首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
SNARE complexes form between the synaptic vesicle protein synaptobrevin and the plasma membrane proteins syntaxin and SNAP25 to drive membrane fusion. A cytosolic protein, complexin (Cpx), binds to the SNARE bundle, and its accessory helix (AH) functions to clamp synaptic vesicle fusion. We performed molecular-dynamics simulations of the SNARE/Cpx complex and discovered that at equilibrium the Cpx AH forms tight links with both synaptobrevin and SNAP25. To simulate the effect of electrostatic repulsion between vesicle and membrane on the SNARE complex, we calculated the electrostatic force and performed simulations with an external force applied to synaptobrevin. We found that the partially unzipped state of the SNARE bundle can be stabilized by interactions with the Cpx AH, suggesting a simple mechanistic explanation for the role of Cpx in fusion clamping. To test this model, we performed experimental and computational characterizations of the syx3-69Drosophila mutant, which has a point mutation in syntaxin that causes increased spontaneous fusion. We found that this mutation disrupts the interaction of the Cpx AH with synaptobrevin, partially imitating the cpx null phenotype. Our results support a model in which the Cpx AH clamps fusion by binding to the synaptobrevin C-terminus, thus preventing full SNARE zippering.  相似文献   

2.
神经末梢突触囊泡释放神经递质过程的调控蛋白   总被引:3,自引:0,他引:3  
神经末梢突触囊泡释放神经递质是一个复杂且受到精细调控的过程,涉及多种蛋白质间的相互作用。位于突触囊泡膜上的突触囊泡蛋白/突触囊泡相关膜蛋白(synaptobrevin/VAMP),与位于突触前膜上的syntaxin和突触小体相关蛋白SNAP-25,三者聚合形成的可溶性N-甲基马来酰胺敏感因子(NSF)附着蛋白受体(SNARE)核心复合物是突触囊泡胞吐过程中的核心成分。本文主要围绕参与空触囊泡胞吐过程,以及调节SNARE核心复合物的形成,解离及其功能的蛋白质,并对突触囊泡胞吐过程的分子模型作一概述。  相似文献   

3.
SNAREs are clustered membrane proteins essential for intracellular fusion steps. During fusion, three to four SNAREs with a Qa‐, Qb‐, Qc‐ and R‐SNARE‐motif form a complex. The core complex represents a QaQbQcR‐SNARE‐motif bundle, most certainly assembling in steps. However, to date it is unknown which intermediate SNARE complex observed in vitro also exists in vivo. Here we have applied comparative fluorescence recovery after photobleaching (FRAP)‐studies as a novel approach for studying in intact cells a SNARE interaction involved in synaptic vesicle fusion [catalyzed by syntaxin 1A (Qa), SNAP25 (Qb/Qc) and synaptobrevin 2 (R)]. We find that the Qb‐SNARE‐motif of SNAP25 interacts reversibly with clustered syntaxin. The interaction requires most of the alpha helical Qb‐SNARE‐motif and depends on its position within the molecule. We conclude that a zippered QaQb‐SNARE complex represents a short‐lived SNARE intermediate in intact cells, most likely providing an initial molecular platform toward membrane fusion.  相似文献   

4.
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+‐triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+‐dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N‐ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin‐1, SNAP‐25, and synaptobrevin‐2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N‐ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18‐1 and Munc13‐1 orchestrate SNARE complex formation in an NSF‐SNAP‐resistant manner by a mechanism whereby Munc18‐1 binds to synaptobrevin and to a self‐inhibited “closed” conformation of syntaxin‐1, thus forming a template to assemble the SNARE complex, and Munc13‐1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin‐1. Synaptotagmin‐1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.  相似文献   

5.
SNARE proteins - rab3A - parietal cells - H+/K+-ATPase When stimulated by histamine, acetylcholine, or gastrin the luminal compartments of oxyntic parietal cells display conspicuous morphological changes. The luminal plasma membrane surface becomes greatly expanded, while the cytoplasmic tubulovesicles are decreased in parallel. Due to these membrane rearrangements the H+/K(+)-ATPase obtains access to the luminal surface, where proton secretion occurs. The stimulation-induced translocation of H+/K(+)-ATPase involves a fusion process. Exocytotic membrane fusion in neurons is achieved by the highly regulated interaction of mainly three proteins, the vesicle protein synaptobrevin and the plasma membrane proteins syntaxin and SNAP25 (synaptosomal-associated protein of 25 kDa), also referred to as SNARE proteins. Using immunofluorescence microscopy we analysed the subcellular distribution of neuronal synaptic proteins and rab3A in resting and stimulated parietal cells from pig and rat. In resting cells all synaptic proteins colocalized with the H+/ K(+)-ATPase trapped in the tubulovesicular compartment. After stimulation, translocated H+/K(+)-ATPase showed a typical canalicular distribution. Syntaxin, synaptobrevin, SNAP25 and rab3A underwent a similar redistribution in stimulated cells and consequently localized to the canalicular compartment. Using immunoprecipitation we found that the SNARE complex consisting of synaptobrevin, syntaxin and SNAP25, which is a prerequisite for membrane fusion in neurons, is also assembled in parietal cells. In addition the parietal cell-derived synaptobrevin could be proteolytically cleaved by tetanus toxin light chain. These data may provide evidence that SNARE proteins and rab3A are functionally involved in the stimulation-induced translocation of the H+/K(+)-ATPase.  相似文献   

6.
The calcium-triggered neurotransmitter release requires three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins: synaptobrevin 2 (or vesicle-associated membrane protein 2) on the synaptic vesicle and syntaxin 1 and SNAP-25 (synaptosome-associated protein of 25 kDa) at the presynaptic plasma membrane. This minimal fusion machinery is believed to drive fusion of the vesicle to the presynaptic membrane. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a major regulator of synaptic vesicle exocytosis. Stimulatory and inhibitory effects of complexin have both been reported, suggesting the duality of its function. To shed light on the molecular basis of the complexin's dual function, we have performed an EPR investigation of the complexin-SNARE quaternary complex. We found that the accessory α-helix (amino acids 27-48) by itself has the capacity to replace the C-terminus of the SNARE motif of vesicle-associated membrane protein 2 in the four-helix bundle and makes the SNARE complex weaker when the N-terminal region of complexin I (amino acids 1-26) is removed. However, the accessory α-helix remains detached from the SNARE core when the N-terminal region of complexin I is present. Thus, our data show the possibility that the balance between the activities of the accessory α-helix and the N-terminal domain might determine the final outcome of the complexin function, either stimulatory or inhibitory.  相似文献   

7.
Three-dimensional structure of the complexin/SNARE complex   总被引:12,自引:0,他引:12  
During neurotransmitter release, the neuronal SNARE proteins synaptobrevin/VAMP, syntaxin, and SNAP-25 form a four-helix bundle, the SNARE complex, that pulls the synaptic vesicle and plasma membranes together possibly causing membrane fusion. Complexin binds tightly to the SNARE complex and is essential for efficient Ca(2+)-evoked neurotransmitter release. A combined X-ray and TROSY-based NMR study now reveals the atomic structure of the complexin/SNARE complex. Complexin binds in an antiparallel alpha-helical conformation to the groove between the synaptobrevin and syntaxin helices. This interaction stabilizes the interface between these two helices, which bears the repulsive forces between the apposed membranes. These results suggest that complexin stabilizes the fully assembled SNARE complex as a key step that enables the exquisitely high speed of Ca(2+)-evoked neurotransmitter release.  相似文献   

8.
The fusion of synaptic vesicles with the pre-synaptic plasma membrane mediates the secretion of neurotransmitters at nerve terminals. This pathway is regulated by an array of protein–protein interactions. Of central importance are the soluble NSF ( N -ethylmaleimide-sensitive factor) attachment protein receptor (SNARE) proteins syntaxin 1 and SNAP25, which are associated with the pre-synaptic plasma membrane and vesicle-associated membrane protein (VAMP2), a synaptic vesicle SNARE. Syntaxin 1, SNAP25 and VAMP2 interact to form a tight complex bridging the vesicle and plasma membranes, which has been suggested to represent the minimal membrane fusion machinery. Synaptic vesicle fusion is stimulated by a rise in intraterminal Ca2+ levels, and a major Ca2+ sensor for vesicle fusion is synaptotagmin I. Synaptotagmin is likely to couple Ca2+ entry to vesicle fusion via Ca2+-dependent and independent interactions with membrane phospholipids and the SNARE proteins. Intriguingly, syntaxin 1, SNAP25, VAMP2 and synaptotagmin I have all been reported to be modified by palmitoylation in neurons. In this review, we discuss the mechanisms and dynamics of palmitoylation of these proteins and speculate on how palmitoylation might contribute to the regulation of synaptic vesicle fusion.  相似文献   

9.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play a key role in membrane fusion in the secretory pathway. In vitro, SNAREs spontaneously assemble into helical SNARE complexes with the transmembrane domains at the C-terminal end. During fusion, SNAREs are thought to bridge the two membranes and assemble in a zipper-like fashion, pulling the membranes together and initiating fusion. However, it is not clear to what extent SNARE assembly contributes to membrane attachment and membrane fusion. Using the neuronal SNAREs synaptobrevin (VAMP), SNAP-25, and syntaxin as examples, we show here that liposomes containing synaptobrevin firmly attach to planar surfaces containing immobilized syntaxin. Attachment requires the formation of SNARE complexes because it is dependent on the presence of SNAP-25. Binding is competed for by soluble SNARE fragments, with noncognate SNAREs such as endobrevin (VAMP8), VAMP4, and VAMP7 (Ti-VAMP) being effective but less potent in some cases. Furthermore, although SNAP-23 is unable to substitute for SNAP-25 in the attachment assay, it forms complexes of comparable stability and is capable of substituting in liposome fusion assays. Vesicle attachment is initiated by SNARE assembly at the N-terminal end of the helix bundle. We conclude that SNAREs can indeed form stable trans-complexes that result in vesicle attachment if progression to fusion is prevented, further supporting the zipper model of SNARE function.  相似文献   

10.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

11.
Sec1/Munc18 (SM) proteins activate intracellular membrane fusion through binding to cognate SNAP receptor (SNARE) complexes. The synaptic target membrane SNARE syntaxin 1 contains a highly conserved Habc domain, which connects an N-peptide motif to the SNARE core domain and is thought to participate in the binding of Munc18-1 (the neuronal SM protein) to the SNARE complex. Unexpectedly, we found that mutation or complete removal of the Habc domain had no effect on Munc18-1 stimulation of fusion. The central cavity region of Munc18-1 is required to stimulate fusion but not through its binding to the syntaxin Habc domain. SNAP-25, another synaptic SNARE subunit, contains a flexible linker and exhibits an atypical conjoined Qbc configuration. We found that neither the linker nor the Qbc configuration is necessary for Munc18-1 promotion of fusion. As a result, Munc18-1 activates a SNARE complex with the typical configuration, in which each of the SNARE core domains is individually rooted in the membrane bilayer. Thus, the SNARE four-helix bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of fusion.  相似文献   

12.
Montal M 《FEBS letters》1999,447(2-3):129-130
SNARE proteins appear to be involved in homotypic and heterotypic membrane fusion events [Sollner et al. (1993) Nature 362, 318-324]. The crystal structure of the synaptic SNARE complex exhibits a parallel four-helical bundle fold with two helices contributed by SNAP-25, a target SNARE (t-SNARE), and the other two by a different t-SNARE, syntaxin, and a donor vesicle SNARE (v-SNARE), synaptobrevin. The carboxy-terminal boundary of the complex, predicted to occur at the closest proximity between the apposed membranes, displays a high density of positively charged residues. This feature combined with the enrichment of negatively charged phospholipids in the cytosolic exposed leaflet of the membrane bilayer suggest that electrostatic attraction between oppositely charged interfaces may be sufficient to induce dynamic and discrete micellar discontinuities of the apposed membranes with the transient breakdown at the junction and subsequent reformation. Thus, the positively charged end of the SNARE complex in concert with Ca2+ may be sufficient to generate a transient 'fusion pore'.  相似文献   

13.
A 20S complex composed of the cytosolic fusion proteins NSF and SNAP and the synaptosomal SNAP receptors (SNAREs) synaptobrevin, syntaxin and SNAP-25 is essential for synaptic vesicle exocytosis. Formation of this complex is thought to be regulated by synaptotagmin, the putative calcium sensor of neurotransmitter release. Here we have examined how different inhibitors of neurotransmitter release, e.g. clostridial neurotoxins and a synaptotagmin peptide, affect the properties of the 20S complex. Cleavage of synaptobrevin and SNAP-25 by the neurotoxic clostridial proteases tetanus toxin and botulinum toxin A had no effect on assembly and disassembly of the 20S complex; however, the stability of its SDS-resistant SNARE core was compromised. This SDS-resistant low energy conformation of the SNAREs constitutes the physiological target of NSF, as indicated by its ATP-dependent disassembly in the presence of SNAP and NSF. Synaptotagmin peptides caused inhibition of in vitro binding of this protein to the SNAREs, a result that is inconsistent with synaptotagmin's proposed role as a regulator of SNAP binding. Our data can be reconciled by the idea that NSF and SNAP generate synaptotagmin-containing intermediates in synaptic vesicle fusion, which catalyse neurotransmitter release.  相似文献   

14.
Action of complexin on SNARE complex   总被引:6,自引:0,他引:6  
Calcium-dependent synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: synaptobrevin/vesicle-associated membrane protein in the vesicular membrane and syntaxin and SNAP-25 in the presynaptic membrane. The SNAREs form a thermodynamically stable complex that is believed to drive fusion of vesicular and presynaptic membranes. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a positive regulator of synaptic vesicle exocytosis. Complexin binds selectively to the neuronal SNARE complex, but how this promotes exocytosis remains unknown. Here we used purified full-length and truncated SNARE proteins and a gel shift assay to show that the action of complexin on SNARE complex depends strictly on the transmembrane regions of syntaxin and synaptobrevin. By means of a preparative immunoaffinity procedure to achieve total extraction of SNARE complex from brain, we demonstrated that complexin is the only neuronal protein that tightly associates with it. Our data indicated that, in the presence of complexin, the neuronal SNARE proteins assemble directly into a complex in which the transmembrane regions interact. We propose that complexin facilitates neuronal exocytosis by promoting interaction between the complementary syntaxin and synaptobrevin transmembrane regions that reside in opposing membranes prior to fusion.  相似文献   

15.
Synaptophysin and synaptobrevin are abundant membrane proteins of neuronal small synaptic vesicles. In mature, differentiated neurons they form the synaptophysin/synaptobrevin (Syp/Syb) complex. Synaptobrevin also interacts with the plasma membrane-associated proteins syntaxin and SNAP25, thereby forming the SNARE complex necessary for exocytotic membrane fusion. The two complexes are mutually exclusive. Synaptobrevin is a C-terminally membrane-anchored protein with one transmembrane domain. While its interaction with its SNARE partners is mediated exclusively by its N-terminal cytosolic region it has been unclear so far how binding to synaptophysin is accomplished. Here, we show that synaptobrevin can be cleaved in its synaptophysin-bound form by tetanus toxin and botulinum neurotoxin B, or by botulinum neurotoxin D, leaving shorter or longer C-terminal peptide chains bound to synaptophysin, respectively. A recombinant, C-terminally His-tagged synaptobrevin fragment bound to nickel beads specifically bound synaptophysin, syntaxin and SNAP25 from vesicular detergent extracts. After cleavage by tetanus toxin or botulinum toxin D light chain, the remaining C-terminal fragment no longer interacted with syntaxin or SNAP 25. In contrast, synaptophysin was still able to bind to the residual C-terminal synaptobrevin cleavage product. In addition, the His-tagged C-terminal synaptobrevin peptide 68-116 was also able to bind synaptophysin in detergent extracts from adult brain membranes. These data suggest that synaptophysin interacts with the C-terminal transmembrane part of synaptobrevin, thereby allowing the N-terminal cytosolic chain to interact freely with the plasma membrane-associated SNARE proteins. Thus, by binding synaptobrevin, synaptophysin may positively modulate neurotransmission.  相似文献   

16.
The SNARE proteins, syntaxin, SNAP-25, and synaptobrevin have long been known to provide the driving force for vesicle fusion in the process of regulated exocytosis. Of particular interest is the initial interaction between SNAP-25 and syntaxin to form the t-SNARE heterodimer, an acceptor for subsequent synaptobrevin engagement. In vitro studies have revealed at least two different dynamic conformations of t-SNARE heterodimer defined by the degree of association of the C-terminal SNARE motif of SNAP-25 with syntaxin. At the plasma membrane, these proteins are organized into dense clusters of 50–60 nm in diameter. More recently, the t-SNARE interaction within these clusters was investigated in live cells at the molecular level, estimating each cluster to contain 35–70 t-SNARE molecules. This work reported the presence of both partially and fully zippered t-SNARE complex at the plasma membrane in agreement with the earlier in vitro findings. It also revealed a spatial segregation into distinct clusters containing predominantly one conformation apparently patterned by the surrounding lipid environment. The reason for this dynamic t-SNARE complex in exocytosis is uncertain; however, it does take us one step closer to understand the complex sequence of events leading to vesicle fusion, emphasizing the role of both membrane proteins and lipids.  相似文献   

17.
X-ray structure of a neuronal complexin-SNARE complex from squid   总被引:2,自引:0,他引:2  
Nerve terminals release neurotransmitters from vesicles into the synaptic cleft upon transient increases in intracellular Ca(2+). This exocytotic process requires the formation of trans SNARE complexes and is regulated by accessory proteins including the complexins. Here we report the crystal structure of a squid core complexin-SNARE complex at 2.95-A resolution. A helical segment of complexin binds in anti-parallel fashion to the four-helix bundle of the core SNARE complex and interacts at its C terminus with syntaxin and synaptobrevin around the ionic zero layer of the SNARE complex. We propose that this structure is part of a multiprotein fusion machinery that regulates vesicle fusion at a late pre-fusion stage. Accordingly, Ca(2+) may initiate membrane fusion by acting directly or indirectly on complexin, thus allowing the conformational transitions of the trans SNARE complex that are thought to drive membrane fusion.  相似文献   

18.
Synaptophysin is one of the most abundant membrane proteins of small synaptic vesicles. In mature nerve terminals it forms a complex with the vesicular membrane protein synaptobrevin, which appears to modulate synaptobrevin's interaction with the plasma membrane-associated proteins syntaxin and SNAP25 to form the SNARE complex as a prerequisite for membrane fusion. Here we show that synaptobrevin is preferentially cleaved by tetanus toxin while bound to synaptophysin or when existing as a homodimer. The synaptophysin/synaptobrevin complex is, however, not affected when neuronal secretion is blocked by botulinum A toxin which cleaves SNAP25. Excessive stimulation with alpha-latrotoxin or Ca(2+)-ionophores dissociates the synaptophysin/synaptobrevin complex and increases the interaction of the other SNARE proteins. The stimulation-induced dissociation of the synaptophysin/synaptobrevin complex is not inhibited by pre-incubating neurones with botulinum A toxin, but depends on extracellular calcium. However, the synaptophysin/synaptobrevin complex cannot be directly dissociated by calcium alone or in combination with magnesium. The dissociation of synaptobrevin from synaptophysin appears to precede its interaction with the other SNARE proteins and does not depend on the final fusion event. This finding further supports the modulatory role the synaptophysin/synaptobrevin complex may play in mature neurones.  相似文献   

19.
The importance of soluble N-ethyl maleimide (NEM)-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs) in synaptic vesicle exocytosis is well established because it has been demonstrated that clostridial neurotoxins (NTs) proteolyze the vesicle SNAREs (v-SNAREs) vesicle-associated membrane protein (VAMP)/brevins and their partners, the target SNAREs (t-SNAREs) syntaxin 1 and SNAP25. Yet, several exocytotic events, including apical exocytosis in epithelial cells, are insensitive to numerous clostridial NTs, suggesting the presence of SNARE-independent mechanisms of exocytosis. In this study we found that syntaxin 3, SNAP23, and a newly identified VAMP/brevin, tetanus neurotoxin (TeNT)-insensitive VAMP (TI-VAMP), are insensitive to clostridial NTs. In epithelial cells, TI-VAMP–containing vesicles were concentrated in the apical domain, and the protein was detected at the apical plasma membrane by immunogold labeling on ultrathin cryosections. Syntaxin 3 and SNAP23 were codistributed at the apical plasma membrane where they formed NEM-dependent SNARE complexes with TI-VAMP and cellubrevin. We suggest that TI-VAMP, SNAP23, and syntaxin 3 can participate in exocytotic processes at the apical plasma membrane of epithelial cells and, more generally, domain-specific exocytosis in clostridial NT-resistant pathways.  相似文献   

20.
Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)–dependent exocytosis pathway at an intermediate “cocked” state, from which fusion can be triggered by Ca2+. It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE) to the syntaxin–SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N-terminal interaction layers of the SNARE bundle inhibit assembly in vitro and vesicle priming in vivo without detectable changes in triggering speed or fusion pore properties. In contrast, mutations in the last C-terminal layer decrease triggering speed and fusion pore duration. Between the two domains, we identify a region exquisitely sensitive to mutation, possibly constituting a switch. Our data are consistent with a model in which the N terminus of the SNARE complex assembles during vesicle priming, followed by Ca2+-triggered C-terminal assembly and membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号