首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A comparison has been made of the relative effectiveness of light quality and quantity and gibberellic acid (GA3) treatment on the elongation growth of the coleoptile and the first foliage leaf in durum wheat (Triticum durum Desf. cvs. Cappelli and Creso). The cultivar Creso is a shortstrawed variety carrying the Gai 1 gene on chromosome 4A, which influences both plant height and insensitivity to applied gibberellins. The main conclusions are as follows: 1) coleoptile elongation growth appears to be modulated via the fluencerate-dependent action of a blue-light receptor and via a low energy response of phytochrome; 2) the inhibition of first-foliage-leaf growth depends on the operation of a single blue-light-responsive photoreceptor; 3) high energy blue light produces the same inhibitory effect on the two wheat cultivars, whereas at relatively low fluences of white and blue light, the cultivar Creso is more sensitive; 4) the insensitivity to applied GA3 exerted by the gene Gai 1 in Creso is independent of light; 5) in Cappelli, the action of light on coleoptiles appears to be independent of the applied GA3, whereas the hormone is able to change the pattern of growth inhibition of the first-foliage-leaf.Abbreviations BL blue light - FR far-red light - GA gibberellin - GA3 gibberellic acid - R red light - WL white light  相似文献   

2.
Moritoshi Iino 《Planta》1982,156(5):388-395
Brief irradiation of 3-d-old maize (Zea mays L.) seedlings with red light (R; 180 J m-2) inhibits elongation of the mesocotyl (70–80% inhibition in 8 h) and reduces its indole-3-acetic acid (IAA) content. The reduction in IAA content, apparent within a few hours, is the result of a reduction in the supply of IAA from the coleoptile unit (which includes the shoot apex and primary leaves). The fluence-response relationship for the inhibition of mesocotyl growth by R and far-red light closely resemble those for the reduction of the IAA supply from the coleoptile. The relationship between the concentration of IAA (1–10 M) supplied to the cut surface of the mesocotyl of seedlings with their coleoptile removed and the growth increment of the mesocotyl, measured after 4 h, is linear. The hypothesis that R inhibits mesocotyl growth mainly by reducing the IAA supply from the coleoptile is supported. However, mesocotyl growth in seedlings from which the coleoptiles have been removed is also inhibited by R (about 25% inhibition in 8 h). This inhibition is not related to changes in the IAA level, and not relieved by applied IAA. In intact seedlings, this effect may also participate in the inhibition of mesocotyl growth by R. Inhibition of cell division by R, whose mechanism is not known, will also result in reduced mesocotyl elongation especially in the long term (e.g. 24 h).Abbreviations FR far-red light - IAA indole-3-acetic acid - Pfr phytochrome in the far-red-absorbing form - Pr phytochrome in the red-absorbing form - R red light  相似文献   

3.
The far-red reversibility of the phytochrome-controlled stimulation of elongation of coleoptile sections by low fluence red light has been characterized in subapical coleoptile sections from dark-grown Avena sativa L., cv Lodi seedlings. The fluence dependence of the far-red reversal was the same whether or not the very low fluence response is also expressed. The capacity of far-red light to reverse the red light-induced response began to decline if the far-red light was given more than 90 minutes after the red irradiation. Escape was complete if the far red irradiation was given more than 240 minutes after the red irradiation. Sections consisting of both mesocotyl and coleoptile tissue from dark-grown Avena seedlings were found to have physiological regulation of the very low fluence response by indole 3-acetic acid and low external pH similar to that seen for sections consisting entirely of coleoptile tissue. The fluence-dependence of the red light-induced inhibition of mesocotyl elongation was studied in mesocotyl sections from dark grown Zea mays L. hybrid T-929 seedlings. Ten micromolar indole 3-acetic acid stimulates the control elongation of the sections, while at the same time increasing the sensitivity of the tissue for the light-induced inhibition of growth by a factor of 100.  相似文献   

4.
Exogenous gibberellin removes the genetical suppression of mesocotyl elongation in dark-grown seedlings of the rice cultivar Nihon Masari (japonica type). This gibberellin effect can be cancelled by light. All light effects can be accounted for by phytochrome. Dose-response and fluence-response studies show that phytochrome induces a reduction of the sensitivity to exogenous gibberellins. A cytological analysis of cell elongation and cortical microtubules led to a model where gibberellin and red light regulate mesocotyl elongation by controlling microtubule orientation in the epidermis of the mesocotyl. This causes corresponding changes of cellular extension growth, which can account for a large part of the observed growth responses. Comparative studies involving antimicrotubular drugs and gibberellin-synthesis inhibitors in the rice cultivar Kasarath (indica type) and a hybrid cultivar suggest that some of the differences between the cultivars are due to differences in gibberellin-sensitivity.  相似文献   

5.
Combinations of far-red light (FR) (4 min) and gibberellic acid (GA3), given at the beginning of a daily 12-h dark period in a growth room, were used to study floral induction in four maturity genotypes of the milo group of sorghum (Sorghum bicolor (L.) Moench). The 12-h dark period without GA3 application or FR induced flowering in only the early genotype; FR hastened initiation in the early genotype, while GA3 hastened floral initiation in the two intermidiate-flowering genotypes. GA3 and FR together had a strong synergistic effect, hastening floral initiation by 30 to more than 80 d in the early and intermediate genotypes. Red light (R) did not hasten flowering; FR preceded by R gave the same effect as FR alone. GA3 promoted stem elongation equally whether floral initiation occurred or not; thus, its effect on stem elongation was independent of floral initiation. The capacity of GA3 to induce flowering in sorghum, a short-day plant, seems to be enhanced by phytochrome being in the PR form at the beginning of the night when GA3 was applied.Abbreviations FR far-red light - GA(s) gibberellin(s) - GA3 gibberellic acid - R red light  相似文献   

6.
Stem elongation in Fuchsia × hybrida was influenced by cultivation at different day and night temperatures or in different light qualities. Internode elongation of plants grown at a day (25°C) to night (15°C) temperature difference (DIF+10) in white light was almost twofold that of plants grown at the opposite temperature regime (DIF−10). Orange light resulted in a threefold stimulation of internode elongation compared with white light DIF−10. Surprisingly, internode elongation in orange light was similar for plants grown at DIF−10 and DIF+10. Flower development was accelerated at DIF−10 compared with DIF+10 in both white and orange light. To examine whether the effects of DIF and light quality on shoot elongation were related to changes in gibberellin metabolism or plant sensitivity to gibberellins (GAs), the stem elongation responses of paclobutrazol-treated plants to applied gibberellins were determined. In the absence of applied gibberellins paclobutrazol (>0.32 μmol plant−1) strongly retarded shoot elongation. This inhibition was nullified by the application of about 10–32 nmol of GA1, GA4, GA9, GA15, GA19, GA20, GA24, or GA44. The results are discussed in relation to possible effects of DIF and light quality on endogenous gibberellin levels and gibberellin sensitivity of fuchsia and their effects on stem elongation. Received October 4, 1997; accepted December 17, 1997  相似文献   

7.
The effects of continuous red and far-red light and of brief light pulses on the growth kinetics of the mesocotyl, coleoptile, and primary leaf of intact oat (Avena sativa L.) seedlings were investigated. Mesocotyl lengthening is strongly inhibited, even by very small amounts of Pfr, the far-red light absorbing form of phytochrome (e.g., by [Pfr]0.1% of total phytochrome, established by a 756-nm light pulse). Coleoptile growth is at first promoted by Pfr, but apparently inhibited later. This inhibition is correlated in time with the rupturing of the coleoptile tip by the primary leaf, the growth of which is also promoted by phytochrome. The growth responses of all three seedling organs are fully reversible by far-red light. The apparent lack of photoreversibility observed by some previous investigators of the mesocotyl inhibition can be explained by an extremely high sensitivity to Pfr. Experiments with different seedling parts failed to demonstrate any further obvious interorgan relationship in the light-mediated growth responses of the mesocotyl and coleoptile. The organspecific growth kinetics, don't appear to be influenced by Pfr destruction. Following an irradiation, the growth responses are quantitatively determined by the level of Pfr established at the onset of darkness rather than by the actual Pfr level present during the growth period.Abbreviation Pfr far-red light absorbing form of phytochrome  相似文献   

8.
F. Waller  P. Nick 《Protoplasma》1997,200(3-4):154-162
Summary In seedlings of maize (Zea mays L. cv. Percival), growth is controlled by the plant photoreceptor phytochrome. Whereas coleoptile growth is promoted by continuous far-red light, a dramatic block of mesocotyl elongation is observed. The response of the coleoptile is based entirely upon light-induced stimulation of cell elongation, whereas the response of the mesocotyl involves light-induced inhibition of cell elongation. The light response of actin microfilaments was followed over time in the epidermis by staining with fluorescence-labelled phalloidin. In contrast to the underlying tissue, epidermal cells are characterized by dense longitudinal bundles of microfilaments. These bundles become loosened during phases of rapid elongation (between 2–3 days in irradiated coleoptiles, between 5–6 days in dark-grown coleoptiles). The condensed bundles re-form when growth gradually ceases. The response of actin to light is fast. If etiolated mesocotyls are transferred to far-red light, condensation of microfilaments can be clearly seen 1 h after the onset of stimulation together with an almost complete block of mesocotyl elongation. The observations are discussed in relation to a possible role of actin microfilaments in the signal-dependent control of cell elongation.  相似文献   

9.
Gibberellins and phytochrome regulation of stem elongation in pea   总被引:6,自引:0,他引:6  
In garden pea (Pisum sativum L.) neither etiolation nor the phytochrome B (phyB)-response mutation lv substantially alters the level of the major active endogenous gibberellin, GA1 in the apical portion of young seedlings. The phyB-controlled responses to continuous red light and end-of-day far-red light are retained even in a GA-overproducing mutant (sln). Comparison of the effects of the lv mutation and GA1 application on seedling development shows important differences in rate of node development, cell extension and division, and leaf development. These results suggest that in pea the control of stem elongation by light in general and phyB in particular is not mediated by changes in GA1 content. Instead, the increased elongation of dark-grown and lv plants appears to result from increased responsiveness of the plant to its endogenous levels of GA1. Three GA1-deficient mutants, na, ls and le have been used to investigate these changes in responsiveness, and study of these and the double mutants na lv, ls lv and le lv has demonstrated that the relative magnitude of the change in responsiveness is dependent on GA1 level. The difference in pleiotropic effects of GA1 application and the lv mutation suggest that light and GA1 interact late in their respective transduction pathways. A model for the relationship between light, GA1 level and elongation in pea is presented and discussed.Abbreviations B blue light - cv cultivar - EOD-FR end-of-day far-red light - FR far-red light - GAn Gibberellin An - GC-SIM gas chromatography-selected ion monitoring - HIR high irradiance response - W white light We thank Prof. L.N. Mander for provision of deuterated internal standards, Peter Bobbi, Noel Davies, Omar Hasan, and Katherine McPherson for technical assistance, Stephen Swain for discussion and provision of GA-level data, and the Australian Research Council for financial assistance. J.L.W. is in receipt of an Australian Postgraduate Research scholarship.  相似文献   

10.
The elongation of etiolated Avena mesocotyls is inhibited by red light (660 mμ). Immediately after exposing mesocotyl sections to varying doses of red light the ensuing concentrations of phytochrome in the far-red absorbing form (P730) were measured. The extent of mesocotyl inhibition observed 5 days later is proportional to the logarithm of P730 concentration in mesocotyl tissue at the time of red light exposure.

The inhibition of mesocotyl growth by red light can be reversed partially by subsequent exposure to far-red light (730 mμ). Increasing doses of far-red light result in decreasing concentrations of P730 as compared with the original P730 level due to the preceding red light exposure. The reduced mesocotyl inhibition of seedings which had been exposed to red and far-red light is proportional to the logarithm of P730 concentration remaining in the tissue at the end of the two light exposures.

This indicates that the same correlation exists between P730 concentration and growth response whether the seedlings had been exposed to red light only or to red followed by far-red light.

  相似文献   

11.
Experiments with Grand Rapids lettuce seeds (Lactuca sativa L.) maintained in darkness or irradiated with red light have shown that the inhibition of germination induced by low concentrations of ABA (2, 4, 6 μM) could be overcome by gibberellins (GA3 or GA4). The same results were obtained, although to a lesser extent, under the influence of two out of the four cytokinins tested (K and BAP) for seeds maintained in darkness. To suppress the block induced by higher concentrations of ABA (for example 8 μM), it was necessary to apply a cytokinin (K, BAP, Z or 2iP) and a gibberellin (GA4 or GA3) simultaneously, or a cytokinin following a red light treatment. Experiments conducted in darkness in which ABA (8 μM) was applied together with a cytokinin (BAP) and a gibberellin (GA4) showed that the gibberellin and the cytokinin played similar roles towards each other and towards ABA.  相似文献   

12.
Overexpression of phytochrome A results in an increased inhibition of hypocotyl elongation under red and far-red light. We used this approach to assay for the function of N-terminal mutations of rice (Oryza sativa L.) phytochrome A. Transgenic tobacco seedlings that express the wild-type rice phytochrome A (RW), a rice phytochrome A lacking the first 80 amino acids (NTD) or a rice phytochrome A with a conversion of the first 10 serines into alanine residues (S/A) were compared with untransformed wild-type tobacco (Nicotiana tabacum L. cv. Xanthi) seedlings. Experiments under different fluence rates showed that RW and, even more strongly, S/A increased the response under both red and far-red light, whereas NTD decreased the response under far-red light but hardly altered the response under red light. These results indicate that NTD not only lacks residues essential for an increased response under red light but also distorts the wild-type response under far-red light. Wild-type rice phytochrome A and, even more so, S/A mediate an enhanced phytochrome A as well as phytochrome B function, whereas NTD interferes with the function of endogenous tobacco phytochrome A as well as that of rice phytochrome A when co-expressed in a single host. Experiments with seedlings of different ages and various times of irradiation under far-red light demonstrated that the effect of NTD is dependent on the stage of development. Our results suggest that the lack of the first 80 amino acids still allows a rice phytochrome A to interact with the phytochrome transduction pathway, albeit nonproductively in tobacco seedlings.Abbreviations HIR high-irradiance response - NTD N-terminal deletion mutant of rice phytochrome A - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - RW rice wild-type phytochrome A - S/A serine-to-alanine mu-tant of rice phytochrome A - wNTD weakly expressing NTD line - XAN wild-type tobacco cv. Xanthi We thank Masaki Furuya (Adv. Research Laboratory, Hitachi, Saitama, Japan) and Akira Nagatani (RIKEN Institute, Saitama, Japan) for providing the monoclonal antibodies mAP5 and mAR14. The work was supported by a grant from the Human Frontier Science Program. K.E. was a recipient of a Landesgraduiertenförderung fellowship.  相似文献   

13.
Gibberellins A19, A20, and A1 were applied to seedlings of birch (Betula pubescens Ehrh.) and alder (Alnus glutinosa (L.) Gaertn.) in order to test their ability to counteract growth inhibition induced by growth retardants (ancymidol and BX-112) or short day (SD, 12 h) photoperiod. Ancymidol inhibits early and BX-112 inhibits late steps in gibberellin biosynthesis. BX-112 inhibited stem elongation in both species while ancymidol, applied as a soil drench, was effective in alder only. Growth retardants affected stem elongation mainly by inhibiting elongation of internodes. All three gibberellins were equally active when applied to seedlings treated with ancymidol; however, only GA1 was able to counteract the growth inhibition induced by BX-112. SD-induced cessation of elongation growth in birch was counteracted by GA1, and to some degree, by GA20, while GA19 was inactive. SD treatment did not induce cessation of apical growth in alder. These results are consistent with the hypothesis that of gibberellins belonging to the early C-13 hydroxylation pathway, GA1 is the only active gibberellin for stem elongation.  相似文献   

14.
Plant-derived smoke extracts mimics the effect of red light on germination in light-sensitive lettuce seeds and partially overcomes the inhibitory effect of far-red light. Interaction between a smoke extract and gibberellins, cytokinins, abscisic acid and ethephon was investigated. Smoke acted synergistically with GA3 and increased the sensitivity of the lettuce seeds to ABA. It seems likely that smoke affects membrane permeability or receptor sensitivity rather than influencing the phytochrome system of these seeds.Abbreviations R red light - FR far-red light - SM smoke extract  相似文献   

15.
When 3–4 mm long coleoptiles of etiolated rice seedlings (cv. Koshijiwase) were irradiated with continuous red light their growth was seriously inhibited. If a brief exposure of red light (4×103 ergs cm−2) was given to the short coleoptiles, the growth rate dropped immediately after the irradiation, but the growth did not stop till the coleoptile reached some calculated length. If another brief red irradaition of the same order was given 24 hr after the first, the growth rate and the final length dropped further. The effect of red light was reversed by successively given far-red light, and this response was repeatedly red and far-red reversible. The escape reaction was rather slow so that photoreversibility was not lost at all by 8th hr, and 50% of the initial reversibility was lost within ca. 16 hr at 25±0.5 C. Blue light also induced the inhibition of coleoptile elongation, the effect was reversed by subsequent far-red irradiation, and this could be obtained repeatedly. Thus, the photoinhibition of the young coleoptile can be concluded to be under the control of phytochrome, and the mode of action appeared quite different from the previously reported results with longer coleoptiles.  相似文献   

16.
The effect of light on the dwarfing allele, le, in Pisum sativum L. was tested as the growth response to gibberellins prior to or beyond the presumed block in the gibberellin biosynthetic pathway. The response to the substrate (GA20), the product (GA1), and a nonendogenous early precursor (steviol) was compared in plants bearing the normal Le and the deficient lele genotypes in plants made low in gibberellin content genetically (nana lines) or by paclobutrazol treatment to tall (cv Alaska) and dwarf (cv Progress) peas. Both genotypes responded to GA1 under red irradiation and in darkness. The lele plants grew in response to GA20 and steviol in darkness but showed a much smaller response when red irradiated. The Le plants responded to GA20 and steviol in both light and darkness. The red effects on lele plants were largely reversible by far-red irradiation. It is concluded that the deficiency in 3β-hydroxylation of GA20 to GA1 in genotype lele is due to a Pfr-induced blockage in the expression of that activity.  相似文献   

17.
  1. Under continuous irradiation, the growth of intact rice coleoptilewas strongly inhibited by red light, and somewhat preventedby blue and far-red light. The inhibitory effect of red lighton coleoptile elongation was caused by a low-energy brief irradiation,and a single exposure of 1.5 kiloergs cm–2 incidentenergy of red light brought about the 50% inhibition. This photoinhibitionof growth was observed only after the coleoptile had elongatedto about 10 mm or longer. The red light-induced effect was reversedby an immediately following brief exposure to far-red light,and the photoresponses to red and far-red light were repeatedlyreversible. The escape reaction of red lightinduced effect tookplace at a rate so that 50% of the initial reversibility waslost within 9 hr in darkness at 27. The inhibition by bluelight and reversal by far-red irradiation was also achievedrepeatedly with successive treatments of the coleoptiles. Theevidence for a low intensity red far-red reversible controlof coleoptile growth, indicative of control by phytochrome,seems clearly established in etiolated intact seedlings.
  2. Incontrast, the elongation of apically excised rice coleoptilesegments was promoted by a brief exposure to red light in 0.02M phosphate buffer, pH 7, and the effect was almost completelynullified by an immediately subsequent exposure to far-red light.It becomes evident that the growth of intact coleoptiles wasinhibited by a exposure to red light, while that of excisedsegments in a buffer was rather promoted by red irradiation.The direction of red light induced responses, either promotiveor inhibitory, depends upon the method of bioassay using intactcoleoptiles or their excised segments.
(Received July 24, 1967; )  相似文献   

18.
Summary The inhibition of the growth rate of the first internode of Avena by red light occurs in three steps. The first step reduces elongation by ca. 15%. It is produced and saturated by 10-3 to 10-1 W sec cm-2 at =660 nm and is irreversible by far-red irradiation. All wavelengths between 400 and 800 nm produce and saturate this step. The second step, produced by red light quantities between ca. 10 and 104 W sec cm-2 reduces elongation to ca. 50% of the maximal; it is not produced by far-red light but far-red reverses completely this component of the effect of red light. The third step inhibits mesocotyl elongation to ca. 95% of the maximal. The effect of red light in this step depends on the duration of irradiation rather than on the total quantity of energy, and is not reversed by far-red irradiation. The three inhibition steps in the elongation of the mesocotyl are matched by three growth-promotion steps in the growth of the coleoptile, but the extent of the far-red-irreversible first step outweighs in this case by far the extent of the far-red-reversible second step.  相似文献   

19.
Summary The effect of gibberellins A1 through A9 on stem elongation and flower formation in five plants was tested. The plants wereMyosotis alpestris and a biennial strain ofCentaurium minus (cold-requiring plants),Silene armeria andCrepis parviflora (long-day plants), andBryophyllum crenatum (a long-short-day plant). The two former plants were maintained on non-inductive temperatures and long days, the three latter on short days, InMyosotis, flower formation was only obtained with GA7 and GA1, the latter being relatively less active. InCentaurium GA3 was the most effective, followed by GA1, GA4 and GA7 and perhaps GA5 and GA9. InSilene, flower formations was induced only by GA7. InCrepis, the most effective gibberellins were GA4 and GA7, inBryophyllum, GA3, GA4 and GA7. Thus, the different gibberellins exhibited considerable differences in their activity with respect to flower induction, and different plants exhibited in this respect certain specific differences in their sensitivity to the various gibberellins. Except inCrepis, flower initiation as a result of gibberellin treatment was always preceded by substantial stem or internode elongation; however, the correlation between the effect of the different gibberellins on stem elongation and flower induction was not in all cases complete. No correlation of the flower-inducing and elongation-promoting activity with the chemical structure of the different gibberellins could be recognized.With 2 Figures in the TextWork in part supported by the National Science Foundation, grants G-16408 and G-17483.  相似文献   

20.
The occurrence of phytochrome-mediated highirradiance responses (HIR), previously characterised largely in dicotyledonous plants, was investigated in Triticum aestivum L., Zea mays L., Lolium multiflorum Lam. and in both wild-type Oryza sativa L. and in transgenic plants overexpressing oat phytochrome A under the control of a 35S promoter. Coleoptile growth was promoted (maize, ryegrass) or inhibited (wild-type rice) by continuous far-red light (FRc). However, at equal fluences, hourly pulses of far-red light (FRp) were equally effective, indicating that the growth responses to FRc were not true HIR. In contrast, in maize and rice, FRc increased anthocyanin content in the coleoptile in a fluence-rate dependent manner. This response was a true HIR as FRp had reduced effects. In maize, anthocyanin levels were significantly higher under FRc than under continuous red light. In rice, overexpression of phytochrome A increased the inhibition of coleoptile growth and the levels of anthocyanin under FRc but not under FRp or under continuous red light. The effect of FRc was fluence-rate dependent. In light-grown rice, overexpression of phytochrome A reduced leaf-sheath length, impaired the response to supplementary far-red light, but did not affect the response to canopy shade-light. In grasses, typical HIR, i.e. fluence-rate dependent responses showing reciprocity failure, can be induced by FRc. Under FRc, overexpressed phytochrome A operates through this action mode in transgenic rice.Abbreviations FR far-red light - FRc continuous far-red light - FRp pulses of far-red light - HIR high-irradiance responses - LFR low-fluence responses - OPHYA transgenic rice overexpressing oat phytochrome A - Pfr far-red light-absorbing form of phytochrome - phyA phytochrome A - R red light - Rc continuous red light - VLFR very low-fluence responses - WT wildtype We thank Marcelo J. Yanovsky for his help with the photographs and Professor Rodolfo A. Sanchez for providing a reprint of the paper by P.J.A.L. de Lint. This work was supported by grants from UBA (AG041) and Fundacion Antorchas (A-13218/1-15) to J.J.C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号