首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
AS160 is an Akt substrate of 160 kDa implicated in the regulation of both insulin- and contraction-mediated GLUT4 translocation and glucose uptake. The effects of aerobic exercise and subsequent insulin stimulation on AS160 phosphorylation and the binding capacity of 14-3-3, a novel protein involved in the dissociation of AS160 from GLUT4 vesicles, in human skeletal muscle are unknown. Hyperinsulinemic-euglycemic clamps were performed on seven men at rest and immediately and 3 h after a single bout of cycling exercise. Skeletal muscle biopsies were taken before and after the clamps. The insulin sensitivity index calculated during the final 30 min of the clamp was 8.0 +/- 0.8, 9.1 +/- 0.5, and 9.2 +/- 0.8 for the rest, postexercise, and 3-h postexercise trials, respectively. AS160 phosphorylation increased immediately after exercise and remained elevated 3 h after exercise. In contrast, the 14-3-3 binding capacity of AS160 and phosphorylation of Akt and AMP-activated protein kinase were only increased immediately after exercise. Insulin increased AS160 phosphorylation and 14-3-3 binding capacity and insulin receptor substrate-1 and Akt phosphorylation, but the response to insulin was not enhanced by prior exercise. In conclusion, the 14-3-3 binding capacity of AS160 is increased immediately after acute exercise in human skeletal muscle, but this is not maintained 3 h after exercise completion despite sustained AS160 phosphorylation. Insulin increases AS160 phosphorylation and 14-3-3 binding capacity, but prior exercise does not appear to enhance the response to insulin.  相似文献   

2.
Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% Vo(2 max)). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser(711) (AMPK), TBC1D1 Ser(231) (AMPK), TBC1D1 Ser(660) (AMPK), TBC1D1 Ser(700) (AMPK), and TBC1D1 Thr(590) (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser(711), TBC1D1 Ser(231), and TBC1D1 Ser(660) but had no effect on TBC1D1 Ser(700). Exercise did not increase TBC1D1 Thr(590) phosphorylation or TBC1D1/AS160 PAS phosphorylation, consistent with the lack of Akt activation. These data demonstrate that a single bout of exercise regulates TBC1D1 and AS160 phosphorylation on multiple sites in human skeletal muscle.  相似文献   

3.
During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast.  相似文献   

4.
The Akt substrate of 160 kDa (AS160) is phosphorylated on Akt substrate (PAS) motifs in response to insulin and contraction in skeletal muscle, regulating glucose uptake. Here we discovered a dissociation between AS160 protein expression and apparent AS160 PAS phosphorylation among soleus, tibialis anterior, and extensor digitorum longus muscles. Immunodepletion of AS160 in tibialis anterior muscle lysates resulted in minimal depletion of the PAS band at 160 kDa, suggesting the presence of an additional PAS immunoreactive protein. By immunoprecipitation and mass spectrometry, we identified this protein as the AS160 paralog TBC1D1, an obesity candidate gene regulating GLUT4 translocation in adipocytes. TBC1D1 expression was severalfold higher in skeletal muscles compared with all other tissues and was the dominant protein detected by the anti-PAS antibody at 160 kDa in tibialis anterior and extensor digitorum longus but not soleus muscles. In vivo stimulation by insulin, contraction, and the AMP-activated protein kinase (AMPK) activator AICAR increased TBC1D1 PAS phosphorylation. Using mass spectrometry on TBC1D1 from mouse skeletal muscle, we identified several novel phosphorylation sites on TBC1D1 and found the majority were consensus or near consensus sites for AMPK. Semiquantitative analysis of spectra suggested that AICAR caused greater overall phosphorylation of TBC1D1 sites compared with insulin. Purified Akt and AMPK phosphorylated TBC1D1 in vitro, and AMPK, but not Akt, reduced TBC1D1 electrophoretic mobility. TBC1D1 is a major PAS immunoreactive protein in skeletal muscle that is phosphorylated in vivo by insulin, AICAR, and contraction. Both Akt and AMPK phosphorylate TBC1D1, but AMPK may be the more robust regulator.  相似文献   

5.
Insulin increases glucose uptake into muscle by enhancing the surface recycling of GLUT4 transporters. In myoblasts, insulin signals bifurcate downstream of phosphatidylinositol 3-kinase into separate Akt and Rac/actin arms. Akt-mediated Rab-GAP AS160 phosphorylation and Rac/actin are required for net insulin gain of GLUT4, but the specific steps (vesicle recruitment, docking or fusion) regulated by Rac, actin dynamics, and AS160 target Rab8A are unknown. In L6 myoblasts expressing GLUT4myc, blocking vesicle fusion by tetanus toxin cleavage of VAMP2 impeded GLUT4myc membrane insertion without diminishing its build-up at the cell periphery. Conversely, actin disruption by dominant negative Rac or Latrunculin B abolished insulin-induced surface and submembrane GLUT4myc accumulation. Expression of non-phosphorylatable AS160 (AS160-4P) abrogated membrane insertion of GLUT4myc and partially reduced its cortical build-up, an effect magnified by selective Rab8A knockdown. We propose that insulin-induced actin dynamics participates in GLUT4myc vesicle retention beneath the membrane, whereas AS160 phosphorylation is essential for GLUT4myc vesicle-membrane docking/fusion and also contributes to GLUT4myc cortical availability through Rab8A.  相似文献   

6.
Insulin increases glucose transport by stimulating the trafficking of intracellular GLUT4 to the cell surface, a process known as GLUT4 translocation. A key protein in signaling this process is AS160, a Rab GTPase-activating protein (GAP) whose activity appears to be suppressed by Akt phosphorylation. Tbc1d1 is a Rab GAP with a sequence highly similar to that of AS160 and with the same Rab specificity as that of AS160. The role of Tbc1d1 in regulating GLUT4 trafficking has been unclear. Our previous study showed that overexpressed Tbc1d1 inhibited insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes, even though insulin caused phosphorylation on its single canonical Akt motif. In the present study, we show in 3T3-L1 adipocytes that Tbc1d1 is only 1/20 as abundant as AS160, that knockdown of Tbc1d1 has no effect on insulin-stimulated GLUT4 translocation, and that overexpressed Tbc1d1 also inhibits GLUT4 translocation elicited by activated Akt expression. These results indicate that endogenous Tbc1d1 does not participate in insulin-regulated GLUT4 translocation in adipocytes and suggest that the GAP activity of Tbc1d1 is not suppressed by Akt phosphorylation. In addition, we discovered that Tbc1d1 is much more highly expressed in skeletal muscle than fat and that the AMP-activated protein kinase (AMPK) activator 5'-aminoimidazole-4-carboxamide ribonucleoside partially reversed the inhibition of insulin-stimulated GLUT4 translocation by overexpressed Tbc1d1 in 3T3-L1 adipocytes. 5'-Aminoimidazole-4-carboxamide ribonucleoside activation of the kinase AMPK is known to cause GLUT4 translocation in muscle. The above findings strongly suggest that Tbc1d1 is a component in the signal transduction pathway leading to AMPK-stimulated GLUT4 translocation in muscle.  相似文献   

7.
The ATP-binding cassette transporter A1 (ABCA1) promotes cellular cholesterol efflux, leading to cholesterol binding to the extracellular lipid-free apolipoprotein A-I. ABCA1 regulates lipid content, glucose tolerance and insulin sensitivity in adipose tissue. In skeletal muscle, most GLUT4-mediated glucose transport occurs in the transverse tubule, a system composed by specialized cholesterol-enriched invaginations of the plasma membrane. We have reported that insulin resistant mice have higher cholesterol levels in transverse tubule from adult skeletal muscle. These high levels correlate with decreased GLUT4 trafficking and glucose uptake; however, the role of ABCA1 on skeletal muscle insulin-dependent glucose metabolism remains largely unexplored. Here, we evaluated the functional role of the ABCA1 on insulin-dependent signaling pathways, glucose uptake and cellular cholesterol content in adult skeletal muscle. Male mice were fed for 8?weeks with normal chow diet (NCD) or high fat diet (HFD). Compared to NCD-fed mice, ABCA1 mRNA levels and protein content were lower in muscle homogenates from HFD-fed mice. In Flexor digitorum brevis muscle from NCD-fed mice, shABCA1-RFP in vivo electroporation resulted in 65% reduction of ABCA1 protein content, 1.6-fold increased fiber cholesterol levels, 74% reduction in insulin-dependent Akt (Ser473) phosphorylation, total suppression of insulin-dependent GLUT4 translocation and decreased 2-NBDG uptake compared to fibers electroporated with the scrambled plasmid. Pre-incubation with methyl-β cyclodextrin reestablished both GLUT4 translocation and 2-NBDG transport. Based on the present results, we suggest that decreased ABCA1 contributes to the anomalous cholesterol accumulation and decreased glucose transport displayed by skeletal muscle membranes in the insulin resistant condition.  相似文献   

8.
Calorie restriction (CR) (consuming ∼60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old) Fischer 344xBrown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (∼140 µU/ml) in each diet group. Glucose uptake (assessed by infusion of [14C]-2-deoxyglucose, 2-DG), phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160kDa, AS160), abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages) were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris) and two predominantly slow-twitch (soleus, adductor longus) muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (P<0.05) concomitant with significantly (P<0.05) elevated 2-DG uptake in 3 of the 4 fast-twitch muscles (epitrochlearis, gastrocnemius, tibialis anterior), without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (P<0.05) increases in phosphorylation of both Akt and AS160. Among the 3 muscles without a CR-related increase in glucose uptake, only the soleus had significant (P<0.05) CR-related increases in Akt and AS160 phosphorylation. The current data revealed that CR leads to greater whole body glucose disposal in part attributable to elevated in vivo insulin-stimulated glucose uptake by fast-twitch muscles. The results also demonstrated that CR does not uniformly enhance either insulin signaling or insulin-stimulated glucose uptake in all muscles in vivo.  相似文献   

9.
The purpose of this study was to investigate whether an amino acid mixture increases glucose uptake across perfused rodent hindlimb muscle in the presence and absence of a submaximal insulin concentration, and if the increase in glucose uptake is related to an increase in GLUT4 plasma membrane density. Sprague-Dawley rats were separated into one of four treatment groups: basal, amino acid mixture, submaximal insulin, or amino acid mixture with submaximal insulin. Glucose uptake was greater for both insulin-stimulated treatments compared with the non-insulin-stimulated treatment groups but amino acids only increased glucose uptake in the presence of insulin. Phosphatidylinositol 3-kinase (PI 3-kinase) activity was greater for both insulin-stimulated treatments with amino acids having no additional impact. Akt substrate of 160 kDa (AS160) phosphorylation, however, was increased by the amino acids in the presence of insulin, but not in the absence of insulin. AMPK was unaffected by insulin or amino acids. Plasma membrane GLUT4 protein concentration was greater in the rats treated with insulin compared with no insulin in the perfusate. In the presence of insulin, amino acids increased GLUT4 density in the plasma membrane but had no effect in the absence of insulin. AS160 phosphorylation and plasma membrane GLUT4 density accounted for 76% of the variability in muscle glucose uptake. Collectively, these findings suggest that the beneficial effects of an amino acid mixture on skeletal muscle glucose uptake, in the presence of a submaximal insulin concentration, are due to an increase in AS160 phosphorylation and plasma membrane-associated GLUT4, but independent of PI 3-kinase and AMPK activation.  相似文献   

10.
Insulin stimulates the rapid translocation of intracellular glucose transporters of the GLUT4 isotype to the plasma membrane in fat and muscle cells. The connections between known insulin signaling pathways and the protein machinery of this membrane-trafficking process have not been fully defined. Recently, we identified a 160-kDa protein in adipocytes, designated AS160, that is phosphorylated by the insulin-activated kinase Akt. This protein contains a GTPase-activating domain (GAP) for Rabs, which are small G proteins required for membrane trafficking. In the present study we have identified six sites of in vivo phosphorylation on AS160. These sites lie in the motif characteristic of Akt phosphorylation, and insulin treatment increased phosphorylation at five of the sites. Expression of AS160 with two or more of these sites mutated to alanine markedly inhibited insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. Moreover, this inhibition did not occur when the GAP function in the phosphorylation site mutant was inactivated by a point mutation. These findings strongly indicate that insulin-stimulated phosphorylation of AS160 is required for GLUT4 translocation and that this phosphorylation signals translocation through inactivation of the Rab GAP function.  相似文献   

11.
Exercise can increase skeletal muscle sensitivity to insulin, improve insulin resistance and regulate glucose homeostasis in rat models of type 2 diabetes. However, the potential mechanism remains poorly understood. In this study, we established a male Sprague–Dawley rat model of type 2 diabetes, with insulin resistance and β cell dysfunction, which was induced by a high-fat diet and low-dose streptozotocin to replicate the pathogenesis and metabolic characteristics of type 2 diabetes in humans. We also investigated the possible mechanism by which chronic and acute exercise improves metabolism, and the phosphorylation and expression of components of AMP-activated protein kinase (AMPK) and downstream components of phosphatidylinositol 3-kinase (PI3K) signaling pathways in the soleus. As a result, blood glucose, triglyceride, total cholesterol, and free fatty acid were significantly increased, whereas insulin level progressively declined in diabetic rats. Interestingly, chronic and acute exercise reduced blood glucose, increased phosphorylation and expression of AMPKα1/2 and the isoforms AMPKα1 and AMPKα2, and decreased phosphorylation and expression of AMPK substrate, acetyl CoA carboxylase (ACC). Chronic exercise upregulated phosphorylation and expression of AMPK upstream kinase, LKB1. But acute exercise only increased LKB1 expression. In particular, exercise reversed the changes in protein kinase C (PKC)ζ/λ phosphorylation, and PKCζ phosphorylation and expression. Additionally, exercise also increased protein kinase B (PKB)/Akt1, Akt2 and GLUT4 expression, but AS160 protein expression was unchanged. Chronic exercise elevated Akt (Thr308) and (Ser473) and AS160 phosphorylation. Finally, we found that exercise increased peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1) mRNA expression in the soleus of diabetic rats. These results indicate that both chronic and acute exercise influence the phosphorylation and expression of components of the AMPK and downstream to PIK3 (aPKC, Akt), and improve GLUT4 trafficking in skeletal muscle. These data help explain the mechanism how exercise regulates glucose homeostasis in diabetic rats.  相似文献   

12.
The main purpose of this study was to determine whether the increased glucose transport (GT) found immediately postexercise (IPEX) or 4 h postexercise (4hPEX) is accompanied by increased phosphorylation of Akt substrate of 160 kDa (AS160, a protein regulator of GLUT4 translocation). Paired epitrochlearis muscles were dissected from rats (sedentary or IPEX, 2-h swim) and used to measure protein phosphorylation and insulin-independent GT. IPEX values exceeded sedentary values for GT and phosphorylations of AS160, AMP-activated protein kinase (pAMPK) and acetyl-CoA carboxylase (pACC) but not for AS160 abundance or phosphorylation of Akt serine (pSerAkt), Akt threonine (pThrAkt), or glycogen synthase kinase-3 (pGSK3). AS160 phosphorylation was significantly correlated with GT (R=0.801, P<0.01) and pAMPK (R=0.655, P<0.05). Muscles from other rats were studied 4hPEX along with sedentary controls. One muscle per rat was incubated without insulin, and the contralateral muscle was incubated with insulin. 4hPEX values exceeded sedentary values for insulin-stimulated GT. The elevated pAMPK and pACC found IPEX had reversed by 4hPEX. Insulin caused a significant increase in pSerAkt, pThrAkt, pGSK3, and AS160 phosphorylation with or without exercise. Exercise significantly increased AS160 phosphorylation, regardless of insulin, with unchanged AS160 abundance. Among the signaling proteins studied, insulin-stimulated GT was significantly correlated only with insulin-stimulated pThrAkt (R=0.720, P<0.0005). The results are consistent with a role for increased AS160 phosphorylation in the increased insulin-independent GT IPEX, and the exercise effects on AS160 phosphorylation and/or pThrAkt at 4hPEX are potentially relevant to the increased insulin-stimulated glucose transport at this time.  相似文献   

13.
The FA translocase cluster of differentiation 36 (CD36) facilitates FA uptake by the myocardium, and its surface recruitment in cardiomyocytes is induced by insulin, AMP-dependent protein kinase (AMPK), or contraction. Dysfunction of CD36 trafficking contributes to disordered cardiac FA utilization and promotes progression to disease. The Akt substrate 160 (AS160) Rab GTPase-activating protein (GAP) is a key regulator of vesicular trafficking, and its activity is modulated via phosphorylation. Our study documents that AS160 mediates insulin or AMPK-stimulated surface translocation of CD36 in cardiomyocytes. Knock-down of AS160 redistributes CD36 to the surface and abrogates its translocation by insulin or the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR). Conversely, overexpression of a phosphorylation-deficient AS160 mutant (AS160 4P) suppresses the stimulated membrane recruitment of CD36. The AS160 substrate Rab8a GTPase is shown via overexpression and knock-down studies to be specifically involved in insulin/AICAR-induced CD36 membrane recruitment. Our findings directly demonstrate AS160 regulation of CD36 trafficking. In myocytes, the AS160 pathway also mediates the effect of insulin, AMPK, or contraction on surface recruitment of the glucose transporter GLUT4. Thus, AS160 constitutes a point of convergence for coordinating physiological regulation of CD36 and GLUT4 membrane recruitment.  相似文献   

14.
Insulin causes translocation of glucose transporter 4 (GLUT4) to the membrane of muscle and fat cells, a process requiring Akt activation. Two Rab-GTPase-activating proteins (Rab-GAP), AS160 and TBC1D1, were identified as Akt substrates. AS160 phosphorylation is required for insulin-stimulated GLUT4 translocation, but the participation of TBC1D1 on muscle cell GLUT4 is unknown. Moreover, there is controversy as to the AS160/TBC1D1 target Rabs in fat and muscle cells, and Rab effectors are unknown. Here we examined the effect of knockdown of AS160, TBC1D1, and Rabs 8A, 8B, 10, and 14 (in vitro substrates of AS160 and TBC1D1 Rab-GAP activities) on insulin-induced GLUT4 translocation in L6 muscle cells. Silencing AS160 or TBC1D1 increased surface GLUT4 in unstimulated cells but did not prevent insulin-induced GLUT4 translocation. Knockdown of Rab8A and Rab14, but not of Rab8B or Rab10, inhibited insulin-induced GLUT4 translocation. Furthermore, silencing Rab8A or Rab14 but not Rab8B or Rab10 restored the basal-state intracellular retention of GLUT4 impaired by AS160 or TBC1D1 knockdown. Lastly, overexpression of a fragment of myosin Vb, a recently identified Rab8A-interacting protein, inhibited insulin-induced GLUT4 translocation and altered the subcellular distribution of GTP-loaded Rab8A. These results support a model whereby AS160, Rab8A, and myosin Vb are required for insulin-induced GLUT4 translocation in muscle cells, potentially as part of a linear signaling cascade. glucose transporter 4; insulin signaling; Rab guanosine 5'-triphosphatases; Rab-guanosine 5'-triphosphatase-activating protein; myosin Vb  相似文献   

15.
Calorie restriction [CR; ~65% of ad libitum (AL) intake] improves insulin-stimulated glucose uptake (GU) and Akt phosphorylation in skeletal muscle. We aimed to elucidate the effects of CR on 1) processes that regulate Akt phosphorylation [insulin receptor (IR) tyrosine phosphorylation, IR substrate 1-phosphatidylinositol 3-kinase (IRS-PI3K) activity, and Akt binding to regulatory proteins (heat shock protein 90, Appl1, protein phosphatase 2A)]; 2) Akt substrate of 160-kDa (AS160) phosphorylation on key phosphorylation sites; and 3) atypical PKC (aPKC) activity. Isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from AL or CR (6 mo duration) 9-mo-old male F344BN rats were incubated with 0, 1.2, or 30 nM insulin and 2-deoxy-[(3)H]glucose. Some CR effects were independent of insulin dose or muscle type: CR caused activation of Akt (Thr(308) and Ser(473)) and GU in both muscles at both insulin doses without CR effects on IRS1-PI3K, Akt-PP2A, or Akt-Appl1. Several muscle- and insulin dose-specific CR effects were revealed. Akt-HSP90 binding was increased in the epitrochlearis; AS160 phosphorylation (Ser(588) and Thr(642)) was greater for CR epitrochlearis at 1.2 nM insulin; and IR phosphorylation and aPKC activity were greater for CR in both muscles with 30 nM insulin. On the basis of these data, our working hypothesis for improved insulin-stimulated GU with CR is as follows: 1) elevated Akt phosphorylation is fundamental, regardless of muscle or insulin dose; 2) altered Akt binding to regulatory proteins (HSP90 and unidentified Akt partners) is involved in the effects of CR on Akt phosphorylation; 3) Akt effects on GU depend on muscle- and insulin dose-specific elevation in phosphorylation of Akt substrates, including, but not limited to, AS160; and 4) greater IR phosphorylation and aPKC activity may contribute at higher insulin doses.  相似文献   

16.
In skeletal muscle, the molecular mechanisms by which insulin stimulates glucose transport remains incompletely understood. Our study investigated the cellular dynamics of intracellular Ca2+ mobilisation and Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation on insulin-induced skeletal muscle glucose transport. L6 myotubes were treated without or with insulin [100 nM] for 15 min and subsequently monitored for glucose uptake using isotope-labelled 2-deoxyglucose (I-2DOG), intracellular Ca2+ (Cai2+) release using Fluo-4AM and protein phosphorylation using Western blotting. Acute exposure of myotubes to insulin increased both Akt substrate-160 kDa (AS160) phosphorylation and I-2DOG uptake. Insulin concurrently increased Cai2+ and activated CaMKII. Exposing myotubes to either BAPTA/AM to sequester Cai2+ or KN-93 to inhibit CaMKII activity, decreased insulin-induced glucose uptake without affecting AS160 phosphorylation. On the other hand, blocking either calmodulin or the autoregulatory domain of CaMKII blocked the effect of insulin on both AS160 phosphorylation and glucose transport. Likewise, genetic knockdown of CaMKII in myotubes using siRNA completely abolished insulin-mediated glucose uptake. These results illustrate impairments in Cai2+ mobilisation and CaMKII activation are sufficient to negatively influence insulin-dependent glucose transport by L6 myotubes. Additionally, our results show for the first time that Cai2+ and domain-dependent CaMKII signalling differentially affect insulin-induced AS160 phosphorylation, and establish that Ca2+ and CaMKII are components of the insulin signalling pathway in L6 myotubes.  相似文献   

17.
Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular locations to the plasma membrane in adipose and muscle cells. Prior studies have shown that Akt phosphorylation of the Rab GTPase-activating protein, AS160 (160-kDa Akt substrate; also known as TBC1D4), triggers GLUT4 translocation, most likely by suppressing its Rab GTPase-activating protein activity. However, the regulation of a very similar protein, TBC1D1 (TBC domain family, member 1), which is mainly found in muscle, in insulin-stimulated GLUT4 translocation has been unclear. In the present study, we have identified likely Akt sites of insulin-stimulated phosphorylation of TBC1D1 in C2C12 myotubes. We show that a mutant of TBC1D1, in which several Akt sites have been converted to alanine, is considerably more inhibitory to insulin-stimulated GLUT4 translocation than wild-type TBC1D1. This result thus indicates that similar to AS160, Akt phosphorylation of TBC1D1 enables GLUT4 translocation. We also show that in addition to Akt activation, activation of the AMP-dependent protein kinase partially relieves the inhibition of GLUT4 translocation by TBC1D1. Finally, we show that the R125W variant of TBC1D1, which has been genetically associated with obesity, is equally inhibitory to insulin-stimulated GLUT4 translocation, as is wild-type TBC1D1, and that healthy and type 2 diabetic individuals express approximately the same level of TBC1D1 in biopsies of vastus lateralis muscle. In conclusion, phosphorylation of TBC1D1 is required for GLUT4 translocation. Thus, the regulation of TBC1D1 resembles that of its paralog, AS160.Insulin stimulates glucose transport into adipose and muscle cells by increasing the amount of the GLUT4 glucose transporter at the cell surface by a process termed GLUT4 translocation (1, 2). Unstimulated adipocytes and myotubes sequester GLUT4 in intracellular compartments. Insulin activates signaling cascades that lead to the trafficking of specialized GLUT4 vesicles to the cell membrane and fusion of the vesicles therewith. A key signaling pathway for GLUT4 translocation proceeds from the insulin receptor through the activation of the protein kinase Akt. One Akt substrate that connects signaling to GLUT4 trafficking is the Rab GTPase-activating protein (GAP)3 known as AS160. There is now considerable evidence for the following scheme (2, 3): under basal conditions, AS160 acts as a brake on GLUT4 translocation by maintaining one or more Rab proteins required for translocation in their inactive GDP state; in response to insulin, Akt phosphorylates AS160 and thereby suppresses its GAP activity; as a consequence, the elevation of the GTP form of the Rab proteins occurs, leading to the increased docking and subsequent fusion of the GLUT4 vesicles at the plasma membrane.More recently, we and others have characterized a paralog of AS160 known as TBC1D1 (47). Overall, TBC1D1 is 47% identical to AS160, with the GAP domain being 79% identical (4). Its GAP domain has the same Rab specificity as the GAP domain of AS160 (4). TBC1D1 is predominantly expressed in skeletal muscle; its expression in adipocytes is very low (5, 6). Nevertheless, 3T3-L1 adipocytes are a convenient cell type in which to examine the role of proteins in GLUT4 translocation, because insulin causes an ∼10-fold increase in GLUT4 at the cell surface. Previously, we examined the role of TBC1D1 in GLUT4 translocation by overexpressing it in 3T3-L1 adipocytes. Surprisingly, even though insulin led to phosphorylation of TBC1D1 on Akt site(s), ectopic TBC1D1 potently inhibited GLUT4 translocation (4, 5). By contrast, overexpression of AS160 did not inhibit GLUT4 translocation (8). This difference suggested that the regulation of TBC1D1 might be fundamentally different from that of AS160. In the present study, we show that this is not the case. By reducing the level of ectopic TBC1D1, we have obtained evidence that phosphorylation of TBC1D1 on several likely Akt sites relieves the inhibitory effect on GLUT4 translocation. In addition, we have examined the effect of a variant of TBC1D1 genetically associated with obesity on GLUT4 translocation and determined the relative levels of TBC1D1 in muscle biopsies from healthy and type 2 diabetic individuals.  相似文献   

18.
We investigated time- and intensity-dependent effects of exercise on phosphorylation of Akt substrate of 160 kDa (AS160) in human skeletal muscle. Subjects performed cycle exercise for 90 min (67% VO2 peak, n=8), 20 min (80% VO2 peak, n=11), 2 min (110% of peak work rate, n=9), or 30 s (maximal sprint, n=10). Muscle biopsies were obtained before, during, and after exercise. In trial 1, AS160 phosphorylation increased at 60 min (60%, P=0.06) and further at 90 min of exercise (120%, P<0.05). alpha2beta2gamma3-AMP-activated protein kinase (AMPK) activity increased significantly to a steady-state level after 30 min, whereas alpha2beta2gamma1-AMPK activity increased after 60 min of exercise with a further significant increase after 90 min. alpha2beta2gamma1-AMPK activity and AS160 phosphorylation correlated positively (r2=0.55). In exercise trials 2, 3, and 4, alpha2beta2gamma3-AMPK activity but neither AS160 phosphorylation nor alpha2beta2gamma1-AMPK activity increased. Akt Ser473 phosphorylation was unchanged in all trials, whereas Akt Thr308 phosphorylation increased significantly in trial 3 and 4 only. These results show that AS160 is phosphorylated in a time-dependent manner during moderate-intensity exercise and suggest that alpha2beta2gamma1- but not alpha2beta2gamma3-AMPK may act in a pathway responsible for exercise-induced AS160 phosphorylation. Furthermore, we show that AMPK complexes in skeletal muscle are activated differently depending on exercise intensity and duration.  相似文献   

19.
Obesity and latent inflammation in adipose tissue significantly contribute to the development of insulin resistance (IR) and type 2 diabetes. Here we studied whether the antiinflammatory interleukin-4 (IL-4) can restore insulin sensitivity in cultured 3T3-L1 adipocytes. The activity of key components of the insulin signaling cascade was assessed by immunoblotting using phospho-specific antibodies to insulin receptor substrate IRS1 (Tyr612), Akt (Thr308 and Ser473), and AS160 (Ser318) protein that regulates translocation of the GLUT4 glucose transporter to the plasma membrane. IR was induced in mature adipocytes with albumin-conjugated palmitate. IR significantly reduced phosphorylation levels of all the above-mentioned proteins. Addition of IL-4 to the culturing medium during IR induction led to a dose-dependent stimulation of the insulin-promoted phosphorylation of IRS1, Akt, and AS160. At the optimal concentration of 50 ng/ml, IL-4 fully restored activation of the insulin cascade in IR cells, but it did not affect insulin signaling activation in the control cells. IL- 4 neither upregulated expression of key adipogenesis markers GLUT4 and PPARγ nor caused lipid accumulation in the adipocytes. These results demonstrate that IL-4 can restore insulin sensitivity in adipocytes via mechanisms not associated with induced adipogenesis or de novo formation of lipid depots.  相似文献   

20.
Metformin is a major oral anti‐diabetic drug and is known as an insulin sensitizer. However, the mechanism by which metformin acts is unclear. In this study, we found that AICAR, an AMPK activator, and metformin increased the expression of Rab4 mRNA and protein levels in skeletal muscle C2C12 cells. The promoter activity of Rab4 was increased by metformin in an AMPK‐dependent manner. Metformin stimulated the phosphorylation of AS160, Akt substrate, and Rab GTPase activating protein (GAP), and also increased the phosphorylation of PKC‐zeta, which is a critical molecule for glucose uptake. Knockdown of AMPK blocked the metformin‐induced phosphorylation of AS160/PKC‐zeta. In addition, a colorimetric absorbance assay showed that insulin‐induced translocation of GLUT4 was suppressed in Rab4 knockdown cells. Moreover, Rab4 interacted with PKC‐zeta but not with GLUT4. The C‐terminal‐deleted Rab4 mutant, Rab4ΔCT, showed diffuse sub‐cellular localization, while wild‐type Rab4 localized exclusively to the perinuclear membrane. Unlike Rab4ΔCT, wild‐type Rab4 co‐localized with PKC‐zeta. Together, these results demonstrate that metformin induces Rab4 expression via AMPK‐AS160‐PKC‐zeta and modulates insulin‐mediated GLUT4 translocation. J. Cell. Physiol. 226: 974–981, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号