首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
K Lv  L Liu  L Wang  J Yu  X Liu  Y Cheng  M Dong  R Teng  L Wu  P Fu  W Deng  W Hu  L Teng 《PloS one》2012,7(7):e40008
Resistance to chemotherapy is a major obstacle for the effective treatment of cancers. Lin28 has been shown to contribute to tumor relapse after chemotherapy; however, the relationship between Lin28 and chemoresistance remained unknown. In this study, we investigated the association of Lin28 with paclitaxel resistance and identified the underlying mechanisms of action of Lin28 in human breast cancer cell lines and tumor tissues. We found that the expression level of Lin28 was closely associated with the resistance to paclitaxel treatment. The T47D cancer cell line, which highly expresses Lin28, is more resistant to paclitaxel than the MCF7, Bcap-37 or SK-BR-3 cancer cell lines, which had low-level expression of Lin28. Knocking down of Lin28 in Lin28 high expression T47D cells increased the sensitivity to paclitaxel treatment, while stable expression of Lin28 in breast cancer cells effectively attenuated the sensitivity to paclitaxel treatment, resulting in a significant increase of IC50 values of paclitaxel. Transfection with Lin28 also significantly inhibited paclitaxel-induced apoptosis. We also found that Lin28 expression was dramatically increased in tumor tissues after neoadjuvant chemotherapy or in local relapse or metastatic breast cancer tissues. Moreover, further studies showed that p21, Rb and Let-7 miRNA were the molecular targets of Lin28. Overexpression of Lin28 in breast cancer cells considerably induced p21 and Rb expression and inhibited Let-7 miRNA levels. Our results indicate that Lin28 expression might be one mechanism underlying paclitaxel resistance in breast cancer, and Lin28 could be a potential target for overcoming paclitaxel resistance in breast cancer.  相似文献   

3.
《Phytomedicine》2014,21(12):1725-1732
Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel. The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation. These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.  相似文献   

4.
Emerging evidence has indicated the important function of long non‐coding RNAs (lncRNAs) in tumour chemotherapy resistance. However, the underlying mechanism is still ambiguous. In this study, we investigate the physiopathologic role of lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) on the paclitaxel (PTX) resistance in breast cancer. Results showed that lncRNA FTH1P3 was up‐regulated in paclitaxel‐resistant breast cancer tissue and cells (MCF‐7/PTX and MDA‐MB‐231/PTX cells) compared with paclitaxel‐sensitive tissue and parental cell lines (MCF‐7, MDA‐MB‐231). Gain‐ and loss‐of‐function experiments revealed that FTH1P3 silencing decreased the 50% inhibitory concentration (IC50) value of paclitaxel and induced cell cycle arrest at G2/M phase, while FTH1P3‐enhanced expression exerted the opposite effects. In vivo, xenograft mice assay showed that FTH1P3 silencing suppressed the tumour growth of paclitaxel‐resistant breast cancer cells and ABCB1 protein expression. Bioinformatics tools and luciferase reporter assay validated that FTH1P3 promoted ABCB1 protein expression through targeting miR‐206, acting as a miRNA “sponge.” In summary, our results reveal the potential regulatory mechanism of FTH1P3 on breast cancer paclitaxel resistance through miR‐206/ABCB1, providing a novel insight for the breast cancer chemoresistance.  相似文献   

5.
Triple‐negative breast cancer (TNBC) has a relatively poor outcome. Acquired chemoresistance is a major clinical challenge for TNBC patients. Previously, we reported that kinase‐dead Aurora kinase A (Aurora‐A) could effectively transactivate the FOXM1 promoter. Here, we demonstrate an additional pathway through which Aurora‐A stabilizes FOXM1 by attenuating its ubiquitin in TNBC. Specifically, Aurora‐A stabilizes FOXM1 in late M phase and early G1 phase of the cell cycle, which promotes proliferation of TNBC cells. Knock‐down of Aurora‐A significantly suppresses cell proliferation in TNBC cell lines and can be rescued by FOXM1 overexpression. We observe that paclitaxel‐resistant TNBC cells exhibit high expression of Aurora‐A and FOXM1. Overexpression of Aurora‐A offers TNBC cells an additional growth advantage and protection against paclitaxel. Moreover, Aurora‐A and FOXM1 could be simultaneously targeted by thiostrepton. Combination of thiostrepton and paclitaxel treatment reverses paclitaxel resistance and significantly inhibits cell proliferation. In conclusion, our study reveals additional mechanism through which Aurora‐A regulates FOXM1 and provides a new therapeutic strategy to treat paclitaxel‐resistant triple‐negative breast cancer.  相似文献   

6.
Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(+)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics.  相似文献   

7.
《Phytomedicine》2014,21(7):984-991
Paclitaxel (PTX) is a first-line antineoplastic drug that is commonly used in clinical chemotherapy for breast cancer treatment. However, the occurrence of drug resistance in chemotherapeutic treatment has greatly restricted its use. There is thus an urgent need to find ways of reversing paclitaxel chemotherapy resistance in breast cancer. Plant-derived agents have great potential in preventing the onset of the carcinogenic process and enhancing the efficacy of mainstream antitumor drugs. Paeonol, a main compound derived from the root bark of Paeonia suffruticosa, has various biological activities, and is reported to have reversal drug resistance effects. This study established a paclitaxel-resistant human breast cancer cell line (MCF-7/PTX) and applied the dual-luciferase reporter gene assay, MTT assay, flow cytometry, transfection assay, Western blotting and the quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the reversing effects of paeonol and its underlying mechanisms. It was found that transgelin 2 may mediate the resistance of MCF-7/PTX cells to paclitaxel by up-regulating the expressions of the adenosine-triphosphate binding cassette transporter proteins, including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP). Furthermore, the ability of paeonol to reverse paclitaxel resistance in breast cancer was confirmed, with a superior 8.2-fold reversal index. In addition, this study found that paeonol down-regulated the transgelin 2-mediated paclitaxel resistance by reducing the expressions of P-gp, MRP1, and BCRP in MCF-7/PTX cells. These results not only provide insight into the potential application of paeonol to the reversal of paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.  相似文献   

8.
BRCA1 germline mutations predispose women to early onset, familial breast and ovariancancer. BRCA1 has been recently implicated in the cellular response to agents that disruptthe mitotic spindle. In this report, we studied BRCA1 contribution to paclitaxel response inMCF-7 breast cancer cells. We show that MCF-7 cells transfected with BRCA1 siRNAdisplay a significant increase in resistance to paclitaxel compared with the control cells. Wenext demonstrate that down-regulation of BRCA1 reduces the mitotic index and triggerspremature cyclin B1 degradation and decrease in Cdk1 activity following paclitaxel treatment,suggesting that BRCA1 down-regulation results in precocious inactivation of the spindlecheckpoint. These findings were confirmed by showing that BRCA1 down-regulation inducespremature sister–chromatids separation in MCF-7 cells following spindle damage.Furthermore, we show that BRCA1 up-regulates the expression of the protein kinase BubR1,essential component of the functional spindle checkpoint, whose down-regulation is known toresult in paclitaxel resistance in MCF-7 cells. Altogether, our findings support the notion thatdown-regulation of BRCA1 expression mediates paclitaxel resistance through prematureinactivation of spindle checkpoint in MCF-7 breast cancer cells. They link BRCA1 to themitotic checkpoint that plays an essential role in the maintenance of chromosomal stability.  相似文献   

9.
10.
Previous study has confirmed that hsa_circ_0092276 is highly expressed in doxorubicin (DOX)-resistant breast cancer cells, indicating that hsa_circ_0092276 may be involved in regulating the chemotherapy resistance of breast cancer. Here we attempted to investigate the biological role of hsa_circ_0092276 in breast cancer. We first constructed DOX-resistant breast cancer cells (MCF-7/DOX and MDA-MB-468/DOX). The 50% inhibiting concentration of MCF-7/DOX and MDA-MB-468/DOX cells was significantly higher than that of their parental breast cancer cells, MCF-7 and MDA-MB-46. MCF-7/DOX and MDA-MB-468/DOX cells also exhibited an up-regulation of drug resistance-related protein MDR1. Compared with MCF-7 and MDA-MB-46 cells, hsa_circ_0092276 was highly expressed in MCF-7/DOX and MDA-MB-468/DOX cells. Hsa_circ_0092276 overexpression enhanced proliferation and the expression of LC3-II/LC3-I and Beclin-1, and repressed apoptosis of breast cancer cells. The effect of hsa_circ_0092276 up-regulation on breast cancer cells was abolished by 3-methyladenine (autophagy inhibitor). Hsa_circ_0092276 modulated autophagy-related gene 7 (ATG7) expression via sponging miR-384. Hsa_circ_0092276 up-regulation promoted autophagy and proliferation, and repressed apoptosis of breast cancer cells, which was abolished by miR-384 overexpression or ATG7 knockdown. In addition, LV-circ_0092276 transfected MCF-7 cell transplantation promoted autophagy and tumor growth of breast cancer in mice. In conclusion, our data demonstrate that hsa_circ_0092276 promotes autophagy and DOX resistance in breast cancer by regulating miR-348/ATG7 axis. Thus, this article highlights a novel competing endogenous RNA circuitry involved in DOX resistance in breast cancer.  相似文献   

11.
12.
Lai  Hongna  Wang  Rui  Li  Shunying  Shi  Qianfeng  Cai  Zijie  Li  Yudong  Liu  Yujie 《中国科学:生命科学英文版》2020,63(3):419-428
LIN9 functions to regulate cell mitotic process.Dysregulation of LIN9 expression is associated with development of human cancers.In this study we assessed the association of LIN9 expression with paclitaxel resistance and clarified the underlying mechanisms for the first time.LIN9 expression in breast cancer tissues was retrieved from publicly available online databases and statistically analyzed.Human TNBC cell lines MDA-MB-231 and MDA-MB-468 and their corresponding paclitaxelresistant sublines 231PTX and 468PTX were used to assess the expression of LIN9 by qRT-PCR and Western blot,cell growth by cell counting,cell viability by MTS assay,and cell apoptosis by flow cytometry.The data showed that high LIN9 expression in breast cancer patients receiving chemotherapy was related to poor overall survival (OS).LIN9 expression was upregulated in paclitaxel-resistant TNBC cells compared to their parental cells.Knockdown of LIN9 or treatment of paclitaxel-resistant TNBC cells with a bromo-and extra-terminal domain inhibitor (BETi) JQ1 which also decreased LIN9 expression enhanced the sensitivity of paclitaxel-resistant TNBC cells to paclitaxel.Mechanistically,decreased LIN9 in resistant cell lines reduced tumor cell viability,promoted multinucleated cells formation and induced tumor cell apoptosis,potentially by directly regulating microtubule-binding protein CCSAP.In conclusion,high LIN9 expression contributed to poor clinical outcomes and paclitaxel resistance in TNBC and BETi,targeting LIN9 expression,could be a reversible drug for PTX-resistant TNBC patients.  相似文献   

13.
The chemotherapeutic drug paclitaxel induces microtubular stabilization and mitotic arrest associated with increased survivin expression. Survivin is a member of the inhibitor of apoptosis (iap) family which is highly expressed in during G2/M phase where it regulates spindle formation during mitosis. It is also constitutively overexpressed in most cancer cells where it may play a role in chemotherapeutic resistance. MCF-7 breast cancer cells stably overexpressing the sense strand of survivin (MCF-7(survivin-S) cells) were more resistant to paclitaxel than cells depleted of survivin (MCF-7(survivin-AS) despite G2/M arrest in both cell lines. However, survivin overexpression did not protect cells relative to control MCF-7(pcDNA3) cells. Paclitaxel-induced cytotoxicity can be enhanced by retinoic acid and here we show that RA strongly reduces survivin expression in MCF-7 cells and prevents paclitaxel-mediated induction of survivin expression. Mitochondrial release of cytochrome c after paclitaxel alone or in combination with RA was weak, however robust Smac release was observed. While RA/paclitaxel-treated MCF-7 (pcDNA3) cultures contained condensed apoptotic nuclei, MCF-7(survivin-S) nuclei were morphologically distinct with hypercondensed disorganized chromatin and released mitochondrial AIF-1. RA also reduced paclitaxel-associated levels of cyclin B1 expression consistent with mitotic exit. MCF-7(survivin-S) cells displayed a 30% increase in >2N/<4N ploidy while there was no change in this compartment in vector control cells following RA/paclitaxel. We propose that RA sensitizes MCF-7 cells to paclitaxel at least in part through survivin downregulation and the promotion of aberrant mitotic progression resulting in apoptosis. In addition we provide biochemical and morphological data which suggest that RA-treated MCF-7(survivin-S) cells can also undergo catastrophic mitosis when exposed to paclitaxel.  相似文献   

14.
Non- small- cell lung cancer (NSCLC) is one of the most leading causes of cancer-related deaths worldwide. Paclitaxel based combination therapies have long been used as a standard treatment in aggressive NSCLCs. But paclitaxel resistance has emerged as a major clinical problem in combating non-small-cell lung cancer and autophagy is one of the important mechanisms involved in this phenomenon. In this study, we used microRNA (miRNA) arrays to screen differentially expressed miRNAs between paclitaxel sensitive lung cancer cells A549 and its paclitaxel-resistant cell variant (A549-T24). We identified miR-17-5p was one of most significantly downregulated miRNAs in paclitaxel-resistant lung cancer cells compared to paclitaxel sensitive parental cells. We found that overexpression of miR-17-5p sensitized paclitaxel resistant lung cancer cells to paclitaxel induced apoptotic cell death. Moreover, in this report we demonstrated that miR-17-5p directly binds to the 3′-UTR of beclin 1 gene, one of the most important autophagy modulator. Overexpression of miR-17-5p into paclitaxel resistant lung cancer cells reduced beclin1 expression and a concordant decease in cellular autophagy. We also observed similar results in another paclitaxel resistant lung adenosquamous carcinoma cells (H596-TxR). Our results indicated that paclitaxel resistance of lung cancer is associated with downregulation of miR-17-5p expression which might cause upregulation of BECN1 expression.  相似文献   

15.
Chloride channel-3 (ClC-3), a member of the ClC family of voltage-gated Cl channels, is involved in the resistance of tumor cells to chemotherapeutic drugs. Here, we report a new mechanism for ClC-3 in mediating multidrug resistance (MDR). ClC-3 was highly expressed in the P-glycoprotein (P-gp)-dependent human lung adenocarcinoma cell line (A549)/paclitaxel (PTX) and the human breast carcinoma cell line (MCF-7)/doxorubicin (DOX) resistant cells. Changes in the ClC-3 expression resulted in the development of drug resistance in formerly drug-sensitive A549 or MCF-7 cells, and drug sensitivity in formerly drug-resistant A549/Taxol and MCF-7/DOX cells. Double transgenic MMTV-PyMT/CLCN3 mice with spontaneous mammary cancer and ClC-3 overexpression demonstrated drug resistance to PTX and DOX. ClC-3 expression upregulated the expression of MDR1 messenger RNA and P-gp by activating the nuclear factor-κB (NF-κB)-signaling pathway. These data suggest that ClC-3 expression in cancer cells induces MDR by upregulating NF-κB-signaling-dependent P-gp expression involving another new mechanism for ClC-3 in the development of drug resistance of cancers.  相似文献   

16.
17.
Human epidermal growth factor receptor 2 (HER2/neu, also known as ErbB2) overexpression is correlated with the poor prognosis and chemoresistance in cancer. Breast cancer resistance protein (BCRP and ABCG2) is a drug efflux pump responsible for multidrug resistance (MDR) in a variety of cancer cells. HER2 and BCRP are associated with poor treatment response in breast cancer patients, although the relationship between HER2 and BCRP expression is not clear. Here, we showed that transfection of HER2 into MCF7 breast cancer cells (MCF7/HER2) resulted in an up-regulation of BCRP via the phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-kappa B (NF-κB) signaling. Treatment of MCF/HER2 cells with the PI3K inhibitor LY294002, the IκB phosphorylation inhibitor Bay11-7082, and the dominant negative mutant of IκBα inhibited HER2-induced BCRP promoter activity. Furthermore, we found that HER2 overexpression led to an increased resistance of MCF7 cells to multiple antitumor drugs such as paclitaxel (Taxol), cisplatin (DDP), etoposide (VP-16), adriamycin (ADM), mitoxantrone (MX), and 5-fluorouracil (5-FU). Moreover, silencing the expression of BCRP or selectively inhibiting the activity of Akt or NF-κB sensitized the MCF7/HER2 cells to these chemotherapy agents at least in part. Taken together, up-regulation of BCRP through PI3K/AKT/NF-κB signaling pathway played an important role in HER2-mediated chemoresistance of MCF7 cells, and AKT, NF-κB, and BCRP pathways might serve as potential targets for therapeutic intervention.  相似文献   

18.
Paclitaxel is a microtubule-targeting agent widely used for the treatment of many solid tumors. However, patients show variable sensitivity to this drug, and effective diagnostic tests predicting drug sensitivity remain to be investigated. Herein, we show that the expression of end-binding protein 1 (EB1), a regulator of microtubule dynamics involved in multiple cellular activities, in breast tumor tissues correlates with the pathological response of tumors to paclitaxel-based chemotherapy. In vitro cell proliferation assays reveal that EB1 stimulates paclitaxel sensitivity in breast cancer cell lines. Our data further demonstrate that EB1 increases the activity of paclitaxel to cause mitotic arrest and apoptosis in cancer cells. In addition, microtubule binding affinity analysis and polymerization/depolymerization assays show that EB1 enhances paclitaxel binding to microtubules and stimulates the ability of paclitaxel to promote microtubule assembly and stabilization. These findings thus reveal EB1 as a critical regulator of paclitaxel sensitivity and have important implications in breast cancer chemotherapy.  相似文献   

19.
20.
The resistance against tamoxifen therapy has become one of the major obstacles in the clinical treatment of breast cancer. Nicotinamide phosphoribosyltransferase (NAMPT) is an essential enzyme catalyzing nicotinamide adenine dinucleotide biosynthesis and is important for tumor metabolism. The study here sought to explore the effect of NAMPT on breast cancer survival with tamoxifen conditioning. We found that NAMPT was highly expressed in breast cancer cells compared with normal mammary epithelial cells. Inhibition of NAMPT by FK866 inhibited cell viability and aggravated apoptosis in cancer cells treated with 4-hydroxytamoxifen. NAMPT overexpression upregulated 14-3-3ζ expression. Knockdown of 14-3-3ζ reduced cell survival and promoted apoptosis. Activation of Akt signaling, rather than ERK1/2 pathway, is responsible for 14-3-3ζ regulation by NAMPT overexpression. Furthermore, NAMPT overexpression led to PKM2 accumulation in the cell nucleus and could be dampened by 14-3-3ζ inhibition. In addition, NAMPT overexpression promoted xenografted tumor growth and apoptosis in nude mice, while 14-3-3ζ inhibition attenuated its effect. Collectively, our data demonstrate that NAMPT contributes to tamoxifen resistance through regulation of 14-3-3ζ expression and PKM2 translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号