首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Mucoid strains of Pseudomonas aeruginosa isolated from the sputum of cystic fibrosis patients produce copious quantities of an exopolysaccharide known as alginic acid. Since clinical isolates of the mucoid variants are unstable with respect to alginate synthesis and revert spontaneously to the more typical nonmucoid phenotype, it has been difficult to isolate individual structural gene mutants defective in alginate synthesis. The cloning of the genes controlling alginate synthesis has been facilitated by the isolation of a stable alginate-producing strain, 8830. The stable mucoid strain was mutagenized with ethyl methanesulfonate to obtain various mutants defective in alginate biosynthesis. Several nonmucoid (Alg-) mutants were isolated. A mucoid P. aeruginosa gene library was then constructed, using a cosmid cloning vector. DNA isolated from the stable mucoid strain 8830 was partially digested with the restriction endonuclease HindIII and ligated to the HindIII site of the broad host range cosmid vector, pCP13. After packaging in lambda particles, the recombinant DNA was introduced via transfection into Escherichia coli AC80. The clone bank was mated (en masse) from E. coli into various P. aeruginosa 8830 nonmucoid mutants with the help of pRK2013, which provided donor functions in trans, and tetracycline-resistant exconjugants were screened for the ability to form mucoid colonies. Three recombinant plasmids, pAD1, pAD2, and pAD3, containing DNA inserts of 20, 9.5, and 6.2 kilobases, respectively, were isolated based on their ability to restore alginate synthesis in various strain 8830 nonmucoid (Alg-) mutants. Mutants have been assigned to at least four complementation groups, based on complementation by pAD1, pAD2, or pAD3 or by none of them. Introduction of pAD1 into the spontaneous nonmucoid strain 8822, as well as into other nonmucoid laboratory strains of P. aeruginosa such as PAO and SB1, was found to slowly induce alginate synthesis. This alginate-inducing ability was found to reside on a 7.5-kilobase EcoRI fragment that complemented the alg-22 mutation of strain 8852. The pAD1 chromosomal insert which complements the alg-22 mutation was subsequently mapped at ca. 19 min of the P. aeruginosa PAO chromosome.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The phosphomannose isomerase (pmi) gene of Escherichia coli was cloned on a broad-host-range cosmid vector and expressed in Pseudomonas aeruginosa at a low level. Plasmid pAD3, which harbors the E. coli pmi gene, contains a 6.2-kilobase-pair HindIII fragment derived from the chromosome of E. coli. Subcloning produced plasmids carrying the 1.5-kilobase-pair HindIII-HpaI subfragment of pAD3 that restored alginic acid production in a nonmucoid, alginate-negative mutant of P. aeruginosa. This fragment also complemented mannose-negative, phosphomannose isomerase-negative mutants of E. coli and showed no homology by DNA-DNA hybridization to P. aeruginosa chromosomal DNA. By using a BamHI constructed cosmid clone bank of the stable alginate producing strain 8830, we have been able to isolate a recombinant plasmid of P. aeruginosa origin that also restores alginate production in the alginate-negative mutant. This new recombinant plasmid, designated pAD4, contained a 9.9-kilobase-pair EcoRI-BamHI fragment with the ability to restore alginate synthesis in the alginate-negative P. aeruginosa. This fragment showed no homology to E. coli chromosomal DNA or to plasmid pAD3. Both mucoid and nonmucoid strains of P. aeruginosa had no detectable levels of phosphomannose isomerase activity as measured by mannose 6-phosphate-to-fructose 6-phosphate conversion. However, P. aeruginosa strains harboring the cloned pmi gene of E. coli contained measurable levels of phosphomannose isomerase activity as evidenced by examining the conversion of mannose 6-phosphate to fructose 6-phosphate.  相似文献   

19.
Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis commonly produce a capsule-like exopolysaccharide called alginate. The alginate-producing (Alg+) phenotype results in a mucoid colony morphology and is an unstable trait. A mutant of P. aeruginosa FRD (a cystic fibrosis isolate) was obtained which was temperature sensitive for alginate production ( Algts ). At elevated growth temperatures (41 degrees C), no alginate was detected in culture supernatants of the Algts mutant, but yields of alginate increased as the temperature of incubation was reduced. The mutation responsible for the Algts phenotype, alg-50(Ts), has been mapped to a region of the FRD chromosome closely linked to trp-2. The alg-50(Ts) marker did not map near the met-l-linked chromosomal mutations responsible for the instability of the Alg+ phenotype. A broad host range cosmid cloning system based upon derivatives of plasmid RK2 was used to construct a P. aeruginosa clone bank. After transfer of the clone bank to the Algts mutant, hybrid plasmids were obtained which complemented the Algts defect. Deletion mapping of the original 20.3 kilobases of P. aeruginosa DNA cloned showed that a 4.7-kilobase fragment would complement the alg-50(Ts) mutation.  相似文献   

20.
A set of broad-host-range vectors allowing direct selection of recombinant DNA molecules to facilitate subcloning and expression analyses of Pseudomonas genes was constructed using Bg/II lacZ alpha cassette. Controlled expression vectors pVDtac39 and pVDtac24 were shown to be useful for determination of enzymatic activities encoded by the cloned DNA fragments and Mr determination of the corresponding polypeptides. A set of Pseudomonas putida xylE gene cassettes truncated at the 5' end was constructed for translational (protein) fusion studies. A protein fusion of the Pseudomonas aeruginosa algD gene, coding for GDPmannose dehydrogenase, and the truncated xylE gene cassette was used to verify the putative coding region and translational signals predicted from the algD nucleotide sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号