首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquaporin 0 (AQP0) is a transmembrane channel that constitutes ∼45% of the total membrane protein of the fiber cells in mammalian lens. It is critical for lens transparency and homeostasis as mutations and knockout cause autosomal dominant lens cataract. AQP0 functions as a water channel and as a cell-to-cell adhesion (CTCA) molecule in the lens. Our recent in vitro studies showed that the CTCA function of AQP0 could be crucial to establish lens refractive index gradient (RING). However, there is a lack of in vivo data to corroborate the role of AQP0 as a fiber CTCA molecule which is critical for creating lens RING. The present investigation is undertaken to gather in vivo evidence for the involvement of AQP0 in developing lens RING. Lenses of wild type (WT) mouse, AQP0 knockout (heterozygous, AQP0+/−) and AQP0 knockout lens transgenically expressing AQP1 (heterozygous AQP0+//AQP1+/) mouse models were used for the study. Data on AQP0 protein profile of intact and N- and/or C-terminal cleaved AQP0 in the lens by MALDI-TOF mass spectrometry and SDS–PAGE revealed that outer cortex fiber cells have only intact AQP0 of ∼28 kDa, inner cortical and outer nuclear fiber cells have both intact and cleaved forms, and inner nuclear fiber cells have only cleaved forms (∼26–24 kDa). Knocking out of 50% of AQP0 protein caused light scattering, spherical aberration (SA) and cataract. Restoring the lost fiber cell membrane water permeability (Pf) by transgene AQP1 did not reinstate complete lens transparency and the mouse lenses showed light scattering and SA. Transmission and scanning electron micrographs of lenses of both mouse models showed increased extracellular space between fiber cells. Water content determination study showed increase in water in the lenses of these mouse models. In summary, lens transparency, CTCA and compact packing of fiber cells were affected due to the loss of 50% AQP0 leading to larger extracellular space, more water content and SA, possibly due to alteration in RING. To our knowledge, this is the first report identifying the role of AQP0 in RING development to ward off lens SA during focusing.  相似文献   

2.
Aquaporin (AQP) 1 and AQP0 water channels are expressed in lens epithelial and fiber cells, respectively, facilitating fluid circulation for nourishing the avascular lens to maintain transparency. Even though AQP0 water permeability is 40-fold less than AQP1, AQP0 is selectively expressed in the fibers. Delimited AQP0 fiber expression is attributed to a unique structural role as an adhesion protein. To validate this notion, we determined if wild type (WT) lens ultrastructure and fiber cell adhesion are different in AQP0−/−, and TgAQP1+/+/AQP0−/− mice that transgenically express AQP1 (TgAQP1) in fiber cells without AQP0 (AQP0−/−). In WT, lenses were transparent with ‘Y’ sutures. Fibers contained opposite end curvature, lateral interdigitations, hexagonal shape, and were arranged as concentric growth shells. AQP0−/− lenses were cataractous, lacked ‘Y’ sutures, ordered packing and well-defined lateral interdigitations. TgAQP1+/+/AQP0−/− lenses showed improvement in transparency and lateral interdigitations in the outer cortex while inner cortex and nuclear fibers were severely disintegrated. Transmission electron micrographs exhibited tightly packed fiber cells in WT whereas AQP0−/− and TgAQP1+/+/AQP0−/− lenses had wide extracellular spaces. Fibers were easily separable by teasing in AQP0−/− and TgAQP1+/+/AQP0−/− lenses compared to WT. Our data suggest that the increased water permeability through AQP1 does not compensate for loss of AQP0 expression in TgAQP1+/+/AQP0−/− mice. Fiber cell AQP0 expression is required to maintain their organization, which is a requisite for lens transparency. AQP0 appears necessary for cell-to-cell adhesion and thereby to minimize light scattering since in the AQP0−/− and TgAQP1+/+/AQP0−/− lenses, fiber cell disorganization was evident.  相似文献   

3.
Glutathione peroxidase-1 (GPX-1) is an enzyme that protects the lens against H2O2-mediated oxidative damage. The purpose of the present study was to determine the effects of GPX-1 knockout (KO) on lens transport and intracellular homeostasis. To investigate these lenses we used (1) whole lens impedance studies to measure membrane conductance, resting voltage and fiber cell gap junction coupling conductance; (2) osmotic swelling of fiber cell membrane vesicles to determine water permeability; and (3) injection of Fura2 and Na+-binding benzofuran isophthalate (SBFI) into fiber cells to measure [Ca2+] i and [Na+] i , respectively, in intact lenses. These approaches were used to compare wild-type (WT) and GPX-1 KO lenses from mice around 2 months of age. There were no significant differences in clarity, size, resting voltage, membrane conductance or fiber cell membrane water permeability between WT and GPX-1 KO lenses. However, in GPX-1 KO lenses, coupling conductance was 72% of normal in the outer shell of differentiating fibers and 45% of normal in the inner core of mature fibers. Quantitative Western blots showed that GPX-1 KO lenses had about 50% as much labeled Cx46 and Cx50 protein as WT, whereas they had equivalent labeled AQP0 protein as WT. Both Ca2+ and Na+ accumulated significantly in the core of GPX-1 KO lenses. In summary, the major effect on lens transport of GPX-1 KO was a reduction in gap junction coupling conductance. This reduction affected the lens normal circulation by causing [Na+] i and [Ca2+] i to increase, which could increase cataract susceptibility in GPX-1 KO lenses.  相似文献   

4.
Aquaporin 0 (AQP0) is the major intrinsic protein of the lens and its water permeability can be modulated by changes in pH and Ca2+. The Cataract Fraser (CatFr) mouse accumulates an aberrant AQP0 (AQP0-LTR) in sub-cellular compartments resulting in a congenital cataract. We investigated the interference of AQP0-LTR with normal function of AQP0 in three systems. First, we created a transgenic mouse expressing AQP0 and AQP0-LTR in the lens. Expression of AQP0 did not prevent the congenital cataract but improved the size and transparency of the lens. Second, we measured water permeability of AQP0 co-expressed with AQP0-LTR in Xenopus oocytes. A low expression level of AQP0-LTR decreased the water permeability of AQP0, and a high expression level eliminated its calcium regulation. Third, we studied trafficking of AQP0 and AQP0-LTR in transfected lens epithelial cells. At low expression level, AQP0-LTR migrated with AQP0 toward the cell membrane, but at high expression level, it accumulated in sub-cellular compartments. The deleterious effect of AQP0-LTR on lens development may be explained by lowering water permeability and abolishing calcium regulation of AQP0. This study provides the first evidence that calcium regulation of AQP0 water permeability may be crucial for maintaining normal lens homeostasis and development.  相似文献   

5.

Background

Investigate the impact of natural N- or C-terminal post-translational truncations of lens mature fiber cell Aquaporin 0 (AQP0) on water permeability (Pw) and cell-to-cell adhesion (CTCA) functions.

Methods

The following deletions/truncations were created by site-directed mutagenesis (designations in parentheses): Amino acid residues (AA) 2–6 (AQP0-N-del-2-6), AA235–263 (AQP0-1-234), AA239–263 (AQP0-1-238), AA244–263 (AQP0-1-243), AA247–263 (AQP0-1-246), AA250–263 (AQP0-1-249) and AA260–263 (AQP0-1-259). Protein expression was studied using immunostaining, fluorescent tags and organelle-specific markers. Pw was tested by expressing the respective complementary ribonucleic acid (cRNA) in Xenopus oocytes and conducting osmotic swelling assay. CTCA was assessed by transfecting intact or mutant AQP0 into adhesion-deficient L-cells and performing cell aggregation and adhesion assays.

Results

AQP0-1-234 and AQP0-1-238 did not traffic to the plasma membrane. Trafficking of AQP0-N-del-2-6 and AQP0-1-243 was reduced causing decreased membrane Pw and CTCA. AQP0-1-246, AQP0-1-249 and AQP0-1-259 mutants trafficked properly and functioned normally. Pw and CTCA functions of the mutants were directly proportional to the respective amount of AQP0 expressed at the plasma membrane and remained comparable to those of intact AQP0 (AQP0-1-263).

Conclusions

Post-translational truncation of N- or C-terminal end amino acids does not alter the basal water permeability of AQP0 or its adhesive functions. AQP0 may play a role in adjusting the refractive index to prevent spherical aberration in the constantly growing lens.

General significance

Similar studies can be extended to other lens proteins which undergo post-translational truncations to find out how they assist the lens to maintain transparency and homeostasis for proper focusing of objects on to the retina.  相似文献   

6.
Renal glucose reabsorption is mediated by luminal sodium-glucose cotransporters (SGLTs) and basolateral facilitative glucose transporters (GLUTs). The modulators of these transporters are not known, and their substrates glucose and Na+ are potential candidates. In this study we examined the role of glucose and Na+ filtration rate on gene expression of glucose transporters in renal proximal tubule. SGLT1, SGLT2, GLUT1 and GLUT2 mRNAs were assessed by Northern blotting; and GLUT1 and GLUT2 proteins were assessed by Western blotting. Renal cortex and medulla samples from control rats (C), diabetic rats (D) with glycosuria, and insulin-resistant 15-month old rats (I) without glycosuria; and from normal (NS), low (LS), and high (HS) Na+-diet fed rats were studied. Compared to C and I rats, D rats increased (P < 0.05) gene expression of SGLT2 by ∼36%, SGLT1 by ∼20%, and GLUT2 by ∼100%, and reduced (P < 0.05) gene expression of GLUT1 by more than 50%. Compared to NS rats, HS rats increased (P < 0.05) SGLT2, GLUT2, and GLUT1 expression by ∼100%, with no change in SGLT1 mRNA expression, and LS rats increased (P < 0.05) GLUT1 gene expression by ∼150%, with no changes in other transporters. In summary, the results showed that changes in glucose or Na+ filtrated rate modulate the glucose transporters gene expression in epithelial cells of the renal proximal tubule. Received: 14 July 2000/Revised: 8 March 2001  相似文献   

7.
In this work, we demonstrated the regulation of glucose transporters by hypoxia inducible factor-1α (HIF-1α) activation in renal epithelial cells. LLC-PK1 monolayers were incubated for 1, 3, 6, or 12 h with 0% or 5% O2 or 300 μm cobalt (CoCl2). We evaluated the effects of hypoxia on the mRNA and protein expression of HIF-1α and of the glucose transporters SGLT1, SGLT2, and GLUT1. The data showed an increase in HIF-1α mRNA and protein expression under the three evaluated conditions (p < 0.05 versus t = 0). An increase in GLUT1 mRNA (12 h) and protein expression (at 3, 6, and 12 h) was observed (p < 0.05 versus t = 0). SGLT1 and SGLT2 mRNA and protein expression decreased under the three evaluated conditions (p < 0.05 versus t = 0). In conclusion, our results suggest a clear decrease in the expression of the glucose transporters SGLT1 and SGLT2 under hypoxic conditions which implies a possible correlation with increased expression of HIF-1α.  相似文献   

8.
P2X1, 2, 3, 4, 6 and 7 are all expressed in a differentiation-dependent manner in the rat lens. However, in the lens outer cortex the subcellular distribution of all P2X isoforms is predominantly associated with a pool of receptors located in cytoplasmic vesicles. Here we investigate whether osmotic and hyperglycemic stress can alter the subcellular distribution of this cytoplasmic pool of P2X receptors. We show that in a discrete zone of the deeper outer cortex an isoform and stimulus-specific shift in the subcellular distribution of P2X receptors occurs from the cytoplasm to defined membrane domains. In response to hypertonic stress P2X1 and P2X4 isoforms became more closely associated with the broad sides of fiber cells, while under hypotonic conditions P2X4 and P2X6 isoforms associate with the narrow side membranes. No such changes in subcellular distribution were observed for P2X2,3 and 7 isoforms. Lens cultured in 50 mM glucose exhibited cell swelling in this zone but only P2X4 associated with narrow side membranes. Our results indicate P2X receptors can be differentially recruited to specific membrane domains of lens fiber cells by osmotic and hyperglycemic stress. Furthermore they suggest the involvement of specific P2X isoforms in the regulation of fiber cell volume and the initiation of diabetic cataract.  相似文献   

9.
To elucidate the morphological and cellular changes due to introduction of a charge during development and the possible mechanism that underlies cataract development in humans as a consequence of an additional charge, we generated a transgenic mouse model mimicking deamidation of Asn at position 101. The mouse model expresses a human αA-crystallin gene in which Asn-101 was replaced with Asp, which is referred to as αAN101D-transgene and is considered to be "deamidated" in this study. Mice expressing αAN101D-transgene are referred to here CRYAA(N101D) mice. All of the lines showed the expression of αAN101D-transgene. Compared with the lenses of mice expressing wild-type (WT) αA-transgene (referred to as CRYAA(WT) mice), the lenses of CRYAA(N101D) mice showed (a) altered αA-crystallin membrane protein (aquaporin-0 (AQP0), a specific lens membrane protein) interaction, (b) extracellular spaces between outer cortical fiber cells, (c) attenuated denucleation during confocal microscopic examination, (d) disrupted normal fiber cell organization and structure during scanning electron microscopic examination, (e) distorted posterior suture lines by bright field microscopy, and (f) development of a mild anterior lens opacity in the superior cortical region during the optical coherence tomography scan analysis. Relative to lenses with WT αA-crystallin, the lenses containing the deamidated αA-crystallin also showed an aggregation of αA-crystallin and a higher level of water-insoluble proteins, suggesting that the morphological and cellular changes in these lenses are due to the N101D mutation. This study provides evidence for the first time that expression of deamidated αA-crystallin caused disruption of fiber cell structural integrity, protein aggregation, insolubilization, and mild cortical lens opacity.  相似文献   

10.
Aquaporin-1 (AQP1) is an integral membrane protein that facilitates osmotic water transport across cell plasma membranes in epithelia and endothelia. AQP1 has no known specific interactions with cytoplasmic or membrane proteins, but its recovery in a detergent-insoluble membrane fraction has suggested possible raft association. We tracked the membrane diffusion of AQP1 molecules labeled with quantum dots at an engineered external epitope at frame rates up to 91 Hz and over times up to 6 min. In transfected COS-7 cells, >75% of AQP1 molecules diffused freely over ∼7 μm in 5 min, with diffusion coefficient, D1-3 ∼ 9 × 10−10 cm2/s. In MDCK cells, ∼60% of AQP1 diffused freely, with D1-3 ∼ 3 × 10−10 cm2/s. The determinants of AQP1 diffusion were investigated by measurements of AQP1 diffusion following skeletal disruption (latrunculin B), lipid/raft perturbations (cyclodextrin and sphingomyelinase), and bleb formation. We found that cytoskeletal disruption had no effect on AQP1 diffusion in the plasma membrane, but that diffusion was increased greater than fourfold in protein de-enriched blebs. Cholesterol depletion in MDCK cells greatly restricted AQP1 diffusion, consistent with the formation of a network of solid-like barriers in the membrane. These results establish the nature and determinants of AQP1 diffusion in cell plasma membranes and demonstrate long-range nonanomalous diffusion of AQP1, challenging the prevailing view of universally anomalous diffusion of integral membrane proteins, and providing evidence against the accumulation of AQP1 in lipid rafts.  相似文献   

11.
Glutaredoxin 2 (Grx2) is an isozyme of glutaredoxin1 (thioltransferase) present in the mitochondria and nucleus with disulfide reductase and peroxidase activities, and it controls thiol/disulfide balance in cells. In this study, we investigated whether Grx2 gene deletion could induce faster age-related cataract formation and elucidated the biochemical changes effected by Grx2 gene deletion that may contribute to lens opacity. Slit lamp was used to examine the lenses in Grx2 knock-out (KO) mice and age-matched wild-type (WT) mice ages 1 to 16 months. In the Grx2 null mice, the lens nuclear opacity began at 5 months, 3 months sooner than that of the control mice, and the progression of cataracts was also much faster than the age-matched controls. Lenses of KO mice contained lower levels of protein thiols and GSH with a significant accumulation of S-glutathionylated proteins. Actin, αA-crystallin, and βB2-crystallin were identified by Western blot and mass spectroscopy as the major S-glutathionylated proteins in the lenses of 16-month-old Grx2 KO mice. Compared with the WT control, the lens of Grx2 KO mice had only 50% of the activity in complex I and complex IV and less than 10% of the ATP pool. It was concluded that Grx2 gene deletion altered the function of lens structural proteins through S-glutathionylation and also caused severe disturbance in mitochondrial function. These combined alterations affected lens transparency.  相似文献   

12.
Aquaporin 0 (AQP0) is the major intrinsic protein of the lens and its water permeability can be modulated by changes in pH and Ca2+. The Cataract Fraser (Cat Fr) mouse accumulates an aberrant AQP0 (AQP0-LTR) in sub-cellular compartments resulting in a congenital cataract. We investigated the interference of AQP0-LTR with normal function of AQP0 in three systems. First, we created a transgenic mouse expressing AQP0 and AQP0-LTR in the lens. Expression of AQP0 did not prevent the congenital cataract but improved the size and transparency of the lens. Second, we measured water permeability of AQP0 co-expressed with AQP0-LTR in Xenopus oocytes. A low expression level of AQP0-LTR decreased the water permeability of AQP0, and a high expression level eliminated its calcium regulation. Third, we studied trafficking of AQP0 and AQP0-LTR in transfected lens epithelial cells. At low expression level, AQP0-LTR migrated with AQP0 toward the cell membrane, but at high expression level, it accumulated in sub-cellular compartments. The deleterious effect of AQP0-LTR on lens development may be explained by lowering water permeability and abolishing calcium regulation of AQP0. This study provides the first evidence that calcium regulation of AQP0 water permeability may be crucial for maintaining normal lens homeostasis and development.  相似文献   

13.
In order to investigate SAR regarding glucose moiety in novel C-aryl glucoside SGLT2 inhibitors containing a thiazole motif, a series of chemical modifications on glucose was conducted to explore potential utility as a suitable replacement of glucose per se. Among the compounds prepared, deshydroxy 29 (IC50 = 7.01 nM) demonstrated the best in vitro inhibitory activity against SGLT2 in this series to date. But, none of the compounds were better than the parent molecule 5 (IC50 = 1.75 nM).  相似文献   

14.
Glucose is the primary fuel to life on earth. Cellular uptake of glucose is a fundamental process for metabolism, growth, and homeostasis. Three families of secondary glucose transporters have been identified in human, including the major facilitator superfamily glucose facilitators GLUTs, the sodium‐driven glucose symporters SGLTs, and the recently identified SWEETs. Structures of representative members or their prokaryotic homologs of all three families were obtained. This review focuses on the recent advances in the structural elucidation of the glucose transporters and the mechanistic insights derived from these structures, including the molecular basis for substrate recognition, alternating access, and stoichiometric coupling of co‐transport.  相似文献   

15.
A lack of the REDD1 promotes dysregulated growth signaling, though little has been established with respect to the metabolic role of REDD1. Therefore, the goal of this study was to determine the role of REDD1 on glucose and insulin tolerance, as well as insulin stimulated growth signaling pathway activation in skeletal muscle. First, intraperitoneal (IP) injection of glucose or insulin were administered to REDD1 wildtype (WT) versus knockout (KO) mice to examine changes in blood glucose over time. Next, alterations in skeletal muscle insulin (IRS-1, Akt, ERK 1/2) and growth (4E-BP1, S6K1, REDD1) signaling intermediates were determined before and after IP insulin treatment (10 min). REDD1 KO mice were both glucose and insulin intolerant when compared to WT mice, evident by higher circulating blood glucose concentrations and a greater area under the curve following IP injections of glucose or insulin. While the REDD1 KO exhibited significant though blunted insulin-stimulated increases (p < 0.05) in Akt S473 and T308 phosphorylation versus the WT mice, acute insulin treatment has no effect (p < 0.05) on REDD1 KO skeletal muscle 4E-BP1 T37/46, S6K1 T389, IRS-1 Y1222, and ERK 1/2 T202/Y204 phosphorylation versus the WT mice. Collectively, these novel data suggest that REDD1 has a more distinct role in whole body and skeletal muscle metabolism and insulin action than previously thought.  相似文献   

16.
17.
Maintenance of adequate levels of glutathione (GSH) in the lens nucleus is critical for protection of lens proteins from the effects of oxidative stress and for lens transparency. How GSH is transported to the nucleus is unknown. We show that GSH diffuses to the nucleus from the outer cortex, where a high concentration of the anti-oxidant is established by synthesis or uptake, via the network of gap junctions. Using electrophysiological measurements, we found that channels formed by Cx46 and Cx50, the two connexin isoforms expressed in the lens, were moderately cation-selective (PNa/PCl ∼5 for Cx46 and ∼3 for Cx50). Single channel permeation of the larger GSH anion was low but detectable (PNa/PGSH ∼12 for Cx46 and ∼8 for Cx50), whereas permeation of divalent anion glutathione disulfide (GSSG) was undetectable. Measurement of GSH levels in the lenses from connexin knock-out (KO) mice indicated Cx46, and not Cx50, is necessary for transport of GSH to the core. Levels of GSH in the nucleus were markedly reduced in Cx46 KO, whereas they were unaffected by Cx50 KO. We also show that GSH delivery to the nucleus is not dependent on the lens microcirculation, which is believed to be responsible for extracellular transport of other nutrients to membrane transporters in the core. These results indicate that glutathione diffuses from cortical fiber cells to the nucleus via gap junction channels formed by Cx46. We present a model of GSH diffusion from outer cells to inner fiber cells through gap junctions.  相似文献   

18.

Background

The cortex and nucleus of eye lenses are differentiated by both crystallin protein concentration and relative distribution of three major crystallins (α, β, and γ). Here, we explore the effects of composition and concentration of crystallins on the microstructure of the intact bovine lens (37 °C) along with several lenses from Antarctic fish (− 2 °C) and subtropical bigeye tuna (18 °C).

Methods

Our studies are based on small-angle X-ray scattering (SAXS) investigations of the intact lens slices where we study the effect of crystallin composition and concentration on microstructure.

Results

We are able to distinguish the nuclear and cortical regions by the development of a characteristic peak in the intensity of scattered X-rays. For both the bovine and fish lenses, the peak corresponds to that expected for dense suspensions of α-crystallins.

Conclusions

The absence of the scattering peak in the nucleus indicates that there is no characteristic wavelength for density fluctuations in the nucleus although there is liquid-like order in the packing of the different crystallins. The loss in peak is due to increased polydispersity in the sizes of the crystallins and due to the packing of the smaller γ-crystallins in the void space of α-crystallins.

General significance

Our results provide an understanding for the low turbidity of the eye lens that is a mixture of different proteins. This will inform design of optically transparent suspensions that can be used in a number of applications (e.g., artificial liquid lenses) or to better understand human diseases pathologies such as cataract.  相似文献   

19.
Galactosemic cataracts are characterized by electrolyte disturbances resulting in osmotic imbalance and loss of transparency. We have studied the defensive role of quercetin, a bioflavonoid, against the alterations of calcium (Ca2+), sodium (Na+), and potassium (K+) concentrations in galactose-induced cataract in a rodent model. The experimental study was conducted on weanling male Wistar rats with an average body weight of 34 ± 0.9 g. Different groups received normal stock AIN 93 diet (group A, n = 8), AIN 93 diet with 30% galactose (group B, n = 8), and AIN 93 diet with 30% galactose + quercetin at 400 mg/100 g diet (group C, n = 8). Aldose reductase activity and protein content and concentrations of Ca2+, Na+, and K+ were determined in normal and cataractous lenses. Treatment with quercetin resulted in a significant decrease in Na+ and Ca2+ and aldose reductase levels and an increase in K+ and protein levels in galactosemic cataractous lenses. These results imply that inclusion of quercetin contributes to lens transparency through the maintenance of characteristic osmotic ion equilibrium and protein levels of the lens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号