首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Several well-established fluorescence methods depend on environment-sensitive probes that report about molecular properties of their local environment. For reliable interpretation of experiments, careful characterization of probes’ behavior is required. In this study, bleaching-corrected polarized fluorescence microspectroscopy with nanometer spectral peak position resolution was applied to characterize conformations of two alkyl chain-labeled 7-nitro-2-1,3-benzoxadiazol-4-yl phospholipids in three model membranes, representing the three main lipid phases. The combination of polarized and spectral detection revealed two main probe conformations with their preferential fluorophore dipole orientations roughly parallel and perpendicular to membrane normal. Their peak positions were separated by 2–6 nm because of different local polarities and depended on lipid environment. The relative populations of conformations, estimated by a numerical model, indicated a specific sensitivity of the two probes to molecular packing with cholesterol. The coexistence of probe conformations could be further exploited to investigate membrane organization below microscopy spatial resolution, such as lipid rafts. With the addition of polarized excitation or detection to any environment-sensitive fluorescence imaging technique, the conformational analysis can be directly applied to explore local membrane complexity.  相似文献   

2.
A remarkable heterogeneity is often observed in the spectroscopic properties of environment-sensitive fluorescence probes in phospholipid bilayers. To explain its origin, we provided a detailed investigation of the fluorescence excitation and emission spectra of 4'-dimethylamino-3-hydroxyflavone (probe F) in bilayer vesicles with the variations of fatty acid composition, polar heads, temperature, and cholesterol content. Probe F, due to excited-state intramolecular proton transfer, exhibits two bands in emission that are differently sensitive to intermolecular interactions-thereby allowing us to distinguish universal (dipole-dipole) and specific (H-bonding) interactions within the bilayer. Spectroscopic, quenching, and anisotropy data suggest the presence of two forms of probe F at different locations in the bilayer: an H-bond free form located below sn(1)-carbonyls and an H-bonded form located at the polar membrane interface. We provide a quantitative analysis of the distribution of the probe between these two locations as well as the polarity of these locations, and show that both the distribution and the polarity contribute to the probe response. Moreover, analysis of literature data on other environment-sensitive probes (Prodan, Laurdan, Nile Red, NBD lipids, etc.) in lipid bilayers allows us to suggest that the bimodal distribution in the lipid bilayer is probably a general feature of low-polar molecules with polar groups capable of H-bonding interactions.  相似文献   

3.
The precise molecular mechanisms by which cells transduce a mechanical stimulus into an intracellular biochemical response have not yet been established. Here, we show for the first time that the fluorescence emission of an environment-sensitive membrane probe Laurdan is modulated by mechanical strain of the lipid bilayer membrane. We have measured fluorescence emission of Laurdan in phospholipid vesicles of 30, 50, and 100 nm diameter to show that osmotically induced membrane tension leads to an increase in polarity (hydration depth) of the phospholipid bilayer interior. Our data indicate that the general polarization of Laurdan emission is linearly dependent on membrane tension. We also show that higher membrane curvature leads to higher hydration levels. We anticipate that the proposed method will facilitate future studies of mechanically induced changes in physical properties of lipid bilayer environment both in vitro and in vivo.  相似文献   

4.
Single-vesicle fusion assays in vitro are useful tools for examining mechanisms of membrane fusion at the molecular level mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). This approach allows the experimentalist to define the lipid and protein composition of the two fusing membranes and perform experiments under highly controlled conditions. In previous experiments, in which we reconstituted a SNARE acceptor complex into supported membranes and observed the docking and fusion of fluorescently labeled synaptobrevin proteoliposomes by total internal reflection fluorescence microscopy with millisecond time resolution, we were able to determine the optimal number of SNARE complexes needed for fast fusion. Here, we utilize this assay in combination with polarized total internal reflection fluorescence microscopy to investigate topology changes that vesicles undergo after the onset of fusion. The theory that describes the fluorescence intensity during the transformation of a single vesicle from a spherical particle to a flat membrane patch is developed and confirmed by experiments with three different fluorescent probes. Our results show that on average, the fusing vesicles flatten and merge into the planar membrane within 8 ms after fusion starts.  相似文献   

5.
Herein, we developed an approach for monitoring membrane binding and insertion of peptides using a fluorescent environment-sensitive label of the 3-hydroxyflavone family. For this purpose, we labeled the N-terminus of three synthetic peptides, melittin, magainin 2 and poly-l-lysine capable to interact with lipid membranes. Binding of these peptides to lipid vesicles induced a strong fluorescence increase, which enabled to quantify the peptide-membrane interaction. Moreover, the dual emission of the label in these peptides correlated well with the depth of its insertion measured by the parallax quenching method. Thus, in melittin and magainin 2, which show deep insertion of their N-terminus, the label presented a dual emission corresponding to a low polar environment, while the environment of the poly-l-lysine N-terminus was rather polar, consistent with its location close to the bilayer surface. Using spectral deconvolution to distinguish the non-hydrated label species from the hydrated ones and two photon fluorescence microscopy to determine the probe orientation in giant vesicles, we found that the non-hydrated species were vertically oriented in the bilayer and constituted the best indicators for evaluating the depth of the peptide N-terminus in membranes. Thus, this label constitutes an interesting new tool for monitoring membrane binding and insertion of peptides.  相似文献   

6.
We review the main trends in the development of fluorescence probes to obtain information about the structure, dynamics, and interactions in biomembranes. These probes are efficient for studying the microscopic analogs of viscosity, polarity, and hydration, as well as the molecular order, environment relaxation, and electrostatic potentials at the sites of their location. Progress is being made in increasing the information content and spatial resolution of the probe responses. Multichannel environment-sensitive probes that can distinguish between different membrane physicochemical properties through multiple spectroscopic parameters show considerable promise.  相似文献   

7.
We use a number of computational and experimental approaches to investigate the membrane topology of the membrane-interacting C-terminal domain of the HIV-1 gp41 fusion protein. Several putative transmembrane regions are identified using hydrophobicity analysis based on the Wimley-White scales, including the membrane-proximal external region (MPER). The MPER region is an important target for neutralizing anti-HIV monoclonal antibodies and is believed to have an interfacial topology in the membrane. To assess the possibility of a transmembrane topology of MPER, we examined the membrane interactions of a peptide corresponding to a 22-residue stretch of the MPER sequence (residues 662–683) using fluorescence spectroscopy and oriented circular dichroism. In addition to the previously reported interfacial location, we identify a stable transmembrane conformation of the peptide in synthetic lipid bilayers. All-atom molecular dynamics simulations of the MPER-derived peptide in a lipid bilayer demonstrate a stable helical structure with an average tilt of 24 degrees, with the five tryptophan residues sampling different environments inside the hydrocarbon core of the lipid bilayer, consistent with the observed spectral properties of intrinsic fluorescence. The degree of lipid bilayer penetration obtained by computer simulation was verified using depth-dependent fluorescence quenching of a selectively attached fluorescence probe. Overall, our data indicate that the MPER sequence can have at least two stable conformations in the lipid bilayer, interfacial and transmembrane, and suggest a possibility that external perturbations can switch the topology during physiological functioning.  相似文献   

8.
We characterized the recently introduced environment-sensitive fluorescent membrane probe based on 3-hydroxyflavone, F2N12S, in model lipid membranes displaying liquid disordered (Ld) phase, liquid ordered (Lo) phase, or their coexistence. Steady-state fluorescence studies in large unilamellar vesicles show that the probe dual emission drastically changes with the lipid bilayer phase, which can be correlated with the difference in their hydration. Using two-photon excitation microscopy on giant unilamellar vesicles, the F2N12S probe was found to bind both Ld and Lo phases, allowing visualization of the individual phases from the fluorescence intensity ratio of its two emission bands. By using a linearly polarized excitation light, a strong photoselection was observed for F2N12S in the Lo phase, indicating that its fluorophore is nearly parallel to the lipid chains of the bilayer. In contrast, the absence of the photoselection with the Ld phase indicated no predominant orientation of the probe in the Ld phase. Comparison of the present results with those reported previously for F2N12S in living cells suggests a high content of the Lo phase in the outer leaflet of the cell plasma membranes. Taking into account the high selectivity of F2N12S for the cell plasma membranes and its suitability for both single- and two-photon excitation, applications of this probe to study membrane lateral heterogeneity in biological membranes are foreseen.  相似文献   

9.
The spectroscopic properties of a new series of fatty acid analogs in which a dipyrrometheneboron difluoride fluorophore forms a segment of the acyl methylene chain are presented and their characteristics as fluorescent membrane probes are examined. When incorporated as a low mole fraction component in model phospholipid membranes, the probes retain the principal characteristics of the parent fluorophore: green fluorescence emission with high quantum yield, extensive spectral overlap, and low environmental sensitivity. The fluorescence quantum yield is typically two to three times that of comparable membrane probes based on the nitrobenzoxadiazole fluorophore. The spectral overlap results in a calculated F?rster energy transfer radius (Ro) of about 57 A. Consequently, increasing fluorescence depolarization and quenching are observed as the mole fraction of the probe species incorporated in the membrane is increased. Low environmental sensitivity is manifested by retention of high quantum yield emission in aqueous dispersions of fatty acids. Partition coefficient data derived from fluorescence anisotropy measurements and iodide quenching experiments indicate that in the presence of fluid phase phospholipid bilayers the aqueous fraction of fatty acid is very small. Fluorescence intensity and anisotropy responses to phospholipid phase transitions are examined and found to be indicative of nonrandom fluorophore distribution in the gel phase. It is concluded that the spectroscopic properties of the fatty acid probes and their phospholipid derivatives are particularly suited to applications in fluorescence imaging of cellular lipid distribution and membrane level studies of lateral lipid segregation.  相似文献   

10.
Two dimensional phase separation in lipid membranes and cell membranes is of interest to biology because of the idea of membrane rafts — compositionally heterogeneous liquid crystal domains with cellular functions. Few quantitative tools exist for characterizing and differentiating coexisting phases on a molecular scale. Lipid acyl chain order can be measured directly using deuterium nuclear magnetic resonance spectroscopy (2H NMR), or inferred using fluorescence microscopy along with the environment-sensitive probe Laurdan. We found a linear relationship between the 2H NMR order parameter and Laurdan generalized polarization. This observed correlation supports the idea that lipid chain order is tightly associated with the amount and dynamics of water molecules at the glycerol backbone level of the membrane.  相似文献   

11.
We report the detection of heterogeneities in the diffusion of lipid molecules for the three-component mixture dipalmitoyl-PC/dilauroyl-PC/cholesterol, a chemically simple lipid model for the mammalian plasma membrane outer leaflet. Two-color fluorescence correlation spectroscopy (FCS) was performed on giant unilamellar vesicles (GUVs) using fluorescent probes that have differential lipid phase partition behavior—DiO-C18:2 favors disordered fluid lipid phases, whereas DiI-C20:0 prefers spatially ordered lipid phases. Simultaneously-obtained fluorescence autocorrelation functions from the same excitation volume for each dye showed that, depending on the lipid composition of this ternary mixture, the two dyes exhibited different lateral mobilities in regions of the phase diagram with previously proposed submicroscopic two-phase coexistence. In one-phase regions, both dyes reported identical diffusion coefficients. Two-color FCS thus may be detecting local membrane heterogeneities at size scales below the optical resolution limit, either due to short-range order in a single phase or due to submicroscopic phase separation.  相似文献   

12.
We investigated three probe design strategies used in quantitative polymerase chain reaction (PCR) for sensitivity in detection of the PCR amplicon. A plasmid with a 120-bp insert served as the DNA template. The probes were TaqMan, conventional molecular beacon (MB), and shared-stem molecular beacon (ATssMB and GCssMB). A shared-stem beacon probe combines the properties of a TaqMan probe and a conventional molecular beacon. It was found that the overall sensitivities for the four PCR probes are in the order of MB>ATssMB>GCssMB>TaqMan. The fluorescence quantum yield measurements indicate that incomplete or partial enzymatic cleavage catalyzed by Taq polymerase is the likely cause of the low sensitivities of two shared-stem beacons when compared with the conventional beacon probe. A high-fluorescence background associated with the current TaqMan probe sequence contributes to the relatively low detection sensitivity and signal-to-background ratio. The study points out that the nucleotide environment surrounding the reporting fluorophore can strongly affect the probe performance in real-time PCR.  相似文献   

13.
Steady-state polarization-resolved fluorescence imaging is used to analyze the molecular orientational order behavior of rigidly labeled major histocompatibility complex class I (MHC I) proteins and lipid probes in cell membranes of living cells. These fluorescent probes report the orientational properties of proteins and their surrounding lipid environment. We present a statistical study of the molecular orientational order, modeled as the width of the angular distribution of the molecules, for the proteins in the cell endomembrane and plasma membrane, as well as for the lipid probes in the plasma membrane. We apply this methodology on cells after treatments affecting the actin and microtubule networks. We find in particular opposite orientational order changes of proteins and lipid probes in the plasma membrane as a response to the cytoskeleton disruption. This suggests that MHC I orientational order is governed by its interaction with the cytoskeleton, whereas the plasma membrane lipid order is governed by the local cell membrane morphology.  相似文献   

14.
Localization-based superresolution optical imaging is rapidly gaining popularity, yet limited availability of genetically encoded photoactivatable fluorescent probes with distinct emission spectra impedes simultaneous visualization of multiple molecular species in living cells. We introduce PAmKate, a monomeric photoactivatable far-red fluorescent protein, which facilitates simultaneous imaging of three photoactivatable proteins in mammalian cells using fluorescence photoactivation localization microscopy (FPALM). Successful probe identification was achieved by measuring the fluorescence emission intensity in two distinct spectral channels spanning only ∼100 nm of the visible spectrum. Raft-, non-raft-, and cytoskeleton-associated proteins were simultaneously imaged in both live and fixed fibroblasts coexpressing Dendra2-hemagglutinin, PAmKate-transferrin receptor, and PAmCherry1-β-actin fusion constructs, revealing correlations between the membrane proteins and membrane-associated actin structures.  相似文献   

15.
The fluorescence anisotropy decay of four different probes in bilayers of dimyristoylphosphatidylcholine was measured. The probes are diphenylhexatriene, diphenyloctatetraene, trimethylaminodiphenylhexatriene, and trans-parinaric acid. The data for each probe were analyzed in terms of two orientational order parameters, the ordinary order parameter and a higher one, and two rotational diffusion coefficients. The order parameters are largely independent of probe size, but depend on the position of the probes along the membrane normal, thus reflecting the profile of lipid order. If a probe is located in the plateau region of lipid order, its order parameters are interpreted as representing the rigid-body order of lipids. According to this interpretation, the total lipid order in the plateau region originates about equally from rigid-body order and conformational order. The two order parameters obtained for each probe are used to derive approximate angular distributions of the probe molecules. The diffusion coefficient for rotation about the long molecular axis is found to be infinitely large, indicating unhindered rotation about this axis. The diffusion coefficient for rotation about the short molecular axes is evaluated for a viscosity which results as 0.2 poise. This viscosity for rotational diffusion is an order of magnitude smaller than the viscosity for lateral diffusion indicating that at least two viscosities are required to characterize the fluidity of a lipid membrane.Abbreviations FAD fluorescence anisotropy decay - DMR deuterium magnetic resonance - ESR electron spin resonance - DMPC dimyristoylphosphatidylcholine - DPPC dipalmitoylphosphatidylcholine - DPH 1,6-diphenyl-1,3,5-hexatriene - DPO 1,6-diphenyl-1,3,5,7-octatetraene - TMA-DPH 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene - tPnA trans-parinaric acid - NPN N-phenyl-1-naphthylamine - BBO 2,5-bis(4-biphenylyl)oxazole  相似文献   

16.
Depth-dependent fluorescence quenching in membranes is playing an increasingly important role in the determination of the low resolution structure of membrane proteins. This paper presents a graphical way of visualizing membrane quenching caused by lipid-attached bromines or spin labels with the help of a depth-dependent fluorescence quenching profile. Two methods are presently available to extract information on membrane penetration from quenching: the parallax method (PM; ) and distribution analysis (DA; A. S. Biophys. J. 64:290a (Abstr.); A. S. Methods Enzymol. 278:462-473). Analysis of various experimental and simulated data by these two methods is presented. The effects of uncertainty in the local concentration of quenching lipids (due to protein shielding or nonideality in lipid mixing), the existence of multiple conformations of membrane-bound protein, incomplete binding, and uncertainty in the fluorescence in nonquenching lipid are described. Regardless of the analytical form of the quenching profile (Gaussian function for DA or truncated parabola for PM), it has three primary characteristics: position on the depth scale, area, and width. The most important result, not surprisingly, is that one needs three fitting parameters to describe the quenching. This will keep the measures of the quenching profile independent of each other resulting in the reduction of systematic errors in depth determination. This can be achieved by using either DA or a suggested modification of the PM that introduces a third parameter related to quenching efficiency. Because DA utilizes a smooth fitting function, it offers an advantage for the analysis of deeply penetrating probes, where the effects of transleaflet quenching should be considered.  相似文献   

17.
We present a polarimetric two-photon microscopy technique to quantitatively image the local static molecular orientational behavior in lipid and cell membranes. This approach, based on a tunable excitation polarization state complemented by a polarized readout, is easily implementable and does not require hypotheses on the molecular angular distribution such as its mean orientation, which is a main limitation in traditional fluorescence anisotropy measurements. The method is applied to the investigation of the molecular angular distribution in giant unilamellar vesicles formed by liquid-ordered and liquid-disordered micro-domains, and in COS-7 cell membranes. The highest order contrast between ordered and disordered domains is obtained for dyes locating within the membrane acyl chains.  相似文献   

18.
The partitioning of fluorescence probes into intracellular organelles poses a major problem when fluorescence methods are applied to evaluate the fluidity properties of cell plasma membranes with intact cells. This work describes a method for resolution of fluidity parameters of the plasma membrane in intact cells labelled with the fluorescence polarization probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The method is based on selective quenching, by nonradiative energy transfer, of the fluorescence emitted from the plasma membrane after tagging the cell with a suitable membrane impermeable electron acceptor. Such selective quenching is obtained by chemical binding of 2,4,6-trinitrobenzene sulfonate (TNBS), or by incorporation of N-bixinoyl glucosamine (BGA) to DPH-labelled cells. The procedures for determination of lipid fluidity in plasma membranes of intact cells by this method are simple and straightforward.  相似文献   

19.
 Spectral karyotyping (SKY) is a new fluorescence in situ hybridisation (FISH) technique that refers to the molecular cytogenetic analysis of metaphase preparations by means of spectral microscopy. For SKY of human metaphase chromosomes, 24 chromosome-specific painting probes are used in just one FISH experiment. The probes are labelled by degenerate oligonucleotide-primed PCR using three fluorochromes and two haptens. Each probe is differentially labelled with one, two, three or four fluorescent dyes, resulting in a unique spectral signature for every chromosome. After in situ hybridisation and immunodetection, a spectral image is acquired using a conventional fluorescence light microscope equipped with a custom-designed triple-bandpass filter and the SpectraCube, which is able to retrieve spectral information for every pixel in a digital CCD image. The 24-colour display and chromosome classification are based on the unique emission spectra of the chromosomes. Together with chromosome banding information from an inverted DAPI or a G-banded metaphase, a comprehensive overview of chromosomal aberrations is presented. Accepted: 3 July 1997  相似文献   

20.
We report the detection of heterogeneities in the diffusion of lipid molecules for the three-component mixture dipalmitoyl-PC/dilauroyl-PC/cholesterol, a chemically simple lipid model for the mammalian plasma membrane outer leaflet. Two-color fluorescence correlation spectroscopy (FCS) was performed on giant unilamellar vesicles (GUVs) using fluorescent probes that have differential lipid phase partition behavior--DiO-C18:2 favors disordered fluid lipid phases, whereas DiI-C20:0 prefers spatially ordered lipid phases. Simultaneously-obtained fluorescence autocorrelation functions from the same excitation volume for each dye showed that, depending on the lipid composition of this ternary mixture, the two dyes exhibited different lateral mobilities in regions of the phase diagram with previously proposed submicroscopic two-phase coexistence. In one-phase regions, both dyes reported identical diffusion coefficients. Two-color FCS thus may be detecting local membrane heterogeneities at size scales below the optical resolution limit, either due to short-range order in a single phase or due to submicroscopic phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号