce the number of disease relapses and the development of irreversible symptoms and signs of disease. The mechanism of action of IFN-beta treatment is, however, not completely understood. Previous studies have suggested major effects on mononuclear cell cytokine production and T cell migration, but results have been inconsistent. We found decreases in CD4 and CD8 T cell expression of the CD49d/VLA-4 molecule, increases in plasma concentrations of soluble vascular cell adhesion molecule (sVCAM-1), and increases in plasma concentrations of tumor necrosis factor and interleukin (IL)-12 p40 chain in patients with MS who were initiated on de novo treatment with IFN-beta1b. We found only minor associations between the different changes induced by IFN-beta1b-treatment. Our findings are consistent with changes in T cell expression of CD49d/VLA-4 and induction of sVCAM-1 as important effects of treatment with IFN-beta1b in multiple sclerosis, whereas the role of changes in TNF and IL-12 p40 chain concentrations is more difficult to interpret.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号