首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Lee WY  Koh EJ  Lee SM 《Nitric oxide》2012,26(1):1-8
This study examined the cytoprotective mechanisms of a combination of ischemic preconditioning (IPC) and allopurinol against liver injury caused by ischemia/reperfusion (I/R). Allopurinol (50 mg/kg) was intraperitoneally administered 18 and 1 h before sustained ischemia. A rat liver was preconditioned by 10 min of ischemia, followed by 10 min of reperfusion, and then subjected to 90 min of ischemia, followed by 5 h of reperfusion. Rats were pretreated with adenosine deaminase (ADA), 3,7-dimethyl-1-[2-propargyl]-xanthine (DMPX), and N-nitro-l-arginine methyl ester (l-NAME) before IPC. Hepatic nitrite and nitrate and eNOS protein expression levels were increased by the combination of IPC and allopurinol. This increase was attenuated by ADA, DMPX, and l-NAME. I/R induced an increase in alanine aminotransferase activity, whereas it decreased the hepatic glutathione level. A combination of IPC and allopurinol attenuated these changes, which were abolished by ADA, DMPX, and l-NAME. The increase in the liver wet weight-to-dry weight ratio after I/R was attenuated by the combination of IPC and allopurinol. In contrast, hepatic bile flow was decreased after I/R, which was attenuated by the combination of IPC and allopurinol. These changes were restored by l-NAME. I/R induced a decrease in the level of mitochondrial dehydrogenase, whereas it increased mitochondrial swelling. A combination of IPC and allopurinol attenuated these changes, which were restored by ADA, DMPX, and l-NAME. Our findings suggest that a combination of IPC and allopurinol reduces post-ischemic hepatic injury by enhancing NO generation.  相似文献   

2.
《Autophagy》2013,9(4):482-494
Several recent studies have showed that autophagy is involved in ischemic brain damage, but it may also play a pro-survival role in ischemic preconditioning. This study was taken to determine the role of autophagy in an animal model of cerebral ischemic preconditioning (IPC). Focal cerebral IPC was produced in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The rats were pretreated with intracerebral ventricle infusion of the autophagy inhibitors 3-methyladenine (3-MA) and bafliomycin A1 (Baf A1) or the autophagy inducer rapamycin to evaluate the contribution of autophagy to IPC-induced neuroprotection. The results from electron microscopic examinations and immunofluorescence showed that both IPC and PFI induced autophagy activation, but the extent and persistence of autophagy activation were varied. IPC treatment significantly reduced infarct volume, brain edema and motor deficits after subsequent PFI, whereas 3-MA and Baf A1 suppressed the neuroprotection induced by IPC. 3-MA pretreatment also significantly attenuated upregulation of LC3-II, beclin 1 and HSP70 and downregulation of p62. To further determine if autophagy induction is responsible for IPC-induced neuroprotection, rats were treated with rapamycin 24 h before the onset of PFI. The results showed that rapamycin reduced infarct volume, brain edema and motor deficits induced by PFI. Rapamycin pretreatment also increased the protein levels of LC3-II and beclin 1. These results demonstrate that autophagy activation during IPC offers a remarkable tolerance to a subsequent fatal ischemic insult, and IPC's neuroprotective effects can be mimicked by autophagy inducers.  相似文献   

3.
原花青素对脑缺血再灌损伤大鼠模型的影响   总被引:1,自引:0,他引:1  
目的研究原花青素对脑缺血/再灌损伤(ischemia/reperfusion,I/R)大鼠神经功能评分(neurologicaldeficit score,NDS)、脑梗死体积、脑含水量等指标的药理作用。方法采用大鼠大脑中动脉阻断(middle cerebralartery occlusion,MCAO)法复制类似人类缺血性卒中的I/R损伤模型。结果该模型各时间点内均有程度不同的神经功能缺失,原花青素给药组神经功能评分明显低于对照组(P0.05),假手术组大鼠均无神经功能缺失,脑水肿情况均较对照组明显改善(P0.05),脑梗死体积与盐水对照组相比差异有显著性(P0.05),而假手术组均未见有梗死灶。结论原花青素具有一定的保护大鼠I/R后受损脑组织的作用,可供后续研究,并可为缺血性卒中使用原花青素治疗提供确凿的理论依据。  相似文献   

4.

Background  

A major endogenous protective mechanism in many organs against ischemia/reperfusion (I/R) injury is ischemic preconditioning (IPC). By moderately uncoupling the mitochondrial respiratory chain and decreasing production of reactive oxygen species (ROS), IPC reduces apoptosis induced by I/R by reducing cytochrome c release from the mitochondria. One element believed to contribute to reduce ROS production is the uncoupling protein UCP2 (and UCP3 in the heart). Although its implication in IPC in the brain has been shown in vitro, no in vivo study of protein has shown its upregulation. Our first goal was to determine in rat hippocampus whether UCP2 protein upregulation was associated with IPC-induced protection and increased ROS production. The second goal was to determine whether the peptide ghrelin, which possesses anti-oxidant and protective properties, alters UCP2 mRNA levels in the same way as IPC during protection.  相似文献   

5.

Aims

Pre-treatment with statins is known to ameliorate ischemic brain damage after experimental stroke, and is independent of cholesterol levels. We undertook pre- vs post-ischemic treatment with atorvastatin after focal cerebral ischemia in rats.

Main methods

Male Sprague–Dawley rats underwent transient 90-min middle cerebral artery occlusion (MCAO). Atorvastatin (20 mg/kg/day) or vehicle was administered orally. Rats were divided into vehicle-treated, atorvastatin pre-treatment, atorvastatin post-treatment, and atorvastatin continuous-treatment groups. In the pre-treatment, rats were given atorvastatin or vehicle for 7 days before MCAO. In the post-treatment, rats received atorvastatin or vehicle for 7 days after MCAO. Measurement of infarct volume, as well as neurological and immunohistochemical assessments, were done 24 h and 7 days after reperfusion.

Key findings

Each atorvastatin-treated group demonstrated significant reductions in infarct and edema volumes compared with the vehicle-treated group 24 h after reperfusion. Seven days after reperfusion, infarct volumes in the post-treatment group and continuous-treatment group (but not the pre-treatment group) were significantly smaller than in the vehicle-treated group. Only the continuous-treatment group had significantly improved neurological scores 7 days after reperfusion compared with the vehicle group. Post-treatment and continuous-treatment groups had significantly decreased lipid peroxidation, oxidative DNA damage, microglial activation, expression of tumor necrosis factor-alpha, and neuronal damage in the cortical ischemic boundary area after 7 days of reperfusion.

Significance

These results suggest that continuous oral administration (avoiding withdrawal) with statins after stroke may reduce the extent of post-ischemic brain damage and improve neurological outcome by inhibiting oxidative stress and inflammatory responses.  相似文献   

6.
Yuan  Yajing  Xia  Fei  Gao  Rong  Chen  Yang  Zhang  Yu  Cheng  Zhongping  Zhao  Hongwei  Xu  Liming 《Neurochemical research》2022,47(8):2187-2197

Ischemia/reperfusion (I/R) caused by ischemic stroke treatments leads to brain injury and its pathological mechanism is related to autophagy. The underlying mechanism of kaempferol on cerebral I/R injury needs to be explored. To establish I/R injury, we used a middle cerebral artery occlusion-reperfusion (MCAO) model in rats. MCAO rats were treated with the same amount of saline (I/R group); Treatment group rats were treated orally with kaempferol (50, 100, 200 mg/kg) for 7 days before surgery. After reperfusion for 24 h, the scores of neurological deficits and infarct volume in each group were evaluated. LC3, Beclin-1 p62, AMPK and mTOR protein expression levels were examined by TTC staining, immunofluorescence staining, qRT-PCR and western blotting assay. H&E and TTC staining showed that compared with model group, the infarction size of rats in kaempferol group was markedly reduced. Meanwhile, the results showed that kaempferol had a dose-dependent nerve function repairability. Nissl and TUNEL staining showed that kaempferol could reduce neuronal apoptosis and ameliorate neuronal impairment after I/R. Western blotting and qRT-PCR results showed that kaempferol could protect the brain from ischemia reperfusion by activating autophagy. In addition, add AMPK inhibitor, western blotting and immumohistochemical staining showed that kaempferol mediated AMPK/mTOR signal pathway in MCAO rats. Kaempferol could mediate the AMPK signal pathway to regulate autophagy and inhibit apoptosis to protect brain against I/R injury.

  相似文献   

7.

Aims

Transplantation of bone marrow mononuclear cells (BMMCs) exerts neuroprotection against cerebral ischemia. We examined the therapeutic timepoint of allogeneic BMMC transplantation in a rat model of focal cerebral ischemia, and determined the effects of repeated transplantation outside the therapeutic window.

Main methods

Male Sprague–Dawley rats were subjected to 90 minute focal cerebral ischemia, followed by intravenous administration of 1 × 107 allogeneic BMMCs or vehicle at 0, 3 or 6 h after reperfusion or 2 × 107 BMMCs 6 h after reperfusion. Other rats administered 1 × 107 BMMCs at 6 h after reperfusion received additional BMMC transplantation or vehicle 9 h after reperfusion. Infarct volumes, neurological deficit scores and immunohistochemistry were evaluated 24 or 72 h after reperfusion.

Key findings

Infarct volumes at 24 h were significantly decreased in transplantation rats at 0 and 3 h, but not at 6 h, after reperfusion, compared to vehicle-treatment. Even high dose BMMC transplantation at 6 h after reperfusion was ineffective. Repeated BMMC transplantation at 6 and 9 h after reperfusion reduced infarct volumes and significantly improved neurological deficit scores at 24 and 72 h. Immunohistochemistry showed repeated BMMC transplantation reduced ionized calcium-binding adapter molecule 1, 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine expression at 24 and 72 h after reperfusion.

Significance

Intravenous allogeneic BMMCs were neuroprotective following transient focal cerebral ischemia, and the therapeutic time window of BMMC transplantation was > 3 h and < 6 h after reperfusion in this model. Repeated transplantation at 6 and 9 h after reperfusion suppressed inflammation and oxidative stress in ischemic brains, resulting in improved neuroprotection.  相似文献   

8.
Microvesicles (MVs) have been shown to be involved in pathophysiology of ischemic heart diseases. However, the underlying mechanisms are still unclear. Here we investigated the effects of MVs derived from ischemic preconditioning (IPC-MVs) on myocardial ischemic/reperfusion (I/R) injury in rats. Myocardial IPC model was elicited by three cycles of ischemia and reperfusion of the left anterior descending (LAD) coronary artery. IPC-MVs from the peripheral blood of the above animal model were isolated by ultracentrifugation and characterized by flow cytometry and transmission electron microscopy. IPC-MVs were administered intravenously (7 mg/kg) at 5 min before reperfusion procedure in I/R injury model which was induced by 30-min ischemia and 120-min reperfusion of LAD in rats. We found that total IPC-MVs and different phenotypes, including platelet-derived MVs (PMVs), endothelial cell-derived MVs (EMVs), leucocyte-derived MVs and erythrocyte-derived MVs (RMVs) were all isolated which were identified membrane vesicles (<?1 µm) with corresponding antibody positive. The numbers of PMVs, EMVs and RMVs were significantly increased in circulation of IPC treated rats respectively. Additionally, treatment with IPC-MVs significantly alleviated damage of myocardium, and restored cardiac function of I/R injury rats, as evidenced by increased heart rate, and decreased the elevation of ST-segment. The size of myocardial infarction, lactate dehydrogenase activity, and the number of apoptotic cardiomyocytes were also reduced significantly with IPC-MVs treatment, coincident with the above function amelioration. Moreover, IPC-MVs decreased the activity of caspase 3, and the expression of endoplasmic reticulum stress (ERS) markers, GRP78, CHOP and caspase 12 indicating the involvement of ERS-specific apoptosis in I/R injury, and cardioprotective effects of IPC-MVs. In summary, our study demonstrated a novel mechanism of IPC in which circulating IPC-MVs could protect hearts from I/R injury in rats through attenuation of ERS-induced apoptosis. These findings provide new insight into therapeutic potential of IPC-induced MVs in cardioprotection against I/R injury.  相似文献   

9.
The aim of this study was to explore the action characters of total flavonoids from MDQ on cerebral ischemic tolerance with blood stasis. Fully understanding the mechanism of action of total flavonoids from MDQ is helpful for the development of new drugs and the utilization of resources. Male Wistar rat model of blood stasis was established by injecting dexamethasone into the intramuscular side of the thigh. Then they were given related drugs via an intragastric administration for a successive 10 days. After 7 days, the following occurred: firstly, the method of blocking the bilateral common carotid artery (CCA) was used for 10 min, followed by a restoration of perfusion. After 72 h, we performed a temporary occlusion of the rat’s middle cerebral artery for 2 h with an intraluminal thread method. This was followed by reperfusion for 24 h, respectively, to establish the rat model of cerebral ischemic tolerance with blood stasis. Viscosity of the whole blood was measured after the last administration was given blood. Brain was removed, and then the activity of ATP enzyme and T-SOD was determined. To observe the pathological changes of the hippocampus area by HE staining, and the expression of Bcl-2 and Bax were observed by immunohistochemical method. The rat model of cerebral ischemic tolerance with blood stasis was copied successfully. The whole blood viscosity, the activity of NOS, the content of Gluin in the ischemic brain in the IPC model group and the ischemia–reperfusion group were increased significantly. The activity of ATPase was decreased significantly. Compared with the ischemia–reperfusion model group, the activity of ATPase and the whole blood viscosity in the ischemic preconditioning (IPC) group were increased significantly. The activity of NOS and the content of Gluin were decreased significantly. The degree of pathological injury of the brain tissue was also relieved significantly. Total flavonoids of MDQ were used, improving blood circulation, improving energy metabolism, activating endogenous anti-oxidative capability, enhancing the antiapoptotic effect, and relieving the injury of the nerve cell. Hence, the use of MDQ flavonoids improves the tolerance ability of cerebral ischemia.  相似文献   

10.
The neuronal damage following cerebral ischemia is a serious risk to stroke patients. The aim of this study was to investigate the neuroprotective effects of alkaloid extract from Leonurus heterophyllus (LHAE) on cerebral ischemic injury. After 24 h of reperfusion following ischemia for 2 h induced by middle cerebral artery occlusion (MCAO), some rats were intraperitoneally administered different doses of LHAE (3.6, 7.2, 14.4 mg/kg, respectively). Neurological examination was measured in all animals. Infarct volume, myeloperoxidase (MPO) activity, levels of nitrate/nitrite metabolite (NO) and apoptosis ratio of nerve fiber in brain were determined. The results showed that LHAE at 7.2 mg/kg or 14.4 mg/kg exerted significantly decreasing neurological deficit scores and reducing the infarct volume on rats with focal cerebral ischemic injury (p < 0.05). At those dose, the MPO content were significantly decreased in ischemic brain as compared with model group (p < 0.05). LHAE at 14.4 mg/kg significantly decreased the NO level compared with the model group (p < 0.05). In addition, LHAE significantly decreased the apoptosis ratio of nerve fiber compared with the model group (p < 0.05). This study suggests that LHAE may be used for treatment of ischemic stroke as a neuroprotective agent. Further studies are warranted to assess the efficacy and safety of LHAE in patients.  相似文献   

11.
Statins have recently been shown to exert neuronal protection in ischemic stroke. Reactive oxygen species, specifically superoxide formed during the early phase of reperfusion, augment neuronal injury. NADPH oxidase is a key enzyme for superoxide production. The present study tested the hypothesis that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia. Transient focal ischemia was created in halothane-anesthetized adult male Sprague-Dawley rats (250-300 g) by middle cerebral artery occlusion (MCAO). Atorvastatin (Lipitor, 10 mg/kg sc) was administered three times before MCAO. Infarct volume was measured by triphenyltetrazolium chloride staining. NADPH oxidase enzymatic activity and superoxide levels were quantified in the ischemic core and penumbral regions by lucigenin (5 microM)-enhanced chemiluminescence. Expression of NADPH oxidase membrane subunit gp91(phox) and membrane-translocated subunit p47(phox) and small GTPase Rac-1 was analyzed by Western blot. NADPH oxidase activity and superoxide levels increased after reperfusion and peaked within 2 h of reperfusion in the penumbra, but not in the ischemic core, in MCAO rats. Atorvastatin pretreatment prevented these increases, blunted expression of membrane subunit gp91(phox), and prevented translocation of cytoplasmic subunit p47(phox) to the membrane in the penumbra 2 h after reperfusion. Consequently, cerebral infarct volume was significantly reduced in atorvastatin-treated compared with nontreated MCAO rats 24 h after reperfusion. These results indicate that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia.  相似文献   

12.
It has been demonstrated that a short ischemic event (ischemic preconditioning, IPC) results in a subsequent resistance to severe ischemia (ischemic tolerance, IT). We have recently demonstrated the role of innate immunity and in particular of toll-like receptor (TLR) 4 in brain ischemia. Several evidences suggest that TLR4 might also be involved in IT. Therefore, we have now used an in vivo model of IPC to investigate whether TLR4 is involved in IT. A 6-min temporary bilateral common carotid arteries occlusion was used for focal IPC and it was performed on TLR4-deficient mice (C57BL/10ScNJ) and animals that express TLR4 normally (C57BL/10ScSn). To assess the ability of IPC to induce IT, permanent middle cerebral artery occlusion was performed 48 h after IPC. Stroke outcome was evaluated by determination of infarct volume and assessment of neurological scores. IPC caused neuroprotection as shown by a reduction in infarct volume and better outcome in mice expressing TLR4 normally. TLR4-deficient mice showed less IPC-induced neuroprotection than wild-type animals. Western blot analysis of tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) showed an up-regulation in the expression of these proteins in both substrains of mice measured 18, 24 and 48 h after IPC, being higher in mice with TLR4. Similarly, nuclear factor-kappa B (NF-κB) activation was observed 18, 24 and 48 h after IPC, being more intense in TLR4-expressing mice. These data demonstrate that TLR4 signalling is involved in brain tolerance as shown by the difference in the percentage of neuroprotection produced by IPC between ScSn and ScNJ (60% vs. 18%). The higher expression of TNF-α, iNOS and cyclooxygenase-2 and NF-κB activation in mice expressing TLR4 is likely to participate in this endogenous neuroprotective effect.  相似文献   

13.
Vitis amurensis (Vitaceae) has been reported to have anti-oxidant and anti-inflammatory activities. The present study investigated a methanol extract from the leaf and stem of V. amurensis for neuroprotective effects on cerebral ischemic damage in rats and on excitotoxicity induced by glutamate in cultured rat cortical neurons. Transient focal cerebral ischemia was induced by 2 h middle cerebral artery occlusion followed by 24 h reperfusion (MCAO/reperfusion) in rats. Orally administered V. amurensis (25-100 mg/kg) reduced MCAO/reperfusion-induced infarct and edema formation, neurological deficits, and neuronal death. Depletion of glutathione (GSH) level and lipid peroxidation induced by MCAO/reperfusion was inhibited by administration of V. amurensis. The increase of phosphorylated mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and pro-apoptotic proteins and the decrease of anti-apoptotic protein in MCAO/reperfusion rats were significantly inhibited by treatment with V. amurensis. Exposure of cultured cortical neurons to 500 μM glutamate for 12 h induced neuronal cell death. V. amurensis (1-50 μg/ml) and (+)-ampelopsin A, γ-2-viniferin, and trans-?-viniferin isolated from the leaf and stem of V. amurensis inhibited glutamate-induced neuronal death, the elevation of intracellular calcium ([Ca2+]i), the generation of reactive oxygen species (ROS), and changes of apoptosis-related proteins in cultured cortical neurons, suggesting that the neuroprotective effect of V. amurensis may be partially attributed to these compounds. These results suggest that the neuroprotective effect of V. amurensis against focal cerebral ischemic injury might be due to its anti-apoptotic effect, resulting from anti-excitotoxic, anti-oxidative, and anti-inflammatory effects and that the leaf and stem of V. amurensis have possible therapeutic roles for preventing neurodegeneration in stroke.  相似文献   

14.
The molecular mechanisms of preconditioning-induced ischemic tolerance (PCIT) have yet to be elucidated. We investigated whether minimal expression levels of COX-2 induced by preconditioning trigger HO-1, thereby inducing the synthesis of cytoprotective proteins. We show that both COX-2 and HO-1 are induced in rat brains subjected to preconditioning by middle cerebral artery (MCA) occlusion for 10 min followed by different amounts of reperfusion time (1-24 h). Although preconditioning significantly reduced the brain infarct size against severe ischemia (24 h MCA occlusion), pretreatment with the COX-2-selective inhibitor rofecoxib increased infarct size and abolished PCIT-induced COX-2 and HO-1 expression in vivo. We also found that PGE2 increased the phosphorylation of Akt, which was significantly inhibited by the PI3 kinase inhibitor LY294002. Taken together, we conclude that the kinetic changes in COX-2 induction during the reperfusion period following preconditioning may be important for ischemic tolerance.  相似文献   

15.
Aquaporin-4 (AQP4) plays a role in the generation of post-ischemic edema. Pharmacological modulation of AQP4 function may thus provide a novel therapeutic strategy for the treatment of stroke, tumor-associated edema, epilepsy, traumatic brain injury, and other disorders of the central nervous system (CNS) associated with altered brain water balance. Edaravone, a free radical scavenger, is used for the treatment of acute ischemic stroke (AIS) in Japan. In this study, edaravone significantly reduced the infarct area and improved the neurological deficit scores at 24 h after reperfusion in a rat transient focal ischemia model. Furthermore, edaravone markedly reduced AQP4 immunoreactivity and protein levels in the cerebral infarct area. In light of observations that edaravone specifically inhibited AQP4 in a rat transient focal ischemia model, we propose that edaravone might reduce cerebral edema through the inhibition of AQP4 expression following cerebral infarction.  相似文献   

16.

Aim

Aquaporin-4(AQP4) expression in the brain with relation to edema formation following focal cerebral ischemia was investigated. Studies have shown that brain edema is one of the significant factors in worsening stroke outcomes. While many mechanisms may aggravate brain injury, one such potential system may involve AQP4 up regulation in stroke patients that could result in increased edema formation. Post administration of melatonin following ischemic stroke reduces AQP4 mediated brain edema and confers neuroprotection.

Materials and methods

An in-silico approach was undertaken to confirm effective melatonin-AQP4 binding. Rats were treated with 5 mg/kg, i.p. melatonin or placebo at 30 min prior, 60 min post and 120 min post 60 min of middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. Rats were evaluated for battery of neurological and motor function tests just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, apoptosis study and western blot experiments.

Key findings

Melatonin at 60 min post ischemia rendered neuroprotection as evident by reduction in cerebral infarct volume, improvement in motor and neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde (MDA) were also found to be significantly reduced in ischemic brain regions in treated animals. Melatonin potentiated intrinsic antioxidant status, inhibited acid mediated rise in intracellular calcium levels, decreased apoptotic cell death and also markedly inhibited protein kinase C (PKC) influenced AQP4 expression in the cerebral cortex and dorsal striatum.

Significance

Melatonin confers neuroprotection by protein kinase C mediated AQP4 inhibition in ischemic stroke.  相似文献   

17.
Previous work from our laboratory has shown that the sarcolemmal K(ATP) channel (sK(ATP)) is required as a trigger for delayed cardioprotection upon exogenous opioid administration. We also established that the mitochondrial K(ATP) (mK(ATP)) channel is not required for triggering delayed delta-opioid-induced infarct size reduction. Because mechanistic differences have been found among delta-opioids and that due to ischemic preconditioning (IPC), we determined whether the triggering mechanism of delayed IPC-induced infarct size reduction involves either the sK(ATP) or mK(ATP). Male Sprague-Dawley rats received either sham surgery or IPC (3- to 5-min cycles of ischemia and reperfusion) 24 h before being subjected to 30 min of ischemia and 2 h of reperfusion. Infarct size was determined and expressed as a percentage of the area at risk, with significance compared with sham reported at P 相似文献   

18.
Sheng R  Liu XQ  Zhang LS  Gao B  Han R  Wu YQ  Zhang XY  Qin ZH 《Autophagy》2012,8(3):310-325
Recent studies have suggested that autophagy plays a prosurvival role in ischemic preconditioning (IPC). This study was taken to assess the linkage between autophagy and endoplasmic reticulum (ER) stress during the process of IPC. The effects of IPC on ER stress and neuronal injury were determined by exposure of primary cultured murine cortical neurons to 30 min of OGD 24 h prior to a subsequent lethal OGD. The effects of IPC on ER stress and ischemic brain damage were evaluated in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The results showed that both IPC and lethal OGD increased the LC3-II expression and decreased p62 protein levels, but the extent of autophagy activation was varied. IPC treatment ameliorated OGD-induced cell damage in cultured cortical neurons, whereas 3-MA (5-20 mM) and bafilomycin A 1 (75-150 nM) suppressed the neuroprotection induced by IPC. 3-MA, at the dose blocking autophagy, significantly inhibited IPC-induced HSP70, HSP60 and GRP78 upregulation; meanwhile, it also aggregated the ER stress and increased activated caspase-12, caspase-3 and CHOP protein levels both in vitro and in vivo models. The ER stress inhibitor Sal (75 pmol) recovered IPC-induced neuroprotection in the presence of 3-MA. Rapamycin 50-200 nM in vitro and 35 pmol in vivo 24 h before the onset of lethal ischemia reduced ER stress and ischemia-induced neuronal damage. These results demonstrated that pre-activation of autophagy by ischemic preconditioning can boost endogenous defense mechanisms to upregulate molecular chaperones, and hence reduce excessive ER stress during fatal ischemia.  相似文献   

19.
Srinivasan K  Sharma SS 《Life sciences》2012,90(3-4):154-160
AimsThe role of nitric oxide (NO) and endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of cerebral ischemic/reperfusion (I/R) injury and diabetes. The aim of the study was to investigate the neuroprotective potential of 3-bromo-7-nitroindazole (3-BNI), a potent and selective neuronal nitric oxide synthase (nNOS) inhibitor against ER stress and focal cerebral I/R injury associated with comorbid type 2 diabetes in-vivo.Main methodsType 2 diabetes was induced by feeding high-fat diet and streptozotocin (35 mg/kg) treatment in rats. Focal cerebral ischemia was induced by 2 h middle cerebral artery occlusion (MCAO) followed by 22 h of reperfusion. Immunohistochemistry and western blotting methods were employed for the detection and expression of ER stress/apoptosis markers [78 kDa glucose regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)]. TUNEL assay for DNA fragmentation was also performed.Key findingsThe diabetic rats subjected to cerebral I/R had prominent neurological damage and functional deficits compared with sham-operated rats. Massive DNA fragmentation was observed in ischemic penumbral region of diabetic brains. Concomitantly, the enhanced immunoreactivity and expression of ER stress/apoptosis markers were noticed. 3-BNI (30 mg/kg, i.p.) treatment significantly inhibited the cerebral infarct, edema volume and improved functional recovery of neurological deficits. The neuroprotection was further evident by lesser DNA fragmentation with a concomitant reduction of GRP78 and CHOP.SignificanceThe study demonstrates the neuroprotective potential of 3-BNI in diabetic stroke model which may be partly due to inhibition of ER stress pathway involving CHOP.  相似文献   

20.
Whether ischemic postconditioning (IPC) can significantly alleviate ischemic injury hinges on the appropriate measure. In this study, the expression RGMa and IL-1β, IL-6 are investigated to estimate the therapeutic benefits of various postconditioning strategies after cerebral ischemia/reperfusion. The study consists of the sham-operated group and five treatment groups: ischemia/reperfusion (I/R), two proximate ischemic postconditioning (IPC-S and IPC-M), remote postconditioning (RIPC) and delayed postconditioning (DIPC) groups. We find that rats in IPC and RIPC groups exhibit significantly less neural deficit and lower infarct volume than that in I/R and DIPC groups after ischemia/reperfusion. Moreover, in ischemic cortex and hippocampus, the mRNA level of RGMa is much lower in IPC and RIPC groups. Immunohistochemical analysis indicates that the expression of RGMa, IL-1β and IL-6 are reduced in IPC and RIPC groups (especially in IPC-S group). Furthermore, neurofilament staining reveals that the rats in IPC and RIPC groups have less axonal injury than that in I/R and DIPC groups. Our studies suggest that the optimal strategy to attenuate cerebral ischemia/reperfusion is achieved by early, short-term, and multiple cycles of proximal IPC. The cerebral protective effect of IPC may be associated with the decreased expression of RGMa and inflammation mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号