首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The presence or absence of a recently observed mitochondrial DNA (mtDNA) mutation associated with Leber hereditary optic neuroretinopathy (LHON) was tested in 19 Finnish families with cases of LHON. Leukocyte and muscle DNA from individuals with optic atrophy, microangiopathy, or normal fundi from maternal lineages were studied by Southern blot analysis, using mouse mtDNA as a hybridization probe. The mtDNA mutation, detected as SfaNI site polymorphism, was seen in 10 of the 19 families. In one family, the mutation was seen only in the two affected individuals, indicating recent origin for the mutation. Nine families and 28 maternally unrelated controls did not show the mutation. The results imply that alternative mtDNA mutations are associated with LHON and that this genetic heterogeneity may be the cause of the interfamilial variation in the clinical expression of LHON. In the families showing the SfaNI site mutation, the mutation was homoplasmic in all individuals irrespective of their disease status, suggesting that the intrafamilial variation in the clinical expression is not due to different ratios of mutant versus normal mtDNA.  相似文献   

2.
A mutation in the mitochondrial DNA at nt 11,778 has recently been found in Leber hereditary optic neuroretinopathy (LHON), a maternally inherited ocular disease. The mutation is located in the ND4 gene encoding subunit 4 of the respiratory chain enzyme NADH dehydrogenase. The mutation was subsequently not found in 9 of the 20 known Finnish families with LHON, implying that there are at least two different mutations associated with the disease. Using direct sequencing of PCR-amplified mtDNA, we have now sequenced the entire ND4 region in the families without the nt 11,778 mutation to find the other mutations. No new mutations in the ND4 region were found, suggesting that the putative mtDNA mutation in these families may be in the coding regions for other subunits of NADH dehydrogenase enzyme. The sequence of ND4 gene as found to be highly homogeneous.  相似文献   

3.
A single base mutation at nucleotide position 3460 (nt 3460) in the ND1 gene in human mtDNA was found to be associated with Leber hereditary optic neuroretinopathy (LHON). The G-to-A mutation converts an alanine to a threonine at the 52d codon of the gene. The mutation also abolishes an AhaII restriction site and thus can be detected easily by RFLP analysis. The mutation was found in three independent Finnish LHON families but in none of the 60 controls. None of the families with the nt 3460 mutation in ND1 had the previously reported nt 11778 mutation in the ND4 gene. The G-to-A change at nt 3460 is the second mutation so far detected in LHON.  相似文献   

4.
Relatively little is known about the factors maintaining mitochondrial DNA (mtDNA) sequence diversity in humans. A detailed understanding of the transmission genetics of mtDNA has been partly hampered by the lack of evidence for heteroplasmic individuals. Among families with Leber hereditary optic neuroretinopathy, we found a maternal lineage with individuals heteroplasmic for a single nucleotide change, and we were able to follow the segregation of polymorphic mitochondrial genomes over 3 generations. The results show that rapid segregation can occur but also that the level of heteroplasmy can be maintained from one generation to another. In this family the disease phenotype is associated with the mtDNA sequence change, confirming the involvement of the mutation in the disease.  相似文献   

5.
We performed the first population-based clinical and molecular genetic study of Leber hereditary optic neuropathy (LHON) in a population of 2,173,800 individuals in the North East of England. We identified 16 genealogically unrelated families who harbor one of the three primary mitochondrial DNA (mtDNA) mutations that cause LHON. Two of these families were found to be linked genetically to a common maternal founder. A de novo mtDNA mutation (G3460A) was identified in one family. The minimum point prevalence of visual failure due to LHON within this population was 3.22 per 100,000 (95% CI 2.47-3.97 per 100,000), and the minimum point prevalence for mtDNA LHON mutations was 11.82 per 100,000 (95% CI 10.38-13.27 per 100,000). These results indicate that LHON is not rare but has a population prevalence similar to autosomally inherited neurological disorders. The majority of individuals harbored only mutant mtDNA (homoplasmy), but heteroplasmy was detected in approximately 12% of individuals. Overall, however, approximately 33% of families with LHON had at least one heteroplasmic individual. The high incidence of heteroplasmy in pedigrees with LHON raises the possibility that a closely related maternal relative of an index case may not harbor the mtDNA mutation, highlighting the importance of molecular genetic testing for each maternal family member seeking advice about their risks of visual failure.  相似文献   

6.
The human mitochondrial genome has an exclusively maternal mode of inheritance. Mitochondrial DNA (mtDNA) is particularly vulnerable to environmental insults due in part to an underdeveloped DNA repair system, limited to base excision and homologous recombination repair. Radiation exposure to the ovaries may cause mtDNA mutations in oocytes, which may in turn be transmitted to offspring. We hypothesized that the children of female cancer survivors who received radiation therapy may have an increased rate of mtDNA heteroplasmy mutations, which conceivably could increase their risk of developing cancer and other diseases. We evaluated 44 DNA blood samples from 17 Danish and 1 Finnish families (18 mothers and 26 children). All mothers had been treated for cancer as children and radiation doses to their ovaries were determined based on medical records and computational models. DNA samples were sequenced for the entire mitochondrial genome using the Illumina GAII system. Mother's age at sample collection was positively correlated with mtDNA heteroplasmy mutations. There was evidence of heteroplasmy inheritance in that 9 of the 18 families had at least one child who inherited at least one heteroplasmy site from his or her mother. No significant difference in single nucleotide polymorphisms between mother and offspring, however, was observed. Radiation therapy dose to ovaries also was not significantly associated with the heteroplasmy mutation rate among mothers and children. No evidence was found that radiotherapy for pediatric cancer is associated with the mitochondrial genome mutation rate in female cancer survivors and their children.  相似文献   

7.
Leber's hereditary optic neuropathy (LHON) is characterized by maternally transmitted, bilateral, central vision loss in young adults. It is caused by mutations in the mitochondrial DNA (mtDNA) encoded genes that contribute polypeptides to NADH dehydrogenase or complex I. Four mtDNA variants, the nucleotide pair (np) 3460A, 11778A, 14484C, and 14459A mutations, are known as "primary" LHON mutations and are found in most, but not all, of the LHON families reported to date. Here, we report the extensive genetic and biochemical analysis of five Russian families from the Novosibirsk region of Siberia manifesting maternally transmitted optic atrophy consistent with LHON. Three of the five families harbor known LHON primary mutations. Complete sequence analysis of proband mtDNA in the other two families has revealed novel complex I mutations at nps 3635A and 4640C, respectively. These mutations are homoplasmic and have not been reported in the literature. Biochemical analysis of complex I in patient lymphoblasts and transmitochondrial cybrids demonstrated a respiration defect with complex-I-linked substrates, although the specific activity of complex I was not reduced. Overall, our data suggests that the spectrum of mtDNA mutations associated with LHON in Russia is similar to that in Europe and North America and that the np 3635A and 4640C mutations may be additional mtDNA complex I mutations contributing to LHON expression.  相似文献   

8.
The mitochondrial DNA (mtDNA) of 87 index cases with Leber hereditary optic neuropathy (LHON) sequentially diagnosed in Italy, including an extremely large Brazilian family of Italian maternal ancestry, was evaluated in detail. Only seven pairs and three triplets of identical haplotypes were observed, attesting that the large majority of the LHON mutations were due to independent mutational events. Assignment of the mutational events into haplogroups confirmed that J1 and J2 play a role in LHON expression but narrowed the association to the subclades J1c and J2b, thus suggesting that two specific combinations of amino acid changes in the cytochrome b are the cause of the mtDNA background effect and that this may occur at the level of the supercomplex formed by respiratory-chain complexes I and III. The families with identical haplotypes were genealogically reinvestigated, which led to the reconnection into extended pedigrees of three pairs of families, including the Brazilian family with its Italian counterpart. The sequencing of entire mtDNA samples from the reconnected families confirmed the genealogical reconstruction but showed that the Brazilian family was heteroplasmic at two control-region positions. The survey of the two sites in 12 of the Brazilian subjects revealed triplasmy in most cases, but there was no evidence of the tetraplasmy that would be expected in the case of mtDNA recombination.  相似文献   

9.
The mitochondrial complex I genes were sequenced in seven Leber hereditary optic neuroretinopathy (LHON) families without the ND4/11778 and ND1/3460 mutations. Four replacement mutations restricted only to LHON families were found, one in the ND1 gene at nt 4025, and three in the ND5 gene at nt 12811, 13637, and 13967. The mutations did not change evolutionarily conserved amino acids suggesting that they are not primary LHON mutations in these families. They may be considered as secondary LHON mutations serving as exacerbating factors in an appropriate genetic background. A complex III mutation, cyt b/15257, has been suggested to be one of the primary mutations causing LHON. Its presence was determined for 23 Finnish LHON families, and it was detected in two families harboring the ND4/11778 mutation. Similarly, complex IV mutation COI/7444 was screened in Finnish LHON families, and it was found in one family carrying the ND1/3460 mutation.  相似文献   

10.
Summary Leber's hereditary optic neuropathy (LHON) is characterized by acute or subacute bilateral (usually permanent) loss of central vision, caused by neuroretinal degeneration. The maternal inheritance is explained by the mitochondrial origin of the disease. Recently, a single mitochondrial DNA (mtDNA) mutation, a G to A substitution at position 11778 that converts a highly conserved arginine to histidine, has been associated with LHON. The mutation eliminates an SfaNI restriction enzyme recognition site and thus provides a method for detection of the muation by amplification, enzyme digestion and agarose gel electropheresis of polymerase chain reaction (PCR) products. Leukocyte mtDNA from 7 German families with LHON, diagnosed by clinical criteria, was tested for the presence of the G to A mutation at bp 11778. The mtDNa mutation, detected as a loss of the SfaNI site, was seen in one family. The G to A mtDNA mutation is the only known gene alteration associated with LHON so far. It has been identified in patients of different ethnic origin and recent reports strongly support the hypothesis that it represents the most frequent cause of LHON. Identification of the mtDNA replacement mutation using PCR and restriction enzyme digestion requires only a small amount of blood and can be performed rapidly. This method is thus a useful tool in the diagnosis of LHON.  相似文献   

11.
Wolfram or DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy and Deafness) syndrome, which has long been known as an autosomal-recessive disorder, has recently been proposed to be a mitochondrial-mediated disease with either a nuclear or a mitochondrial genetic background. The phenotypic characteristics of the syndrome resemble those found in other mitochondrial (mt)DNA mediated disorders such as Leber's hereditary optic neuropathy (LHON) or maternally inherited diabetes and deafness (MIDD). Therefore, we looked for respective mtDNA alterations in blood samples from 7 patients with DIDMOAD syndrome using SSCP-analysis of PCR-amplified fragments, encompassing all mitochondrial ND and tRNA genes, followed by direct sequencing. Subsequently, we compared mtDNA variants identified in this disease group with those detected in a group of LHON patients (n = 17) and in a group of 69 healthy controls. We found that 4/7 (57%) DIDMOAD patients harbored a specific set of point mutations in tRNA and ND genes including the so-called class II or secondary LHON mutations at nucleotide positions (nps) 4216 and 4917 (haplogroup B). In contrast, LHON-patients were frequently (10/17, 59%) found in association with another cluster of mtDNA variants including the secondary LHON mutations at nps 4216 and 13708 and further mtDNA polymorphisms in ND genes (haplogroup A), overlapping with haplogroup B only by variants at nps 4216 and 11251. The frequencies of both haplogroups were significantly lower in the control group versus the respective disease groups. We propose that haplogroup B represents a susceptibility factor for DIDMOAD which, by interaction with further exogeneous or genetic factors, might increase the risk for disease. (Mol Cell Biochem 174: 209–213, 1997)  相似文献   

12.
Leber's hereditary optic neuropathy (LHON) has traditionally been considered a disease causing severe and permanent visual loss in young adult males. In nearly all families with LHON it is associated with one of three pathogenic mitochondrial DNA (mtDNA) mutations, at bp 11778, 3460 or 14484. The availability of mtDNA confirmation of a diagnosis of LHON has demonstrated that LHON occurs with a wider range of age at onset and more commonly in females than previously recognised. In addition, analysis of patients grouped according to mtDNA mutation has demonstrated differences both in the clinical features of visual failure and in recurrence risks to relatives associated with each of the pathogenic mtDNA mutations. Whilst pathogenic mtDNA mutations are required for the development of LHON, other factors must be reponsible for the variable penetrance and male predominance of this condition. Available data on a number of hypotheses including the role of an additional X-linked visual loss susceptibility locus, impaired mitochondrial respiratory chain activity, mtDNA heteroplasmy, environmental factors and autoimmunity are discussed. Subacute visual failure is seen in association with all three pathogenic LHON mutations. However, the clinical and experimental data reviewed suggest differences in the phenotype associated with each of the three mutations which may reflect variation in the disease mechanisms resulting in this common end-point.  相似文献   

13.
Analyses of mitochondrial DNA (mtDNA) sequences have revealed non-neutral patterns, suggesting that many amino acid mutations in animal mtDNA may be mildly deleterious, but this has not been verified in human clinical series. Since sensorineural hearing impairment (SNHI) is a common manifestation in many of the syndromes caused by mutations in mtDNA, this may be regarded as the phenotype of choice in attempts to detect mutations that may have a mildly deleterious effect on mitochondrial function. We selected 32 subjects from among 117 unrelated SNHI patients with SNHI in maternal relatives by means of family history, determined the entire coding region sequence of mtDNA and compared the sequence variation with that in 32 haplogroup-matched controls taken at random from 192 Finnish sequences. The 32 control sequences differed from the remaining 160 sequences by 36±9 substitutions (mean ± SD), while the difference for the 32 patients was 58±4 substitutions (P=0.005 for difference; Wilcoxon signed rank test). Differences were also found in the number of new haplotypes and new non-synonymous mutations or mutations in tRNA or rRNA genes. A total of 12 rare mtDNA variants were detected in the patients, and only 3 of these were considered to be neutral in effect. It is proposed that increased sequence variation in mtDNA may be a genetic risk factor for SNHI, and the increased frequency of rare haplotypes in these patients points to the presence of mildly deleterious mutations in mtDNA.  相似文献   

14.
Pathogenetic mutations in mtDNA are found in the majority of patients with Leber hereditary optic neuropathy (LHON), and molecular genetic techniques to detect them are important for the diagnosis. A false-positive molecular genetic error has adverse consequences for the diagnosis of this maternally inherited disease. We found a number of mtDNA polymorphisms that occur adjacent to known LHON-associated mutations and that confound their molecular genetic detection. These transition mutations occur at mtDNA nt 11779 (SfaNI site loss, 11778 mutation), nt 3459 (BsaHI site loss, 3460 mutation), nt 15258 (AccI site loss, 15257 mutation), nt 14485 (mismatch primer Sau3AI site loss, 14484 mutation), and nt 13707 (BstNI site loss, 13708 mutation). Molecular genetic detection of the most common pathogenetic mtDNA mutations in LHON, using a single restriction enzyme, may be confounded by adjacent polymorphisms that occur with a false-positive rate of 2%-7%.  相似文献   

15.
Tissue specific somatic mutations occurring in the mtDNA control region have been proposed to provide a survival advantage. Data on twins and on relatives of long-lived subjects suggested that the occurrence/accumulation of these mutations may be genetically influenced. To further investigate control region somatic heteroplasmy in the elderly, we analyzed the segment surrounding the nt 150 position (previously reported as specific of Leukocytes) in various types of leukocytes obtained from 195 ultra-nonagenarians sib-pairs of Italian or Finnish origin collected in the frame of the GEHA Project. We found a significant correlation of the mtDNA control region heteroplasmy between sibs, confirming a genetic influence on this phenomenon. Furthermore, many subjects showed heteroplasmy due to mutations different from the C150T transition. In these cases heteroplasmy was correlated within sibpairs in Finnish and northern Italian samples, but not in southern Italians. This suggested that the genetic contribution to control region mutations may be population specific. Finally, we observed a possible correlation between heteroplasmy and Hand Grip strength, one of the best markers of physical performance and of mortality risk in the elderly. Our study provides new evidence on the relevance of mtDNA somatic mutations in aging and longevity and confirms that the occurrence of specific point mutations in the mtDNA control region may represent a strategy for the age-related remodelling of organismal functions.  相似文献   

16.
A variety of degenerative diseases involving deficiencies in mitochondrial bioenergetics have been associated with mitochondrial DNA (mtDNA) mutations. Maternally inherited mtDNA nucleotide substitutions range from neutral polymorphisms to lethal mutations. Neutral polymorphisms are ancient, having accumulated along mtDNA lineages, and thus correlate with ethnic and geographic origin. Mildly deleterious base substitutions have also occurred along mtDNA lineages and have been associated with familial deafness and some cases of Alzheimer's Disease and Parkinson's Disease. Moderately deleterious nucleotide substitutions are more recent and cause maternally-inherited diseases such as Leber's Hereditary Optic Neuropathy (LHON) and Myoclonic Epilepsy and Ragged-Red Fiber Disease (MERRF). Severe nucleotide substitutions are generally new mutations that cause pediatric diseases such as Leigh's Syndrome and dystonia. MtDNA rearrangements also cause a variety of phenotypes. The milder rearrangements generally involve duplications and can cause maternally-inherited adult-onset diabetes and deafness. More severe rearrangements frequently involving detetions have been associated with adult-onset Chronic Progressive External Ophthalmoplegia (CPEO) and Kearns-Sayre Syndrome (KSS) or the lethal childhood disorder, Pearson's Marrow/Pancreas Syndrome. Defects in nuclear-cytoplasmic interaction have also been observed, and include an autosomal dominant mutation causing multiple muscle mtDNA deletions and a genetically complex disease resulting in the tissue depletion of mtDNAs. MtDNA nucleotide substitution and rearrangement mutations also accumulate with age in quiescent tissues. These somatic mutations appear to degrade cellular bioenergetic capacity, exacerbate inherited mitochondrial defects and contribute to tissue senescence. Thus, bioenergetic defects resulting from mtDNA mutations may be a common cause of human degenerative disease.  相似文献   

17.
Leber’s hereditary optic neuropathy (LHON) is an optic nerve dysfunction resulting from mutations in mitochondrial DNA (mtDNA), which is transmitted in a maternal pattern of inheritance. It is caused by three primary point mutations: G11778A, G3460A and T14484C; in the mitochondrial genome. These mutations are sufficient to induce the disease, accounting for the majority of LHON cases, and affect genes that encode for the different subunits of mitochondrial complexes I and III of the mitochondrial respiratory chain. Other mutations are secondary mutations associated with the primary mutations. The purpose of this study was to determine MT-ND variations in Iranian patients with LHON. In order to determine the prevalence and distribution of mitochondrial mutations in the LHON patients, their DNA was studied using PCR and DNA sequencing analysis. Sequencing of MT-ND genes from 35 LHON patients revealed a total of 44 nucleotide variations, in which fifteen novel variations—A14020G, A13663G, C10399T, C4932A, C3893G, C10557A, C12012A, C13934T, G4596A, T12851A, T4539A, T4941A, T13255A, T14353C and del A 4513—were observed in 27 LHON patients. However, eight patients showed no variation in the ND genes. These mutations contribute to the current database of mtDNA polymorphisms in LHON patients and may facilitate the definition of disease-related mutations in human mtDNA. This research may help to understand the disease mechanism and open up new diagnostic opportunities for LHON.  相似文献   

18.
In order to investigate possible synergistic influences of different mtDNA mutations on penetrance and severity of Leber's hereditary optic neuropathy (LHON), a large German LHON pedigree is characterized with respect to 10 different mutations associated with LHON. All members of the family carry three different mtDNA mutations (at nucleotide 4,216, 11,778 and 13,708) in a homoplasmic form, regardless of whether or not they are clinically affected. Testing for another 7 mutations reveals negative results in all family members. Hence, the variable disease expression of the family members cannot be explained by varying combinations of LHON-associated mtDNA mutations.  相似文献   

19.
Leber hereditary optic neuroretinopathy (LHON) is a maternally inherited disease, probably transmitted by mutations in mtDNA. The variation in the clinical expression of the disease among family members has remained unexplained, but pedigree data suggest an involvement of an X-chromosomal factor. We have studied genetic linkage of the liability to develop optic atrophy to 15 polymorphic markers on the X chromosome in six pedigrees with LHON. The results show evidence of linkage to the locus DXS7 on the proximal Xp. Tight linkage to the other marker loci was excluded. Multipoint linkage analysis placed the liability locus at DXS7 with a maximum lod score (Zmax) of 2.48 at a recombination fraction (theta) of .0 and with a Zmax - 1 support interval theta = .09 distal to theta = .07 proximal of DXS7. No evidence of heterogeneity was found among different types of families, with or without a known mtDNA mutation associated with LHON.  相似文献   

20.
Inheritance of mitochondrial disorders   总被引:1,自引:0,他引:1  
Chinnery PF 《Mitochondrion》2002,2(1-2):149-155
Over the last decade there have been major advances in our understanding of the genetic basis of mitochondrial disease, enabling genetic counseling for patients with autosomal dominant and autosomal recessive disorders. Genetic counseling for patients with mitochondrial DNA (mtDNA) mutations is less well established. Approximately one-third of adults with a mtDNA disorder are sporadic cases, usually due to a single deletion of mtDNA. About two-thirds of adults with mtDNA disease harbor a maternally transmitted point mutation. The recurrence risks are well documented for homoplasmic mtDNA mutations causing Leber hereditary optic neuropathy, but the situation is less clear for families with heteroplasmic mtDNA disorders. Two large studies have shown that for some heteroplasmic point mutations there appears to be a relationship between the percentage level of mutant mtDNA in a mother's blood and her risk of having clinically affected offspring. The situation is less clear for other point mutations, some of which may cause sporadic disease. Recent evidence has cast light on the general principles behind the transmission of heteroplasmic mtDNA point mutations, which may be important for genetic counseling in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号