首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The resonances of the imino protons and all of the non-exchangeable protons (except for H5'/H5') of d(CGCAAAAAAGCG)d(CGCTTTTTTGCG) have been assigned by means of one- and two-dimensional NMR spectroscopies. Qualitative analyses showed that the overall structure is of the B-form, but local conformational deviations exist. The NOEs between the imino protons of thymines and H2 of adenines suggest that the A-T base pairs are propeller-twisted to almost the same degree as in crystals. A remarkable chemical shift of H1' was observed for the residue located just before the oligo(dA)oligo(dT) tract, suggesting the presence of conformational discontinuity at the junctions between the oligo(dA)oligo(dT) tract and the other portions. Analyses of cross peaks in NOESY spectra between H2 of adenines and H1' of the 3'-neighbouring residues on the complementary strand revealed that the minor groove of the oligo(dA)oligo(dT) tract is narrow and compressed gradually, from 5' to 3', along the tract.  相似文献   

2.
S G Kim  L J Lin  B R Reid 《Biochemistry》1992,31(14):3564-3574
In DNA or RNA duplexes, the six-bond C3'-O3'-P-O5'-C5'-C4'-C3' backbone linkage connecting adjacent residues contains six torsion angles (epsilon, zeta, alpha, beta, gamma, delta) but only four protons. This seriously limits the ability to define the backbone conformation by NMR using purely 1H-1H distance geometry (DG) methods. The problem is further compounded by the inability to assign two of the four backbone protons, namely the poorly resolved H5' and H5' protons, and invariably leads to DG structures with poorly defined backbone conformations. We have developed and tested a reliable method to constrain the beta, gamma, and epsilon (and indirectly alpha and zeta) backbone torsion angles by lower-bound NOE distances to unassigned H5'/H5' resonances combined with either 1H line widths or the conservative use of sigma J measurements; the method relies only on 1H 2-D NMR data, does not involve any structural assumptions, and leads to much improved backbone convergence among DG structures. The C4'-C5' torsion angle gamma is constrained by lower-bound NOE distances from H2' and from H6/H8 to any H5'/H5', as well as by sigma JH4, coupling measurements in the 3.9-4.4 ppm region; delta is constrained by H1'-H4' NOE distances and by H3'-H4' and H3'-H2' J couplings in COSY data; epsilon is partially constrained by H3' line width and/or further constrained by subtracting the minimum possible sigma JH3'-H from the observed sigma JH3' (COSY) to arrive at the maximum possible JH3'-P, which is then converted to H3'-P distance bounds. The angle beta is partially constrained via H5'-P and H5'-P distance bounds consistent with the maximum H5'-P and H5'-P J couplings derived from the observed H5' and H5' line widths, while alpha and zeta are indirectly constrained by lower distance bounds on the observed (n)H1' to (n + 1)H5'/H5' NOEs combined with the prior partial constraints on beta, gamma, delta, and epsilon. The combined effects of these additional constraints in determining distance geometry structures have been demonstrated using a 12-base duplex, [d(GCCGTTAACGGC)]2. Coordinate RMSDs per atom between structures refined with these constraints from random-embedded DG structures, from ideal A-DNA, and from B-DNA starting structures were less than 0.4 A for the central 8 base pairs indicating good convergence. All backbone angles for the central 8 base pairs are very well constrained with less than 10 degrees variation in any of the 48 torsion angles.  相似文献   

3.
The 55-nt long RNA, modelling a three-way junction, with non-uniformly incorporated deuterated nucleotides has been synthesised in a pure form. The NMR-window part in this partially deuterated 55mer RNA consists of natural non-enriched nucleotide blocks at the three-way junction (shown in a square box in Fig. 2), whereas all other nucleotides of the rest of the molecule are partially deuterated (> 97 atom% 2H at C2', C3', C5', C5, and approximately 50 atom% 2H at C4'). The secondary structure of this 55mer RNA was determined by 2D 1H NOESY spectroscopy in D2O or in 10% D2O-H2O mixture. The use of deuterated building blocks in the specific region of the 55mer RNA allowed us to identify two distinct A-type RNA helices in a straightforward manner by observing connectivities of H1' with the basepaired imino and the aromatic H2 of all adenosine nucleotides as the first step for the determination of its tertiary structure in a cost- and time-effective manner without employing any 13C/15N labelling. These two decameric helices involve 40 nucleotides, for which all non-exchangeable H1', H6, H2, H8 and H5 protons (all 40 H1', all 40 H6 or H8 aromatics, all seven H2 of adenine nucleotide and all four non-deuterated H5 of cytosines) as well as all 16 exchangeable imino protons (with the exception of four terminal basepairs) and 16 amino protons of cytosines have been assigned. Since all aromatic-H2', H3' as well as H5'/5' crosspeaks from partially deuterated residues have been eliminated from the NMR spectra, the observation of natural nucleotide residues in the NMR window part has essentially been simplified. It has been found that the crosspeaks from the natural nucleotides located at the three-way junction in the NMR-window part show different degrees of line-broadening, thereby indicating that the various nucleotide residues have very different mobilities with respect to themselves as well as compared to other nucleotides in the helices. The assignment of H2' and H3' in the NMR-window part has been made based on NOESY and DQF-COSY crosspeaks. It is noteworthy that, even in this preliminary study, it has been possible to identify 10 H2' out of total 14 and 9 H3' out of 14. The data show that expanded AU containing a tract of 55mer RNA does not self-organise into a tight third helix, as the two decameric A-type helices, across the three-way junction which is evident from the absence of any additional imino protons, except those that already have been assigned for the two decameric helices.  相似文献   

4.
A hairpin structure contains two conformationally distinct domains: a double-helical stem with Watson-Crick base pairs and a single-stranded loop that connects the two arms of the stem. By extensive 1D and 2D 500-MHz 1H NMR studies in H2O and D2O, it has been demonstrated that the DNA oligomers d(CGCCGCAGC) and d(CGCCGTAGC) form hairpin structures under conditions of low concentration, 0.5 mM in DNA strand, and low salt (20 mM NaCl, pH 7). From examination of the nuclear Overhauser effect (NOE) between base protons H8/H6 and sugar protons H1' and H2'/H2", it was concluded that in d(CGCCGCAGC) and d(CGCCGTAGC) all the nine nucleotides display average (C2'-endo,anti) geometry. The NMR data in conjunction with molecular model building and solvent accessibility studies were used to derive a working model for the hairpins.  相似文献   

5.
The H3'-C3'-C4'-H4' torsional angles of two microcrystalline 2'-deoxynucleosides, thymidine and 2'-deoxycytidine.HCl, doubly (13)C-labeled at the C3' and C4' positions of the sugar ring, have been measured by solid-state magic-angle-spinning nuclear magnetic resonance (NMR). A double-quantum heteronuclear local field experiment with frequency-switched Lee-Goldberg homonuclear decoupling was used. The H3'-C3'-C4'-H4' torsional angles were obtained by comparing the experimental curves with numerical simulations, including the two (13)C nuclei, the directly bonded (1)H nuclei, and five remote protons. The H3'-C3'-C4'-H4' angles were converted into sugar pucker angles and compared with crystallographic data. The delta torsional angles determined by solid-state NMR and x-ray crystallography agree within experimental error. Evidence is also obtained that the proton positions may be unreliable in the x-ray structures. This work confirms that double-quantum solid-state NMR is a feasible tool for studying sugar pucker conformations in macromolecular complexes that are unsuitable for solution NMR or crystallography.  相似文献   

6.
Utilizing a new method for modeling furanose pseudorotation (D. A. Pearlman and S.-H. Kim, J. Biomol. Struct. Dyn. 3, 85 (1985)) and the empirical multiple correlations between nucleic acid torsion angles we derived in the previous report (D. A. Pearlman and S.-H. Kim, previous paper in this issue), we have made an energetic examination of the entire conformational spaces available to two nucleic acid oligonucleotides: d(ApApApA) and ApApApA. The energies are calculated using a semi-empirical potential function. From the resulting body of data, energy contour map pairs (one for the DNA molecule, one for the RNA structure) have been created for each of the 21 possible torsion angle pairs in a nucleotide repeating unit. Of the 21 pairs, 15 have not been reported previously. The contour plots are different from those made earlier in that for each point in a particular angle-angle plot, the remaining five variable torsion angles are rotated to the values which give a minimum energy at this point. The contour maps are overall quite consistent with the experimental distribution of oligonucleotide data. A number of these maps are of particular interest: delta (C5'-C4'-C3'-O3')-chi (O4'-C1'-N9-C4), where the energetic basis for an approximately linear delta-chi correlation can be seen: zeta (C3'-O3'-P-O5')-delta, in which the experimentally observed linear correlation between zeta and delta in DNA(220 degrees less than zeta less than 280 degrees) is clearly predicted; zeta-epsilon (C4'-C3'-O3'-P), which shows that epsilon increases with decreasing zeta less than 260 degrees; alpha (O3'-P-O5'-C5')-gamma (O5'-C5'-C4'-C3') where a clear linear correlation between these angles is also apparent, consistent with experiment; and several others. For the DNA molecule studied here, the sugar torsion delta is predicted to be the most flexible, while for the RNA molecule, the greatest amount of flexibility is expected to reside in alpha and gamma. Both the DNA and RNA molecules are predicted to be highly polymorphic. Complete energy minimization has been performed on each of the minima found in the energy searches and the results further support this prediction. Possible pathways for B-form to A-form DNA interconversion suggested by the results of this study are discussed. The results of these calculations support use of the new sugar modeling technique and torsion angle correlations in future conformational studies of nucleic acids.  相似文献   

7.
The NMR parameters for the 1,N2-propanodeoxyguanosine (X) opposite deoxyadenosine positioned in the center of the complementary d(C1-A2-T3-G4-X5-G6-T7-A8-C9).d(G10-T11-A12-C13-A14-C15-A 16-T17-G18) X.A 9-mer duplex are pH dependent. A previous paper established protonated X5(syn).A14(anti) pairing in the X.A 9-mer duplex at pH 5.8 [Kouchakdjian, M., Marinelli, E., Gao, X., Johnson, F., Grollman, A., & Patel, D. J. (1989) Biochemistry 28, 5647-5657]; this paper focuses on the pairing alignment at the lesion site at pH 8.9. The observed NOEs between specific exocyclic CH2 protons and both the imino proton of G6 and the sugar H1' protons of C13 and A14 establish that X5 is positioned toward the G6.C13 base pair with the exocyclic ring directed between C13 and A14 on the partner strand. The observed NOE between the H2 proton of A14 and the imino proton of G4, but not G6, establishes that A14 at the lesion site is directed toward the G4.C15 base pair. NOEs are detected between all exocyclic CH2 protons of X5 and the H2 proton of A14, confirming that both X5 and A14 are directed toward the interior of the helix. The X5(anti).A14(anti) alignment at pH 8.9 is accommodated within the helix with retention of Watson-Crick pairing at flanking G4.C15 and G6.C13 base pairs. The energy-minimized conformation of the (G4-X5-G6).(C13-A14-C15) segment at pH 8.9 establishes that X5 and A14 are directed into the helix, partially stack on each other, and are not stabilized by intermolecular hydrogen bonds. The X5 base is partially intercalated between C13 and A14 on the unmodified strand, while A14 is partially intercalated between G4 and X5 on the modified strand. This results in a larger separation between the G4.C15 and G6.C13 base pairs flanking the lesion site in the basic pH conformation of the X.A 9-mer duplex. The midpoint of the transition between the protonated X5(syn).A14(anti) and X5(anti).A14(anti) conformations occurs at pH 7.6, establishing an unusually high pKa for protonation of the A14 ring opposite the X5 exocyclic adduct site. Thus, the interplay between hydrophobic and hydrogen-bonding contributions modulated by pH defines the alignment of 1,N2-propanodeoxyguanosine opposite deoxyadenosine in the interior of DNA helices.  相似文献   

8.
D Hare  L Shapiro  D J Patel 《Biochemistry》1986,25(23):7445-7456
We report below on features of the three-dimensional structure of the d(C-G-T-G-A-A-T-T-C-G-C-G) self-complementary duplex (designated 12-mer GT) containing symmetrical G X T mismatches in the interior of the helix. The majority of the base and sugar protons in the 12-mer GT duplex were assigned by two-dimensional nuclear Overhauser effect (NOESY) spectra in H2O and D2O solution. A set of 92 short (less than 4.5-A) proton-proton distances defined by lower and upper bounds for one symmetrical half of the 12-mer GT duplex were estimated from NOESY data sets recorded as a function of mixing time. These experimental distances combined with nucleotide bond length parameters were embedded into Cartesian space; several trial structures were refined to minimize bond geometry and van der Waals and chirality error. Confidence in this approach is based on the similarity of the refined structures for the solution conformation of the 12-mer GT duplex. The G and T bases pair through two imino-carbonyl hydrogen bonds, and stacking is maintained between the G X T wobble pair and adjacent Watson-Crick G X C pairs. The experimental distance information is restricted to base and sugar protons, and hence structural features such as base pair overlap, glycosidic torsion angles, and sugar pucker are well-defined by this combination of NMR and distance geometry methods. By contrast, we are unable to define the torsion angles about the bonds C3'-O3'-P-O5'-C5'-C4' in the backbone of the nucleic acid.  相似文献   

9.
The 5' d-TpG 3' element is a part of DNA sequences involved in regulation of gene expression and is also a site for intercalation of several anticancer drugs. Solution conformation of DNA duplex d-TGATCA containing this element has been investigated by two-dimensional NMR spectroscopy. Using a total of 12 torsional angles and 121 distance constraints, structural refinement has been carried out by restrained molecular dynamics (rMDs) in vacuum up to 100 ps. The structure is characterized by a large positive roll at TpG/CpA base pair step and large negative propeller twist for AT and TA base pairs. The backbone torsional angle, gamma(O5'-C5'-C4'-C3'), of T1 residue adopts a trans-conformation which is corroborated by short intra nucleotide T1H6-T1H5' (3.7A) distance in nuclear overhauser effect spectroscopy (NOESY) spectra while the backbone torsional angle, beta(P-O5'-C5'-C4'), exists in trans as well as gauche state for T1 and C5 residues. There is evidence of significant flexibility of the sugar-phosphate backbone with rapid inter-conversion between two different conformers at TpG/CpA base pair step. The base sequence dependent variations and local structural heterogeneity have important implications in specific recognition of DNA by ligands.  相似文献   

10.
A Fede  A Labhardt  W Bannwarth  W Leupin 《Biochemistry》1991,30(48):11377-11388
We have investigated the interaction of the bisbenzimidazole derivative Hoechst 33258 with the self-complementary dodecadeoxynucleotide duplex d(GTGGAATTCCAC)2 using one-dimensional (1D) and two-dimensional (2D) proton nuclear magnetic resonance (1H NMR) spectroscopy. To monitor the extent of complex formation, we used the imino proton region of the 1D 1H NMR spectra acquired in H2O solution. These spectra show that the DNA duplex loses its inherent C2v symmetry upon addition of the drug, indicating that the two molecules form a kinetically stable complex on the NMR time scale (the lifetime of the complex has been measured to be around 450 ms). We obtained sequence-specific assignments for all protons of the ligand and most protons of each separate strand of the oligonucleotide duplex using a variety of homonuclear 2D 1H NMR experiments. The aromatic protons of the DNA strands, which are symmetrically related in the free duplex, exhibit exchange cross peaks in the complex. This indicates that the drug binds in two equivalent sites on the 12-mer, with an exchange rate constant of 2.2 +/- 0.2 s-1. Twenty-five intermolecular NOEs were identified, all involving adenine 2 and sugar 1' protons of the DNA and protons in all four residues of the ligand, indicating that Hoechst 33258 is located in the minor groove at the AATT site. Only protons along the same edge of the two benzimidazole moieties of the drug show NOEs to DNA protons at the bottom of the minor groove. Using molecular mechanics, we have generated a unique model of the complex using distance constraints derived from the intermolecular NOEs. We present, however, evidence that the piperazine group may adopt at least two locally different conformations when the drug is bound to this dodecanucleotide.  相似文献   

11.
Selective incorporation of the stereospecifically deuteriated sugar moieties (> 97 atom % 2H enhancements at H2', H2', H3' and H5'/5' sites, approximately 85 atom % 2H enhancement at H4' and approximately 20 atom % 2H enhancement at H1') in DNA and RNA by the 'NMR-window' approach has been shown to solve the problem of the resonance overlap [refs. 1, 2 & 3]. Such specific deuterium labelling gives much improved resolution and sensitivity of the residual sugar proton (i.e. H1' or H4') vicinal to the deuteriated centers (ref. 3). The T2 relaxation time of the residual protons also increases considerably in the partially-deuteriated (shown by underline) sugar residues in dinucleotides [d(CpG), d(GpC), d(ApT), d(TpA)], trinucleotide r(A2'p5'A2'p5'A) and 20-mer DNA duplex 5'd(C1G2C3-G4C5G6C7G8A9A10T11T12C13G14C15G16C17G18C19G20)(2) 3'. The protons with shorter T2 can be filtered away using a number of different NMR experiments such as ROESY, MINSY or HAL. The NOE intensity of the cross-peaks in these experiments includes only straight pathway from H1' to aromatic proton (i-i and i-i + 1) without any spin-diffusion. The volumes of these NOE cross-peaks could be measured with high accuracy as their intensity is 3 to 4 times larger than the corresponding peaks in the fully protonated residues in the normal NOESY spectra. The structural informations thus obtainable from the residual protons in the partially-deuteriated part of the duplex and the fully protonated part in the 'NMR window' can indeed complement each other.  相似文献   

12.
The stereoselective deuterium labeling at the 5' methylene protons of the ribose ring recently developed by Kawashima et al. [1995, Tetrahedron Lett., 36, 6699–6700] enabled the assignment of pro-R and pro-S protons at the 5' position. The deuterium-labeled nucleotides, [(5'S)-2H]- and [(5'R)-2H]-diastereomers, in an approximate ratio of 2:1, were incorporated in the decamer 5'-d(GCATTAATGC)-3'. Thus, both pro-R and pro-S methylene proton signals without geminal coupling appeared in the NOESY and DQF-COSY spectra. Complete stereospecific assignments and simplified spin systems enabled the determination of 15 3J coupling constants between H4' and H5'/H5", and the unambiguous assignment of 135 NOESY cross peaks originating from H4'/H5'/H5" resonances.  相似文献   

13.
J F Wang  A P Hinck  S N Loh  J L Markley 《Biochemistry》1990,29(17):4242-4253
A combination of multinuclear two-dimensional NMR experiments served to identify and assign the combined 1H, 13C, and 15N spin systems of the single tryptophan, three phenylalanines, three histidines, and seven tyrosines of staphylococcal nuclease H124L in its ternary complex with calcium and thymidine 3',5'-bisphosphate at pH 5.1 (H2O) or pH 5.5 (2H2O). Samples of recombinant nuclease were labeled with 13C or 15N as appropriate to individual NMR experiments: uniformly with 15N (all sites to greater than 95%), uniformly with 13C (all sites to 26%), selectively with 13C (single amino acids uniformly labeled to 26%), or selectively with 15N (single amino acids uniformly labeled to greater than 95%). NMR data used in the analysis included single-bond and multiple-bond 1H-13C and multiple-bond 1H-15N correlations, 1H-13C single-bond correlation with Hartmann-Hahn relay (1H[13C]SBC-HH), and 1H-13C single-bond correlation with NOE relay (1H[13C]SBC-NOE). The aromatic protons of the spin systems were identified from 1H[13C]SBC-HH data, and the nonprotonated aromatic ring carbons were identified from 1H-13C multiple-bond correlations. Sequence-specific assignments were made on the basis of observed NOE relay connectivities between assigned 1H alpha-13C alpha or 1H beta-13C beta direct cross peaks in the aliphatic region [Wang, J., LeMaster, D. M., & Markley, J. L. (1990) Biochemistry 29, 88-101] and 1H delta-13C delta direct cross peaks in the aromatic region of the 1H[13C]SBC-NOE spectrum. The His121 1H delta 2 resonance, which has an unusual upfield shift (at 4.3 ppm in the aliphatic region), was assigned from 1H[13C]SBC, 1H[13C]MBC, and 1H[15N]MBC data. Evidence for local structural heterogeneity in the ternary complex was provided by doubled peaks assigned to His46, one tyrosine, and one phenylalanine. Measurement of NOE buildup rates between protons on different aromatic residues of the major ternary complex species yielded a number of interproton distances that could be compared with those from X-ray structures of the wild-type nuclease ternary complex with calcium and thymidine 3',5'-bisphosphate [Cotton, F. A., Hazen, E. E., Jr., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555; Loll, P. J., & Lattman, E. E. (1989) Proteins: Struct., Funct., Genet. 5, 183-201]. The unusual chemical shift of His121 1H delta 2 is consistent with ring current calculations from either X-ray structure.  相似文献   

14.
The conformations of double stranded d(GGAAATTTCC) x 2, d(GGTTTAAACC) x 2, d(CGCAAAAAAGCG).d(CGCTTTTTTGCG) and d(GCATTTTGAAACG).d(CGTTTCAAAATGC) have been studied by means of NMR spectroscopy. Analyses of cross peaks in NOESY spectra between H2 of an adenine and H1' of the deoxyribose in the 3'-neighbouring residue on the complementary strand revealed that the minor groove of the oligo(dA) tract is compressed gradually from 5' to 3' along the tract in four oligonucleotides. A new model is proposed as to DNA bending based on the evidence of gradual compression of the minor groove. This model can explain why d(GGAAATTTCC) n x 2 and d(GAAAATTTTC) n x 2 are bent, and d(GGTTTAAACC) n x 2 and d(GTTTTAAAAC) n x 2 are not bent. The bending of d(AjN10-j) n x 2 sequences can also be explained.  相似文献   

15.
Andrews KT  Patel BK  Clarke FM 《Anaerobe》1998,4(5):227-232
Restriction endonuclease activity was detected in 11 out of 13 Fervidobacterium isolates, including F. islandicum H21(T), F. gondwanense AB39(T), and nine other Fervidobacterium-like strains isolated from the Great Artesian Basin of Australia. The restriction endonuclease from F. gondwanense AB39(T) was partially purified and designated FgoI. FgoI recognized a 4 nucleotide sequence 5'-CTAG-3' and cleaved between nucleotides C and T to produce a 2 base 5' overhang (5'-C/TAG-3'). As predicted from the enzyme recognition and cleavage specificity, FgoI was found to cleave delta DNA 13 times, phiX174 three times, pBR322 five times, pUC18 four times, and pSK six times. FgoI exhibited a broad temperature optimum range (between 60 to 70 degrees C) and was active at pH 6.5 to 8.5, but not at pH 9.0. Manganese could replace magnesium as a cofactor for activity, but not cobalt chloride, calcium chloride, cupric chloride, or zinc chloride. The restriction endonuclease was completely inactivated by phenol/chloroform extraction and was heat inactivated at 80 degrees C for 60 min or at 100 degrees C for 15 min. FgoI has been identified as a heat stable isoschizomer of the Type II restriction endonucleases, MaeI and BfaI.  相似文献   

16.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported.  相似文献   

17.
S H Chou  P Flynn  B Reid 《Biochemistry》1989,28(6):2435-2443
The nonsymmetrical double-helical hybrid dodecamer d(CGTTATAATGCG).r(CGCAUUAUAACG) was synthesized with solid-phase phosphoramidite methods and studied by high-resolution 2D NMR. The imino protons were assigned by one-dimensional nuclear Overhauser methods. All the base protons and H1', H2', H2", H3', and H4' sugar protons of the DNA strand and the base protons, H1', H2', and most of the H3'-H4' protons of the RNA strand were assigned by 2D NMR techniques. The well-resolved spectra allowed a qualitative analysis of relative proton-proton distances in both strands of the dodecamer. The chemical shifts of the hybrid duplex were compared to those of the pure DNA double helix with the same sequence (Wemmer et al., 1984). The intrastrand and cross-strand NOEs from adenine H2 to H1' resonances of neighboring base pairs exhibited characteristic patterns that were very useful for checking the spectral assignments, and their highly nonsymmetric nature reveals that the conformations of the two strands are quite different. Detailed analysis of the NOESY and COSY spectra, as well as the chemical shift data, indicate that the RNA strand assumes a normal A-type conformation (C3'-endo) whereas the DNA strand is in the general S domain but not exactly in the normal C2'-endo conformation. The overall structure of this RNA-DNA duplex is different from that reported for hybrid duplexes in solution by other groups (Reid et al., 1983a; Gupta et al., 1985) and is closer to the C3'-endo-C2'-endo hybrid found in poly(dA).poly(dT) and poly(rU).poly(dA) in the fiber state (Arnott et al., 1983, 1986).  相似文献   

18.
J Feigon  W Leupin  W A Denny  D R Kearns 《Biochemistry》1983,22(25):5943-5951
In this study two-dimensional NMR techniques (COSY and NOESY) have been used in conjunction with one-dimensional NMR results to complete the assignment of the proton NMR spectrum of the double-stranded DNA decamer, d(ATATCGATAT)2, and to obtain qualitative information about numerous interproton distances in this molecule and some limited information about conformational dynamics. COSY and NOESY measurements have been combined to systematically assign many of the resonances from the H1' and H2',2" sugar protons to specific nucleotides in the double helix. This method relies on the fact that sugar protons within a specific nucleotide are scalar coupled and that base protons (AH8, GH8, TH6, and CH6) in right-handed helices can interact simultaneously with their own H2',2" sugar protons and those of the adjacent (5'-3') nucleotide attached to its 5' side (i.e., XpA not ApX). A COSY experiment is used to identify sugar resonances within a residue whereas the NOESY experiment allows the neighboring sugar to be connected (linked). The CH5 and CH6 resonances in the spectrum can immediately be identified by the COSY experiment. The methyl protons of thymine residues exhibit strong through-space interbase interactions both with their own TH6 proton and with AH8 proton on the adjacent (5'-3') adenine residue. These interactions are used both to make assignments of the spectra and to establish that the thymine methyl groups are in close proximity to the AH8 protons of adjacent adenine residues [Feigon, J., Wright, J. M., Leupin, W., Denny, W. A., & Kearns, D. R. (1982) J. Am. Chem. Soc. 104, 5540].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We have investigated intermolecular interactions and conformational features of the netropsin X d(G-G-A-A-T-T-C-C) complex by one- and two-dimensional NMR studies in aqueous solution. Netropsin removes the 2-fold symmetry of the d(G-G-A-A-T-T-C-C) duplex at the AATT binding site and to a lesser extent at adjacent dG X dC base pairs resulting in doubling of resonances for specific positions in the spectrum of the complex at 25 degrees C. We have assigned the amide, pyrrole, and CH2 protons of netropsin, and the base and sugar H1' protons of the nucleic acid from an analysis of the nuclear Overhauser effect (NOESY) and correlated (COSY) spectra of the complex at 25 degrees C. We observe intermolecular nuclear Overhauser effects (NOE) between all three amide and both pyrrole protons on the concave face of the antibiotic and the minor groove adenosine H2 proton of the two central A4 X T5 base pairs of the d(G1-G2-A3-A4-T5-T6-C7-C8) duplex. Weaker intermolecular NOEs are also observed between the pyrrole concave face protons and the sugar H1' protons of residues T5 and T6 in the AATT minor groove of the duplex. We also detect intermolecular NOEs between the guanidino CH2 protons at one end of netropsin and adenosine H2 proton of the two flanking A3 X T6 base pairs of the octanucleotide duplex. These studies establish a set of intermolecular contacts between the concave face of the antibiotic and the minor groove AATT segment of the d(G-G-A-A-T-T-C-C) duplex in solution. The magnitude of the NOEs require that there be no intervening water molecules sandwiched between the antibiotic and the DNA so that release of the minor groove spine of hydration is a prerequisite for netropsin complex formation.  相似文献   

20.
The conformations of double-stranded d(GGAAATTTCC) x 2, d(GGTTTAAACC) x 2, d(CGCAAAAAAGCG)d(CGCTTTTTTGCG) and d(GCATTTTGAAACG)d(CGTTTCAAAATGC) have been studied by NMR spectroscopy. Analyses of cross peaks in NOESY spectra between the H2 of an adenine and the H1' of a deoxyribose in the 3'-neighbouring residue on the complementary strand revealed that the minor groove of the oligo(dA) tract is compressed gradually from 5' to 3' in each duplex. In view of this gradual compression of the minor groove along the oligo(dA) tract, it can be understood clearly why d(GGAAATTTCC)n x 2 and d(GAAAATTTTC)n x 2 are bent, and d(GGTTTAAACC)n x 2 and d(GTTTTAAAAC)n x 2 are not bent. The relative extents of bending of a series of d(AjN10-j)nd(N10-jTj)n sequences can also be understood systematically. Additionally, it was found that the TA step disturbed the compression of the minor groove of the oligo(dA) tract to some extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号