首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical studies to elucidate the structural basis for xyloglucan specificity among GH12 xyloglucanases are lacking. Accordingly, the substrate specificity of a GH12 xyloglucanase from Aspergillus niger (AnXEG12A) was investigated using pea xyloglucan and 12 xylogluco-oligosaccharides, and data were compared to a structural model of the enzyme. The specific activity of AnXEG12A with pea xyloglucan was 113 μmol min−1 mg−1, and apparent kcat and Km values were 49 s−1 and 0.54 mg mL−1, respectively. These values are similar to previously published results using xyloglucan from tamarind seed, and suggest that substrate fucosylation does not affect the specific activity of this enzyme. AnXEG12A preferred xylogluco-oligosaccharides containing more than six glucose units, and with xylose substitution at the −3 and +1 subsites. The specific activities of AnXEG12A on 100 μM XXXGXXXG and 100 μM XLLGXLLG were 60 ± 4 and 72 ± 9 μmol min−1 mg−1, respectively. AnXEG12A did not hydrolyze XXXXXXXG, consistent with other data that demonstrate the requirement for an unbranched glucose residue for hydrolysis by this enzyme.  相似文献   

2.
The sydnone SYD-1 (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate] possesses important antitumor activity against Sarcoma 180 and Ehrlich tumors. We previously showed that SYD-1 depresses mitochondrial phosphorylation efficiency, which could be involved in its antitumoral activity. Considering the important role of mitochondria in the generation of reactive oxygen species (ROS) and the involvement of ROS in cell death mechanisms, we evaluated the effects of SYD-1 on oxidative stress parameters in rat liver mitochondria. SYD-1 (0.5 and 0.75 μmol mg−1 protein) inhibited the lipoperoxidation induced by Fe3+/ADP-oxoglutarate by approximately 75% and promoted total inhibition at the highest concentration tested (1.0 μmol mg−1 protein). However, SYD-1 did not affect lipoperoxidation started by peroxyl radicals generated by α-α′-azodiisobutyramidine dihydrochloride. The mesoionic compound (0.25–1.0 μmol mg−1 protein) demonstrated an ability to scavenge superoxide radicals, decreasing their levels by 9–19%. The activities of catalase and superoxide dismutase did not change in the presence of SYD-1 (0.25–1.0 μmol mg−1 protein). SYD-1 inhibited mitochondrial swelling dependent on the formation/opening of the permeability transition pore induced by Ca2+/phosphate by approximately 30% (1.0 μmol mg−1 protein). When Ca2+/H2O2 were used as inducers, SYD-1 inhibited swelling only by approximately 12% at the same concentration. NADPH oxidation was also inhibited by SYD-1 (1.0 μmol mg−1 of protein) by approximately 48%. These results show that SYD-1 is able to prevent oxidative stress in isolated mitochondria and suggest that the antitumoral activity of SYD-1 is not mediated by the increasing generation of ROS.  相似文献   

3.
A new method, based on hollow fiber liquid-phase microextraction (HF-LPME) and gas chromatography–tandem mass spectrometry (GC–MSMS), was developed for determination of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in samples of human hair. Since hair is a solid matrix, the samples were subjected to alkaline digestion using NaOH. The aqueous solutions obtained were extracted using a 6 cm polypropylene fiber (600 μm i.d., 200 μm wall thickness, 0.2 μm pore size) for each extraction. A 25−1 fractional factorial design for screening, and a central composite design for optimization of significant variables, was applied during development of the extraction method. The variables evaluated were the type of extraction solvent, pH, stirring speed, extraction time, and acceptor phase volume. The optimized conditions for the proposed extraction procedure were 10 mg of hair sample; 20 μL of butyl acetate; aqueous (pH 14) donor phase containing 6.8% NaCl; 600 rpm stirring speed; 20 min extraction time. A linear response was obtained in the ranges 1–500 pg mg−1 (CBD and CBN) and 20–500 pg mg−1 (THC), with regression coefficients >0.99. Precision, determined as the relative standard deviation, was 3.3–8.9% (intra-day) and 4.4–13.7% (inter-day). Absolute recoveries varied in the ranges 4.4–4.8% (CBD), 7.6–8.9% (THC) and 7.7–8.2% (CBN). Limits of detection (LOD, S/N = 3) and quantification (LOQ, S/N = 10) were 0.5–15 pg mg−1 and 1–20 pg mg−1, respectively. The method was successfully used to determine CBD, THC and CBN in hair samples from patients in a drug dependency rehabilitation center. Concentrations varied in the ranges 1–18 pg mg−1 (CBD), 20–232 pg mg−1 (THC) and 9–107 pg mg−1 (CBN), confirming the suitability of the method for monitoring studies.  相似文献   

4.
A thermostable alkaline protease produced from Bacillus sp. JB 99 exhibited significant keratinolytic and dehairing activity. The enzyme was purified by ammonium sulphate precipitation followed by CM-cellulose and Sephadex G-100 chromatography and resulted in 13.6 fold purification with 23.8% of recovery. The specific activity of purified enzyme was 2989.6 U mg−l. Purified protease had a molecular weight of 29 kDa and appeared as a single band. Gelatin zymogram analysis also revealed a clear hydrolytic zone, which corresponded to the band obtained with SDS-PAGE. The optimum pH and temperature for the keratinolytic activity was pH 11.0 and 70 °C respectively and half life of protease was 70 °C for 4 h. N-terminal amino acid sequence of purified enzyme exhibited extensive homology with other thermostable alkaline proteases and inhibition by PMSF indicated serine type of protease. The Km and Vmax of protease for keratin substrate were 3.8 ± 0.5 mg ml−1 and 15.1 ± 1.6 ??m min−1 mg−1 and casein were 3.3 ± 0.4 mg ml−l and 15.6 ± 0.9 ??m min−1 mg−1 respectively. The enzyme efficiently dehaired buffalo and goat hide without damaging the collagen layer, which makes it a potential candidate for application in leather industry to avoid pollution problem associated with the use of chemicals in the industry. The enzyme also degraded chicken feathers in presence of reducing agent which can help poultry industry in management of keratin-rich waste and obtaining value added products.  相似文献   

5.
6.
We examine hemolymph ion regulation and the kinetic properties of a gill microsomal (Na+, K+)-ATPase from the intertidal hermit crab, Clibanarius vittatus, acclimated to 45‰ salinity for 10 days. Hemolymph osmolality is hypo-regulated (1102.5 ± 22.1 mOsm kg−1 H2O) at 45‰ but elevated compared to fresh-caught crabs (801.0 ± 40.1 mOsm kg−1 H2O). Hemolymph [Na+] (323.0 ± 2.5 mmol L−1) and [Mg2+] (34.6 ± 1.0 mmol L−1) are hypo-regulated while [Ca2+] (22.5 ± 0.7 mmol L−1) is hyper-regulated; [K+] is hyper-regulated in fresh-caught crabs (17.4 ± 0.5 mmol L−1) but hypo-regulated (6.2 ± 0.7 mmol L−1) at 45‰. Protein expression patterns are altered in the 45‰-acclimated crabs, although Western blot analyses reveal just a single immunoreactive band, suggesting a single (Na+, K+)-ATPase α-subunit isoform, distributed in different density membrane fractions. A high-affinity (Vm = 46.5 ± 3.5 U mg−1; K0.5 = 7.07 ± 0.01 μmol L−1) and a low-affinity ATP binding site (Vm = 108.1 ± 2.5 U mg−1; K0.5 = 0.11 ± 0.3 mmol L−1), both obeying cooperative kinetics, were disclosed. Modulation of (Na+, K+)-ATPase activity by Mg2+, K+ and NH4+ also exhibits site-site interactions, but modulation by Na+ shows Michaelis-Menten kinetics. (Na+, K+)-ATPase activity is synergistically stimulated up to 45% by NH4+ plus K+. Enzyme catalytic efficiency for variable [K+] and fixed [NH4+] is 10-fold greater than for variable [NH4+] and fixed [K+]. Ouabain inhibited ≈80% of total ATPase activity (KI = 464.7 ± 23.2 μmol L−1), suggesting that ATPases other than (Na+, K+)-ATPase are present. While (Na+, K+)-ATPase activities are similar in fresh-caught (around 142 nmol Pi min−1 mg−1) and 45‰-acclimated crabs (around 154 nmol Pi min−1 mg−1), ATP affinity decreases 110-fold and Na+ and K+ affinities increase 2-3-fold in 45‰-acclimated crabs.  相似文献   

7.
Molecularly-imprinted polymers in the form of microspheres were synthesized using the dispersion polymerization protocol; cyromazine was used as dummy template, while methacrylic acid, ethylene glycol dimethacrylate and acetonitrile (MeCN) were used as functional monomer, cross-linker, and porogen, respectively. When compared with the non-imprinted polymer, the molecularly-imprinted polymers (MIPs) showed outstanding affinity toward melamine in MeCN with a maximum binding concentration (Bmax) of 53.20 nmol mg−1 MIPs, imprinting effect of 4.6, and a dissociation constant (Kd) of 90.45 μM. After optimization of the molecularly-imprinted solid-phase extraction conditions, a new method was developed to determine the melamine in milk and feed with gas chromatography–mass spectrometry. The performance of this method has been evaluated in the tainted milk and feed in terms of recovery, precision, linearity, the limit of detection (LOD) and limit of quantitation (LOQ). Recovery ranged in samples from 93.1 to 101.3% with intra-day and inter-day relative standard deviation values below 5.34%. The LOD and LOQ of melamine in milk and feed were 0.01 μg mL−1 (μg g−1) and 0.05 μg mL−1 (μg g−1), respectively.  相似文献   

8.
Exocellulases play a key role in cleaving the accessible ends of cellulose molecules to release soluble glucose and cellobiose. To date, there have been no screens for exocellulase owing to assay protocol limitations, the high cost of substrates, and low activity of exocellulases compared with endocellulases. This study is the first to demonstrate direct screening for exocellulase activity using a robotic, high-throughput screening (HTS) system. Cell growth in 96-well plates was measured by monitoring optical density over 11–14 h at 37 °C with agitation. Fluorescence of methylumbelliferyl groups released from 4-methylumbelliferyl-β-D-cellobioside was determined using a VICTOR3 microplate reader. This new HTS system enabled activity verification of more than 104 clones per day. As a result, we obtained four exocellulases clones (CelEx-SF301, CelEx-SF309, CelEx-BR12 and CelEx-BR15) from 29,006 metagenomic fosmid clones that had previously been prepared from sweet potato field soil microbes and rumen fluid. This powerful approach could be effectively applied to screen various metagenomic resources for new enzymes.  相似文献   

9.
The response of rapid light–response curves (RLCs) of variable fluorescence to changes in short- and long-term photoacclimation status was studied in an estuarine benthic diatom. The diatom Nitzschia palea was grown under low- (LL, 20 μmol m−2 s−1) and high-light (HL, 400 μmol m−2 s−1) conditions, with the purpose of characterising the effects of long-term photoacclimation on (i) steady-state light–response curves (LC) of relative electron transport rate, rETR, (ii) the response of RLCs to changes in ambient irradiance (E, the irradiance to which the sample is acclimated to immediately before the RLCs), (iii) the relationship of RLCs to LC parameters and non-photochemical quenching (NPQ). Photoacclimation to LL and HL conditions induced distinct light–response patterns of rETR and NPQ. Higher growth light resulted in rETR vs. E curves with lower initial slopes (α, 0.591 μmol−1 m2 s vs. 0.661 μmol−1 m2 s, for HL and LL, respectively) and markedly higher maximum rates (rETRm, 95.9 vs. 29.3), reached under higher E levels (higher light-saturation coefficient, Ek: 162.4 μmol m−2 s−1 vs. 44.3 μmol m−2 s−1). Acclimation to HL induced bi-phasic NPQ vs. E curves, with minimum values reached under low E levels (15–25 μmol m−2 s−1) and not on dark-acclimated samples. The response of RLCs to changes in ambient irradiance varied with the long-term photoacclimation status of the samples. The initial slope, αRLC, decreased monotonically with E in LL cultures, from 0.68 to 0.25 μmol−1 m2 s, while varied bi-phasically in HL-acclimated samples. Typically, αRLC of HL cultures increased under low E, reaching a maximum of 0.61 μmol−1 m2 s under 25–55 μmol m−2 s−1, and decreased gradually under higher E levels to 0.25 μmol−1 m2 s. RLC maximum rETR, rETRm,RLC, and saturation coefficient Ek,RLC, increased with E following a saturation-like pattern, with the HL cultures presenting markedly higher values for all the E range (maximum rETRm,RLC values were 108.6 and 33.4 for HL and LL cultures, respectively). An inverse relationship was consistently found between αRLC and NPQ, both on LL and HL cultures, causing strong correlations (P < 0.001 in all cases) between NPQ and the high light-induced decrease of αRLC, ΔαRLC. RLCs were confirmed to also provide information on the long-term photoacclimation status, as significant correlations (P < 0.001 both for HL and LL cultures) were verified between Ek and an index based on RLC parameters, Êk, both for LL and HL cultures. These results reinforce the usefulness of RLCs as a tool for inferring on the short- and long-term photoacclimation status of samples with different long-term light histories, through the estimation of LC parameters and the monitoring of NPQ levels.  相似文献   

10.
Calcification and primary production responses to irradiance in the temperate coralline alga Lithothamnion corallioides were measured in summer 2004 and winter 2005 in the Bay of Brest. Coralline algae were incubated in dark and clear bottles exposed to different irradiances. Net primary production reached 1.5 μmol C g−1 dry wt h−1 in August and was twice as high as in January–February. Dark respiration showed significant seasonal variations, being three-fold higher in summer. Maximum calcification varied from 0.6 μmol g−1 dry wt h−1 in summer 2004 to 0.4 μmol g−1 dry wt h−1 in winter 2005. According to PE curves and the daily course of irradiance, estimated daily net production and calcification reached 131 μg C g−1 dry wt and 970 μg CaCO3 g−1 dry wt in summer 2004, and 36 μg C g−1 dry wt and 336 μg CaCO3 g−1 dry wt in winter 2005. The net primary production of natural L. corallioides populations in shallow waters was estimated at 10–600 g C m−2 y−1, depending on depth and algal biomass. The mean annual calcification of L. corallioides populations varied from 300 to 3000 g CaCO3 m−2. These results are similar to those reported for tropical coralline algae in terms of carbon and carbonate productivity. Therefore, L. corallioides can be considered as a key element of carbon and carbonate cycles in the shallow coastal waters where they live.  相似文献   

11.
Gamete production after exposure to hypoxia or sulphide was studied in the marine macroalga Ulva sp. collected in the Sacca di Goro, Italy. Experiments were carried out on discs (12 mm diameter) of thalli cultured in artificial sea water in laboratory at 20 ± 1 °C, 152 μmol m−2 s−1, 16 h photoperiod and 30‰ salinity. Dehydration of thallus was used as inducer of gametogenesis and growth and gamete release during recovery after 10, 20, 30 or 40 min dehydration (20 ± 1 °C, 25% humidity) were analysed. Unlike non-dehydrated thalli the dehydrated ones produced gametes. Thallus discs, non-dehydrated or subjected to 30 min dehydration, were exposed to hypoxia (1.78–4.02 μmol O2 L−1) or sulphide (1 mM) for 3, 5, or 7 days at 20 °C in the dark. Non-dehydrated and dehydrated thalli maintained in normoxic conditions in the dark were the controls. Gamete density was checked by counting at the end of the incubation period and during the subsequent 7 days of recovery under 16 h photoperiod in normoxic conditions. Non-dehydrated thalli maintained in normoxic conditions in the dark released gametes when returned to light suggesting that dark constitutes a stimulus to gamete production. The presence of gametes at the end of 3 days incubation of dehydrated thalli in normoxia demonstrated that gametogenesis can occur even in the dark. However, gametes were not present at the end of incubation in hypoxic and sulphidic conditions. Actually, during hypoxic incubation oxygen consumption in D-thalli was very low, only 0.117 × 10−3 μmol O2 mg−1 h−1 compared to 5.93 × 10−3 μmol O2 mg−1 h−1 in normoxia, denoting a reduction of the metabolic rate that could not sustain gametogenesis. During recovery after incubation in normoxic, hypoxic or sulphidic conditions densities of gametes from dehydrated thalli showed significant differences and resulted after hypoxia > after normoxia > after sulphide. Differences in non-dehydrated thalli were not significant. Dehydrated thalli, still green at the end of the incubation period, underwent blanching in the course of recovery in parallel to gamete production, while non-dehydrated thalli maintained their green colour even after exposure to sulphide. Our findings suggest that macroalga Ulva sp. can survive exposure to darkness, severe hypoxia and high sulphide levels and can maintain gamete production even when the exposure to these stress conditions is joined to dehydration.  相似文献   

12.
Olive-mill wastewater (OMW) was investigated for its suitability to serve as a medium for lipase production by Candida cylindracea NRRL Y-17506. The OMW that best supported enzyme production was characterized by low COD and low total sugars content. In shake flask batch cultures, OMW supplementation with 2.4 g l−1 NH4Cl and 3 g l−1 olive oil led to an enzyme activity of about 10 U ml−1. The addition of glucose or malt extract and supplements containing organic N (e.g., peptone, yeast extract) either depressed or did not affect the enzyme production. Further experiments were then performed in a 3-l stirred tank reactor to assess the impact of medium pH and stirring speed on the yeast enzyme activity. The lipase activity was low (1.8 U ml−1) when the pH was held constant at 6.5, significantly increased (18.7 U ml−1) with uncontrolled pH and was maximum (20.4 U ml−1) when the pH was let free to vary below 6.5. A stirring regime, that varied depending on the dissolved oxygen concentration in the medium, both prevented the occurrence of anoxic conditions during the exponential growth phase and enabled good lipase production (i.e., 21.6 U ml−1) and mean volumetric productivity (i.e., 123.5 U l−1 h−1).  相似文献   

13.
G protein-coupled receptor kinases (GRKs) control the signaling and activation of G protein-coupled receptors through phosphorylation. In this study, consensus substrate motifs for GRK2 were identified from the sequences of GRK2 protein substrates, and 17 candidate peptides were synthesized to identify peptide substrates with high affinity for GRK2. GRK2 appears to require an acidic amino acid at the −2, −3, or −4 positions and its consensus phosphorylation site motifs were identified as (D/E)X1–3(S/T), (D/E)X1–3(S/T)(D/E), or (D/E)X0–2(D/E)(S/T). Among the 17 peptide substrates examined, a 13-amino-acid peptide fragment of β-tubulin (DEMEFTEAESNMN) showed the highest affinity for GRK2 (Km, 33.9 μM; Vmax, 0.35 pmol min−1 mg−1), but very low affinity for GRK5. This peptide may be a useful tool for investigating cellular signaling pathways regulated by GRK2.  相似文献   

14.
The glycolytic enzyme triose phosphate isomerase from Schistosoma mansoni is a potential target for drugs and vaccines. Molecular modelling of the enzyme predicted that a Ser-Ala-Asp motif which is believed to be a helminth-specific epitope is exposed. The enzyme is dimeric (as judged by gel filtration and cross-linking), resistant to proteolysis and highly stable to thermal denaturation (melting temperature of 82.0 °C). The steady-state kinetic parameters are high (Km for dihydroxyacetone phosphate is 0.51 mM; Km for glyceraldehyde 3-phosphate is 1.1 mM; kcat for dihydroxyacetone phosphate is 7800 s−1 and kcat for glyceraldehyde 3-phosphate is 6.9 s−1).  相似文献   

15.

Background

Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs.

Methods

Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme–substrate and protein–protein interaction were analyzed by molecular docking and surface plasmon resonance analysis.

Results

Oxidation of the CP is fast (k+ 1 > 103 M− 1 s− 1), however the rate of reduction by GSH is slow (k′+ 2 = 12.6 M− 1 s− 1) even though molecular docking indicates a strong GSH–GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+ 1 > 103 M− 1 s− 1), but not by Trx. By surface plasmon resonance analysis, a KD = 5.2 μM was calculated for PDI–GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo.

Conclusions

GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates.

General significance

In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.  相似文献   

16.
The effects of inorganic nitrogen (N) source (NH4+, NO3 or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g−1 d−1), biomass allocation and plant morphology of C. indica were indifferent to N nutrition. However, NH4+ fed plants had higher concentrations of N in the tissues, lower concentrations of mineral cations and higher contents of chlorophylls in the leaves compared to NO3 fed plants suggesting a slight advantage of NH4+ nutrition. The NO3 fed plants had lower light-saturated rates of photosynthesis (22.5 μmol m−2 s−1) than NH4+ and NH4+/NO3 fed plants (24.4-25.6 μmol m−2 s−1) when expressed per unit leaf area, but similar rates when expressed on a chlorophyll basis. Maximum uptake rates (Vmax) of NO3 did not differ between treatments (24-35 μmol N g−1 root DW h−1), but Vmax for NH4+ was highest in NH4+ fed plants (81 μmol N g−1 root DW h−1), intermediate in the NH4NO3 fed plants (52 μmol N g−1 root DW h−1), and lowest in the NO3 fed plants (28 μmol N g−1 root DW h−1). Nitrate reductase activity (NRA) was highest in leaves and was induced by NO3 in the culture solutions corresponding to the pattern seen in fast growing terrestrial species. Plants fed with only NO3 had high NRA (22 and 8 μmol NO2 g−1 DW h−1 in leaves and roots, respectively) whereas NRA in NH4+ fed plants was close to zero. Plants supplied with both forms of N had intermediate NRA suggesting that C. indica takes up and assimilate NO3 in the presence of NH4+. Our results show that C. indica is relatively indifferent to inorganic N source, which together with its high growth rate contributes to explain the occurrence of this species in flooded wetland soils as well as on terrestrial soils. Furthermore, it is concluded that C. indica is suitable for use in different types of constructed wetlands.  相似文献   

17.
Our study aimed to test the ability of aquatic plants to use bicarbonate when acclimated to three different bicarbonate concentrations. To this end, we performed experiments with the three species Ceratophyllum demersum, Egeria densa, Lagarosiphon major to determine photosynthetic rates under varying bicarbonate concentrations. We measured bicarbonate use efficiency, photosynthetic performance and respiration. For all species, our results revealed that photosynthetic rates were highest in replicates grown at low alkalinity. Thus, E. densa had approx. five times higher rates at low (264 ± 15 μmol O2 g−1 DW h−1) than at high alkalinity (50 ± 27 μmol O2 g−1 DW h−1), C. demersum had three times higher rates (336 ± 95 and 120 ± 31 μmol O2 g−1 DW h−1), and L. major doubled its rates at low alkalinity (634 ± 114 and 322 ± 119 μmol O2 g−1 DW h−1). Similar results were obtained for bicarbonate use efficiency by E. densa (136 ± 44 and 43 ± 10 μmol O2 mequiv. L−1 g−1 DW h−1) and L. major (244 ± 29 and 82 ± 24 μmol O2 mequiv. L−1 g−1 DW h−1). As to C. demersum, efficiency was high but unaffected by alkalinity, indicating high adaptation ability to varied alkalinities. A pH drift experiment supported these results. Overall, our results suggest that the three globally widespread worldwide species of our study adapt to low inorganic carbon availability by increasing their efficiency of bicarbonate use.  相似文献   

18.
We tested the effects of UV radiation (UVR) and nitrate limitation on the production of dimethylsulfide (DMS), particulate dimethylsulfoniopropionate (DMSPp), and particulate dimethylsulfoxide (DMSOp) in natural seawater from the Gulf of Mexico and in phytoplankton cultures. DMS/Chl a ratios in PAR-only and PAR + UV-exposed seawater were 0.44–2.0 and 0.46–1.9 nmol DMS μg−1 Chl a, respectively, whereas the ratios in cultures of Amphidinium carterae were 1.0–2.2 nmol μg−1 in PAR-exposed samples and 0.91–2.1 nmol μg−1 in PAR + UV-exposed samples. These results suggested that UVR did not substantially affect DMS/Chl a ratios in seawater and A. carterae culture samples. Similarly, UVR had no significant effect on DMSOp/Chl a in seawater samples (0.83–1.6 nmol DMSO μg−1 Chl a for PAR + UV vs. 0.70–1.5 nmol μg−1 for PAR-exposed seawater samples, respectively) or in A. carterae cultures (0.20–1.3 and 0.19–0.88 nmol DMSO μg−1 Chl a in PAR + UV- and PAR-exposed cultures, respectively). In an experiment with the diatom, Thalassiosira oceanica, the culture was grown in high nitrate (30 μM) or low nitrate (6 μM) media and exposed to PAR-only or PAR + UV. The low nitrate, PAR-only samples showed an increase of intracellular dimethylsulfoniopropionate (DMSP) concentration from 2.1 to 15 mmol L−1 in 60 h, but the increase occurred only after cultures reached the stationary phase. Cultures of T. oceanica grown under UVR had lower growth rates than those under PAR-only (μ′ = 0.17 and 0.32 d−1, respectively) and perhaps did not experience severe nitrate limitation even in the low nitrate treatment. These results suggest that the elevated UVR in low nitrate environments could result in reduction of DMSP in some species, whereas DMSP concentrations would not be affected in eutrophic areas.  相似文献   

19.
A novel β-mannanase gene (CsMan5A) was cloned from Chaetomium sp. CQ31 and expressed in Pichia pastoris. It had an open reading frame of 1251 bp encoding 416 amino acids and contained two introns. The deduced amino acid sequence shared the highest similarity (73%) with the β-mannanase from Emericella nidulans and belongs to glycosyl hydrolase family 5. The recombinant β-mannanase (CsMan5A) was secreted at extremely high levels of 50,030 U mL−1 and 6.1 mg mL−1 in high cell density fermentor. The purified enzyme was optimally active at pH 5.0 and 65 °C and displayed broad pH stability (pH 5.0-11.0) and exhibited specificity towards locust bean gum (Km = 3.1 mg mL−1), guar gum (Km = 9.3 mg mL−1) and konjac powder (Km = 10.5 mg mL−1). It efficiently degraded mannan polysaccharides into mannose and mannooligosacccharides, and also hydrolyzed mannotriose and mannotetraose. These properties make CsMan5A highly useful in food, feed and paper/pulp industries.  相似文献   

20.
A novel assay method was investigated for urease (EC 3.5.1.5) from Pseudomonas aeruginosa and Canavalia ensiformis by Fourier transform infrared spectroscopy. This enzyme catalyzed the hydrolysis of urea in phosphate buffer in deuterium oxide (2H2O). The intensities of the bicarbonate bands maxima at 1625 and 1365 cm−1 and of the amide I band at 1605 cm−1 were measured as a function of time to study the kinetics of urea hydrolysis. The extinction coefficients ε of urea and bicarbonate were determined to be 0.72, 0.48, and 0.56 mM−1 cm−1 at 1625, 1605, and 1365 cm−1, respectively. The initial velocity is proportional to the enzyme concentration by using the ureases from both C.ensiformis and P. aeruginosa. The kinetic constants (Vmax, Km, and Kcat) determined by Lineweaver-Burk plot were 532.2  U mg−1 protein, 6.4 mM, and 806.36 s−1, respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on glutamate dehydrogenase in aqueous media. Therefore, this spectroscopic method is highly suited to assay for urease activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of urease activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号