首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some human newborns have a syndrome characterized by irreversible pulmonary hypertension and severe hypoxemia and by medial hypertrophy and adventitial thickening of pulmonary arteries. We considered that newborn calves made severely hypoxic might reproduce features of the human disease. When 2-day-old calves were placed at 4,300 m simulated altitude, pulmonary arterial pressure was increased and could be reversed by 100% O2. However, after 2 wk at 4,300 m, pulmonary arterial pressures were suprasystemic and there was right-to-left shunting probably through the foramen ovale and a patent but restrictive ductus arteriosus. Suprasystemic pulmonary pressure and hypoxemia persisted with 100% O2 breathing. Morphometrical examination of the lung arteries showed a markedly thickened adventitia with cellular proliferation and collagen and elastin deposition. There was increased medial thickness and distal muscularization of the pulmonary arteries associated with decreased luminal diameter. The rapid development of severe pulmonary hypertension and poor responsiveness to O2 was associated with increased arterial wall thickness, particularly involving the adventitia. Thus the pulmonary arterial circulation in these calves, which were placed at high altitude for 2 wk, exhibited features resembling persistent pulmonary hypertension in newborn infants.  相似文献   

2.
The pulmonary circulation of the Tibetan snow pig (Marmota himalayana)   总被引:1,自引:0,他引:1  
Studies are presented on the pulmonary circulation of three Himalayan marmots ( Marmota himalayana (Hodgson)) captured in the mountains north of Lhasa, Tibet. The pulmonary arterial pressure and resistance were low, the right ventricle was not hypertrophied and the arterioles and terminal portions of the muscular pulmonary arteries had thin walls. The observations suggest that this species has adapted through natural selection to high altitude by losing the capacity for hypoxic pulmonary vasoconstriction.  相似文献   

3.
Pulmonary haemodynamics and the histology of the pulmonary vasculature have been studied at high altitude in the yak, in interbreeds between yaks and cattle, and in domestic goats and sheep indigenous to high altitudes together with crosses between them and low-altitude strains. Cattle at high altitude had a higher pulmonary arterial pressure than cattle at low altitude. The yak and two interbreeds with cattle (dzos and stols) had a low pulmonary arterial pressure compared with cattle, while the medial thickness of the small pulmonary arteries was less than would be expected in cattle, suggesting that the yak has a low capacity for hypoxic pulmonary vasoconstriction and that this characteristic is transmitted genetically. Goats and sheep showed haemodynamic evidence of a limited response of the pulmonary circulation to high altitude, but no evidence that the high altitude breeds had lost this response. There were no measurable differences in the thickness of the media of the small pulmonary arteries between high- and low-altitude breeds of goats and sheep. All these species showed prominent intimal protrusions of muscle into the pulmonary veins but no specific effect of high altitude in this respect.  相似文献   

4.
Pulmonary hypertension had long been suspected in high-altitude natives of the Andes. However, it remained for a team of Peruvian scientists led by Dante Penaloza to provide not only the first clear evidence that humans living at high altitude did indeed have chronic, and occasionally severe, pulmonary hypertension, but more importantly, that this was a consequence of structural changes in the pulmonary vascular bed. Novel histological findings by one of the team, Javier Arias-Stella, indicated that hypoxia-induced thickening of the pulmonary arteriolar walls was the primary cause of the elevated pressure. Because the hypertension was not promptly reversed by vasodilators (oxygen inhalation or acetylcholine infusion), they found it differed from acute hypoxic pulmonary vasoconstriction. The team's other novel findings included a delay in the normal fall in pulmonary vascular resistance after birth and, in adults, a lack of vasodilation with muscular exercise. Furthermore, the altitude-related pulmonary hypertension resolved over time at sea level.  相似文献   

5.
It is unclear whether dogs develop pulmonary hypertension (PH) at high altitude. Beagles from sea level were exposed to an altitude of 3,100 m (PB 525 Torr) for 12-19 mo and compared with age-matched controls remaining at low altitude of 130 m (PB 750 Torr). In beagles taken to high altitude as adults, pulmonary arterial pressures (PAP) at 3,100 m were 21.6 +/- 2.6 vs. 13.2 +/- 1.2 Torr in controls. Likewise, in beagles taken to 3,100 m as puppies 2.5 mo old, PAP was 23.2 +/- 2.1 vs. 13.8 +/- 0.4 Torr in controls. This PH reflected a doubling of pulmonary vascular resistance and showed no progression with time at altitude. Pulmonary vascular reactivity to acute hypoxia was also enhanced at 3,100 m. Inhibition of prostaglandin synthesis did not attenuate the PH or the enhanced reactivity. Once established, the PH was only partially reversed by acute relief of chronic hypoxia, but reversal was virtually complete after return to low altitude. Hence, beagles do develop PH at 3,100 m of a severity comparable to that observed in humans at the same or even higher altitudes.  相似文献   

6.
High-altitude destinations are visited by increasing numbers of children and adolescents. High-altitude hypoxia triggers pulmonary hypertension that in turn may have adverse effects on cardiac function and may induce life-threatening high-altitude pulmonary edema (HAPE), but there are limited data in this young population. We, therefore, assessed in 118 nonacclimatized healthy children and adolescents (mean ± SD; age: 11 ± 2 yr) the effects of rapid ascent to high altitude on pulmonary artery pressure and right and left ventricular function by echocardiography. Pulmonary artery pressure was estimated by measuring the systolic right ventricular to right atrial pressure gradient. The echocardiography was performed at low altitude and 40 h after rapid ascent to 3,450 m. Pulmonary artery pressure was more than twofold higher at high than at low altitude (35 ± 11 vs. 16 ± 3 mmHg; P < 0.0001), and there existed a wide variability of pulmonary artery pressure at high altitude with an estimated upper 95% limit of 52 mmHg. Moreover, pulmonary artery pressure and its altitude-induced increase were inversely related to age, resulting in an almost twofold larger increase in the 6- to 9- than in the 14- to 16-yr-old participants (24 ± 12 vs. 13 ± 8 mmHg; P = 0.004). Even in children with the most severe altitude-induced pulmonary hypertension, right ventricular systolic function did not decrease, but increased, and none of the children developed HAPE. HAPE appears to be a rare event in this young population after rapid ascent to this altitude at which major tourist destinations are located.  相似文献   

7.
Chronic hypoxia causes pulmonary hypertension and pulmonary vascular remodeling in rats. Because platelet-activating factor (PAF) levels increase in lung lavage fluid and in plasma from chronically hypoxic rats, we examined the effect of two specific, structurally unrelated PAF antagonists, WEB 2170 and BN 50739, on hypoxia-induced pulmonary vascular remodeling. Treatment with either agent reduced hypoxia-induced pulmonary hypertension and right ventricular hypertrophy at 3 wk of hypoxic exposure (simulated altitude 5,100 m) but did not affect cobalt (CoCl2)-induced pulmonary hypertension. The PAF antagonists had no effect on the hematocrit of normoxic or chronically hypoxic rats or CoCl2-treated rats. Hypoxia-induced pulmonary hypertension was associated with an increase in the vessel wall thickness of the muscular arteries and reduction in the number of peripheral arterioles. In WEB 2170-treated rats, these changes were significantly less severe than those observed in untreated chronically hypoxic rats. PAF receptor blockade had no acute hemodynamic effects; i.e., it did not affect pulmonary arterial pressure or cardiac output nor did it affect the magnitude of acute hypoxic pulmonary vasoconstriction in awake normoxic or chronically hypoxic rats. Isolated lungs from chronically hypoxic rats showed a pressor response to the chemotactic tripeptide N-formyl-Met-Leu-Phe (fMLP) and an increase in the number of leukocytes lavaged from the pulmonary circulation. In vivo treatment with WEB 2170 significantly reduced the fMLP-induced pressor response compared with that observed in isolated lungs from untreated chronically hypoxic rats. These results suggest that PAF contributes to the development of chronic pulmonary hypertension induced by chronic hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Mast cell densities in the lung were measured in five native highlanders of La Paz (3600 m) and in one lowlander dying from high-altitude pulmonary oedema (HAPO) at 3440 m. Two of the highlanders were mestizos with normal pulmonary arteries and the others were Aymara Indians with muscular remodelling of their pulmonary vasculature. The aim of the investigation was to determine if accumulation of mast cells in the lung at high altitude (HA) is related to alveolar hypoxia alone, to a combination of hypoxia and muscularization of the pulmonary arterial tree, or to oedema of the lung. The lungs of four lowlanders were used as normoxic controls. The results showed that the mast cell density of the two Mestizos was in the normal range of lowlanders (0.6–8.8 cells/mm2). In the Aymara Indians the mast cell counts were raised (25.6–26.0 cells/mm2). In the lowlander dying from HAPO the mast cell count was greatly raised to 70.1 cells/mm2 lung tissue. The results show that in native highlanders an accumulation of mast cells in the lung is not related to hypoxia alone but to a combination of hypoxia and muscular remodelling of the pulmonary arteries. However, the most potent cause of increased mast cell density in the lung at high altitude appears to be high-altitude pulmonary oedema.  相似文献   

9.
Previous studies showed that repeated lung lavage leads to a severe lung injury with very poor gas exchange, a substantial protein leak into the alveoli with hyaline membrane formation, pulmonary hypertension, and migration of granulocytes (PMN) into the alveolar spaces. Depletion of PMN leads to a better gas exchange and a markedly decreased protein leak with only scanty hyaline membranes. In this study we show that there is sustained pulmonary hypertension after the lung lavage, but in PMN-depleted rabbits there is no postlavage increase in pulmonary arterial pressure. Changing the shunt fraction by manipulating mean airway pressure still leads to a hypoxic vasoconstriction with increase of pulmonary arterial pressure. Thus, after lung lavage, pulmonary reactivity to hypoxia is still preserved. Comparisons between high-frequency ventilation and conventional mechanical ventilation at the same mean airway pressures showed that equal mean airway pressure in these two very different modes of ventilation do not translate into the same mean functional lung volumes.  相似文献   

10.
Pulmonary arterial pressures in native cattle ranging in age from 3 months to 10 yr were found to be increased with increasing altitudes of residence from sea level to 3048 m. At altitudes of 2590 and 3048 m, but not at sea level or 1524 m, the pressures were higher in older than in younger cattle. The magnitude of the pulmonary arterial pressure, and probably the rate of progression of pulmonary hypertension at high altitude, were much less in native cattle than in cattle that were newcomers from low altitude. Natural and artificial selection are believed to have minimized the level of pulmonary hypertension in native high altitude cattle, thus protecting them from high mountain or brisket disease.  相似文献   

11.
Hereford calves were exposed in a temperature-controlled hypobaric chamber to environmental temperatures of -2 to 1 degree C (cold) at altitudes of 1,524 m (resident altitude) and 3,048 m 1) to characterize the effects of cold exposure on the pulmonary circulation; 2) to examine the role of cold-induced hypoventilation on the pulmonary circulation; and 3) to examine the interaction between cold and hypoxia on the pulmonary circulation. Cold exposure produced a significant increase in pulmonary arterial pressure (Ppa), pulmonary arterial wedge pressure (Ppaw), and pulmonary vascular resistance (PVR) at both 1,524 and 3,048 m without affecting cardiac output. Concomitantly, cold exposure caused reductions in minute ventilation, respiratory rate, end-tidal O2 tension (PETO2), and arterial O2 tension (PaO2). Tidal volume, end-tidal CO2 tension, and arterial CO2 tension increased. Neither arterial pH nor O2 consumption changed during cold exposure. These results indicated that both pulmonary arterial and venous vasoconstriction were responsible for the pulmonary hypertension associated with cold exposure. Acute exposure to 3,048 m during cold exposure produced increases in Ppa and PVR that were similar to those elicited by cold exposure at 1,524. It was concluded that altitude exposure neither attenuated nor potentiated the effect of cold exposure on the pulmonary circulation; rather, altitude and cold exposure interacted additively. O2 administered during cold exposure to restore PETO2 and PaO2 to control values partially restored Ppa and PVR to control values. This suggested that a portion of the pulmonary hypertension associated with cold exposure was due to hypoxic pulmonary vasoconstriction elicited by the cold-induced alveolar hypoventilation.  相似文献   

12.
Our understanding of the pathobiology of severe pulmonary hypertension, usually a fatal disease, has been hampered by the lack of information of its natural history. We have demonstrated that, in human severe pulmonary hypertension, the precapillary pulmonary arteries show occlusion by proliferated endothelial cells. Vascular endothelial growth factor (VEGF) and its receptor 2 (VEGFR-2) are involved in proper maintenance, differentiation, and function of endothelial cells. We demonstrate here that VEGFR-2 blockade with SU5416 in combination with chronic hypobaric hypoxia causes severe pulmonary hypertension associated with precapillary arterial occlusion by proliferating endothelial cells. Prior to and concomitant with the development of severe pulmonary hypertension, lungs of chronically hypoxic SU5416-treated rats show significant pulmonary endothelial cell death, as demonstrated by activated caspase 3 immunostaining and TUNEL. The broad caspase inhibitor Z-Asp-CH2-DCB prevents the development of intravascular pulmonary endothelial cell growth and severe pulmonary hypertension caused by the combination of SU5416 and chronic hypoxia.  相似文献   

13.
Partial ligation of the ductus arteriosus (DA) in the fetal lamb causes sustained elevation of pulmonary vascular resistance (PVR) and hypertensive structural changes in small pulmonary arteries, providing an animal model for persistent pulmonary hypertension of the newborn. Based on its vasodilator and antimitogenic properties in other experimental studies, we hypothesized that estradiol (E(2)) would attenuate the pulmonary vascular structural and hemodynamic changes caused by pulmonary hypertension in utero. To test our hypothesis, we treated chronically instrumented fetal lambs (128 days, term = 147 days) with daily infusions of E(2) (10 microg; E(2) group, n = 6) or saline (control group, n = 5) after partial ligation of the DA. We measured intrauterine pulmonary and systemic artery pressures in both groups throughout the study period. After 8 days, we delivered the study animals by cesarean section to measure their hemodynamic responses to birth-related stimuli. Although pulmonary and systemic arterial pressures were not different in utero, fetal PVR immediately before ventilation was reduced in the E(2)-treated group (2.43 +/- 0.79 vs. 1.48 +/- 0.26 mmHg. ml(-1). min, control vs. E(2), P < 0.05). During the subsequent delivery study, PVR was lower in the E(2)-treated group in response to ventilation with hypoxic gas but was not different between groups with ventilation with 100% O(2). During mechanical ventilation after delivery, arterial partial O(2) pressure was higher in E(2) animals than controls (41 +/- 11 vs. 80 +/- 35 Torr, control vs. E(2), P < 0. 05). Morphometric studies of hypertensive vascular changes revealed that E(2) treatment decreased wall thickness of small pulmonary arteries (59 +/- 1 vs. 48 +/- 1%, control vs. E(2), P < 0.01). We conclude that chronic E(2) treatment in utero attenuates the pulmonary hemodynamic and histological changes caused by DA ligation in fetal lambs.  相似文献   

14.
This study examines the hypothesis that susceptibility of cattle to high-altitude pulmonary hypertension and heart failure (high mountain disease) is genetically transmitted. Eight offspring of cattle recovered from high mountain disease were considered "susceptible." Eleven offspring of healthy cattle residing at high altitude were considered "resistant." At the resident altitude of 1,524 m, 10-day-old susceptible calves had higher pulmonary arterial pressures than did resistant calves (34 vs.21 mmHg), but at 90 days of age the pressures for the two groups were similar (26 vs. 24 mmHg). After 64 days of exposure to an altitude of 3,048 m, the susceptible calves (87 +/- 7 (SE) vs. 40 +/- 3 mmHg). By 124 days at 3,048 m, all susceptible but none of the resistant calves had developed heart failure. The results indicated that susceptibility to pulmonary hypertension at high altitude was inherited. Susceptible cattle may provide a useful model of human hypoxic pulmonary hypertension.  相似文献   

15.
To evaluate pulmonary vasodilation in a structurally altered pulmonary vascular bed, we gave endothelium-dependent (acetylcholine) and endothelium-independent [sodium nitroprusside, prostaglandin I2 (PGI2)] vasodilators in vivo and to isolated lobar pulmonary arteries from neonatal calves with severe pulmonary hypertension. Acetylcholine, administered by pulmonary artery infusion, decreased pulmonary arterial pressure from 120 +/- 7 to 71 +/- 6 mmHg and total pulmonary resistance from 29.4 +/- 2.6 to 10.4 +/- 0.9 mmHg.l-1.min without changing systemic arterial pressure (90 +/- 5 mmHg). Although both sodium nitroprusside and PGI2 lowered pulmonary arterial pressure to 86 +/- 4 and 96 +/- 4 mmHg, respectively, they also decreased systemic arterial pressure to 65 +/- 4 and 74 +/- 3 mmHg, respectively. Neither sodium nitroprusside nor PGI2 was as effective as acetylcholine at lowering total pulmonary resistance (18.0 +/- 3.6 and 19.1 +/- 2.2 mmHg.l-1.min, respectively). Right-to-left cardiac shunt through the foramen ovale was decreased by acetylcholine from 1.6 +/- 0.4 to 0.1 +/- 0.2 l/min but was not changed by sodium nitroprusside or PGI2. Isolated lobar pulmonary arteries from pulmonary hypertensive calves did not relax in response to acetylcholine, whereas isolated pulmonary arteries from age-matched control calves did relax in response to acetylcholine. Control and pulmonary hypertensive lobar pulmonary arteries relaxed equally well in response to sodium nitroprusside. We concluded that acetylcholine vasodilation was impaired in vitro in isolated lobar pulmonary arteries but was enhanced in vivo in resistance pulmonary arteries in neonatal calves with pulmonary hypertension.  相似文献   

16.
Lung injury in a surfactant-deficient lung is modified by indomethacin   总被引:2,自引:0,他引:2  
Repetitive total lung lavage in adult rabbits leads to a reproducible severe surfactant-deficient lung injury. Hypoxemia requiring mechanical ventilation occurs, accompanied by a substantial pulmonary hypertension, a large intra-alveolar protein leak, peripheral neutropenia, and pathological features of marked neutrophil infiltration with extensive hyaline membrane formation. Pretreatment with indomethacin abolishes postlavage pulmonary hypertension, preserves a slightly better lung function with higher arterial PO2, and prevents the postlavage peripheral neutropenia found in untreated animals. Pretreatment with a thromboxane A2 receptor blocker (L 655,240, Merck Frosst, Canada) also completely attenuated pulmonary hypertension, providing evidence that thromboxane A2 mediates pulmonary arterial hypertension after lung lavage. However, specific thromboxane receptor blockade had no other long-lasting beneficial effects on the ongoing injury in this model.  相似文献   

17.
Exaggerated hypoxia-induced pulmonary hypertension is a hallmark of high-altitude pulmonary edema (HAPE) and plays a major role in its pathogenesis. Many studies of HAPE have estimated systolic pulmonary arterial pressure (SPAP) with Doppler echocardiography. Whereas at low altitude, Doppler echocardiographic estimation of SPAP correlates closely with its invasive measurement, no such evidence exists for estimations obtained at high altitude, where alterations of blood viscosity may invalidate the simplified Bernoulli equation. We measured SPAP by Doppler echocardiography and invasively in 14 mountaineers prone to HAPE and in 14 mountaineers resistant to this condition at 4,559 m. Mountaineers prone to HAPE had more pronounced pulmonary hypertension (57 +/- 12 and 58 +/- 10 mmHg for noninvasive and invasive determination, respectively; means +/- SD) than subjects resistant to HAPE (37 +/- 8 and 37 +/- 6 mmHg, respectively), and the values measured in the two groups as a whole covered a wide range of pulmonary arterial pressures (30-83 mmHg). Spearman test showed a highly significant correlation (r = 0.89, P < 0.0001) between estimated and invasively measured SPAP values. The mean difference between invasively measured and Doppler-estimated SPAP was 0.5 +/- 8 mmHg. At high altitude, estimation of SPAP by Doppler echocardiography is an accurate and reproducible method that correlates closely with its invasive measurement.  相似文献   

18.
Perinatal exposure to chronic hypoxia induces sustained pulmonary hypertension and structural and functional changes in both pulmonary and systemic vascular beds. The aim of this study was to analyze consequences of high-altitude chronic hypoxia during gestation and early after birth in pulmonary and femoral vascular responses in newborn sheep. Lowland (LLNB; 580 m) and highland (HLNB; 3,600 m) newborn lambs were cathetherized under general anesthesia and submitted to acute sustained or stepwise hypoxic episodes. Contractile and dilator responses of isolated pulmonary and femoral small arteries were analyzed in a wire myograph. Under basal conditions, HLNB had a higher pulmonary arterial pressure (PAP; 20.2 +/- 2.4 vs. 13.6 +/- 0.5 mmHg, P < 0.05) and cardiac output (342 +/- 23 vs. 279 +/- 13 ml x min(-1) x kg(-1), P < 0.05) compared with LLNB. In small pulmonary arteries, HLNB showed greater contractile capacity and higher sensitivity to nitric oxide. In small femoral arteries, HLNB had lower maximal contraction than LLNB with higher maximal response and sensitivity to noradrenaline and phenylephrine. In acute superimposed hypoxia, HLNB reached higher PAP and femoral vascular resistance than LLNB. Graded hypoxia showed that average PAP was always higher in HLNB compared with LLNB at any Po2. Newborn lambs from pregnancies at high altitude have stronger pulmonary vascular responses to acute hypoxia associated with higher arterial contractile status. In addition, systemic vascular response to acute hypoxia is increased in high-altitude newborns, associated with higher arterial adrenergic responses. These responses determined in intrauterine life and early after birth could be adaptive to chronic hypoxia in the Andean altiplano.  相似文献   

19.
Recent measurements at extreme altitude and in low pressure chamber simulations have clarified the human responses to extreme hypoxia. Man can only tolerate the severe oxygen deprivation of great altitudes by an enormous increase in ventilation which has the advantage of defending the alveolar PO2 against the reduced inspired PO2. Nevertheless the arterial PO2 on the Everest summit is less than 30 Torr (1 Torr = 133.3 Pa). An interesting consequence of the hyperventilation is that the respiratory alkalosis greatly increases the oxygen affinity of the hemoglobin and assists in oxygen loading by the pulmonary capillary. The severe hypoxemia impairs the function of many organ systems including the central nervous system, and there is evidence of residual impairment of memory and manipulative skill in climbers returning from great altitudes. At the altitude of Mt. Everest, maximal oxygen uptake is reduced to 20-25% of its sea level value, and it is exquisitely sensitive to barometric pressure. It is likely that the seasonal variation of barometric pressure affects the ability of man to reach the summit without supplementary oxygen.  相似文献   

20.
Several cases of systemic arteriovenous fistula diagnosed in the human fetus have been associated with the postnatal development of persistent pulmonary hypertension. The aim of this study was to determine the effects of a prenatally created systemic arteriovenous fistula on the structure and reactivity of the pulmonary circulation in the fetal lamb. A fistula between the jugular vein and carotid artery was created in fetal lambs at 119-124 days of gestation. At delivery (134-139 days), left pulmonary artery (LPA) pressure was increased in the fistula group (n = 12) compared with controls (n = 11, P < 0.01). The pulmonary vascular resistance was significantly higher in the fistula group (P < 0.05), whereas mean LPA blood flow was not statistically different between the two groups. Morphometric analysis of the pulmonary vascular bed revealed an increase in the number of peripheral muscular arteries, together with an increase in pulmonary arterial medial thickness in the fistula group. There was no difference in the relative number or size of intraacinar arteries. In vitro organ bath studies on pulmonary arterial rings showed impaired endothelium-dependent relaxation in the fistula group compared with controls. However, endothelial nitric oxide synthase protein expression was similar in both groups, whereas endothelium-independent relaxation to sodium nitroprusside was greater in the fistula group compared with controls. A systemic arteriovenous fistula leads to both structural and functional alteration of the pulmonary vasculature, which might lead to the development of persistent pulmonary hypertension after birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号