首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion charge pairs and hydrogen bonds have been extensively studied for their roles in stabilizing protein complexes and in steering the process of protein association. Recently, it has become clear that some protein complexes are dynamic in that they interconvert between several alternate configurations. We have previously characterized one such system: the EphA2:SHIP2 SAM-SAM heterodimer by solution NMR. Here we carried out extensive all-atom molecular-dynamics simulations on a microsecond time-scale starting with different NMR-derived structures for the complex. Transitions are observed between several discernible configurations at average time intervals of 50–100 ns. The domains reorient relative to one another by substantial rotation and a slight shifting of the interfaces. Bifurcated and intermediary salt-bridge and hydrogen-bond interactions play a role in the transitions in a process that can be described as moving along a “monkey-bar”. We notice an increased density of salt bridges near protein interaction surfaces that appear to enable these transitions, also suggesting why the trajectories can become kinetically hindered in regions where fewer of such interactions are possible. In this context, even microsecond molecular-dynamics simulations are not sufficient to sample the energy landscape unless the structures remain close to their experimentally derived low-energy configurations.  相似文献   

2.
The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in that it initially involves transitions to surfaces with fewer, less favorable contacts compared with those seen in the fully formed complex.  相似文献   

3.
Brokaw JB  Chu JW 《Biophysical journal》2010,99(10):3420-3429
We characterized the conformational change of adenylate kinase (AK) between open and closed forms by conducting five all-atom molecular-dynamics simulations, each of 100 ns duration. Different initial structures and substrate binding configurations were used to probe the pathways of AK conformational change in explicit solvent, and no bias potential was applied. A complete closed-to-open and a partial open-to-closed transition were observed, demonstrating the direct impact of substrate-mediated interactions on shifting protein conformation. The sampled configurations suggest two possible pathways for connecting the open and closed structures of AK, affirming the prediction made based on available x-ray structures and earlier works of coarse-grained modeling. The trajectories of the all-atom molecular-dynamics simulations revealed the complexity of protein dynamics and the coupling between different domains during conformational change. Calculations of solvent density and density fluctuations surrounding AK did not show prominent variation during the transition between closed and open forms. Finally, we characterized the effects of local unfolding of an important hinge near Pro177 on the closed-to-open transition of AK and identified a novel mechanism by which hinge unfolding modulates protein conformational change. The local unfolding of Pro177 hinge induces alternative tertiary contacts that stabilize the closed structure and prevent the opening transition.  相似文献   

4.
Molecular simulations are carried out on the Immunoglobulin 27 domain of the titin protein. The energy landscape is mapped out using an implicit solvent model, and molecular dynamics simulations are run with the solvent explicitly modeled. Stretching a protein is shown to produce a dynamic energy landscape in which the energy minima move in configuration space, change in depth, and are created and destroyed. The connections of these landscape changes to the mechanical unfolding of the Immunoglobulin 27 domain are addressed. Hydrogen bonds break upon stretching by either intrabasin processes associated with the movement of energy minima, or interbasin processes associated with transitions between energy minima. Intrabasin changes are reversible and dominate for flexible interactions, whereas interbasin changes are irreversible and dominate for stiff interactions. The most flexible interactions are Glu-Lys salt bridges, which can act like tethers to bind strands even after all backbone interactions between the strands have been broken. As the protein is stretched, different types of structures become the lowest energy structures, including structures that incorporate nonnative hydrogen bonds. Structures that have flat energy versus elongation profiles become the lowest energy structures at elongations of several Angstroms, and are associated with the unfolding intermediate state observed experimentally.  相似文献   

5.
We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5′ ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.  相似文献   

6.
7.
Lei H  Su Y  Jin L  Duan Y 《Biophysical journal》2010,99(10):3374-3384
Protein folding is a complex multidimensional process that is difficult to illustrate by the traditional analyses based on one- or two-dimensional profiles. Analyses based on transition networks have become an alternative approach that has the potential to reveal detailed features of protein folding dynamics. However, due to the lack of successful reversible folding of proteins from conventional molecular-dynamics simulations, this approach has rarely been utilized. Here, we analyzed the folding network from several 10 μs conventional molecular-dynamics reversible folding trajectories of villin headpiece subdomain (HP35). The folding network revealed more complexity than the traditional two-dimensional map and demonstrated a variety of conformations in the unfolded state, intermediate states, and the native state. Of note, deep enthalpic traps at the unfolded state were observed on the folding landscape. Furthermore, in contrast to the clear separation of the native state and the primary intermediate state shown on the two-dimensional map, the two states were mingled on the folding network, and prevalent interstate transitions were observed between these two states. A more complete picture of the folding mechanism of HP35 emerged when the traditional and network analyses were considered together.  相似文献   

8.
Neurotransmitter:sodium symporter (NSS) proteins are secondary Na+-driven active transporters that terminate neurotransmission by substrate uptake. Despite the availability of high-resolution crystal structures of a bacterial homolog of NSSs—Leucine Transporter (LeuT)—and extensive computational and experimental structure-function studies, unanswered questions remain regarding the transport mechanisms. We used microsecond atomistic molecular-dynamics (MD) simulations and free-energy computations to reveal ion-controlled conformational dynamics of LeuT in relation to binding affinity and selectivity of the more extracellularly positioned Na+ binding site (Na1 site). In the course of MD simulations starting from the occluded state with bound Na+, but in the absence of substrate, we find a spontaneous transition of the extracellular vestibule of LeuT into an outward-open conformation. The outward opening is enhanced by the absence of Na1 and modulated by the protonation state of the Na1-associated Glu-290. Consistently, the Na+ affinity for the Na1 site is inversely correlated with the extent of outward-open character and is lower than in the occluded state with bound substrate; however, the Na1 site retains its selectivity for Na+ over K+ in such conformational transitions. To the best of our knowledge, our findings shed new light on the Na+-driven transport cycle and on the symmetry in structural rearrangements for outward- and inward-open transitions.  相似文献   

9.
We develop coarse-grained models and effective energy functions for simulating thermodynamic and structural properties of multiprotein complexes with relatively low binding affinity (Kd > 1 μM) and apply them to binding of Vps27 to membrane-tethered ubiquitin. Folded protein domains are represented as rigid bodies. The interactions between the domains are treated at the residue level with amino-acid-dependent pair potentials and Debye-Hückel-type electrostatic interactions. Flexible linker peptides connecting rigid protein domains are represented as amino acid beads on a polymer with appropriate stretching, bending, and torsion-angle potentials. In simulations of membrane-attached protein complexes, interactions between amino acids and the membrane are described by residue-dependent short-range potentials and long-range electrostatics. We parameterize the energy functions by fitting the osmotic second virial coefficient of lysozyme and the binding affinity of the ubiquitin-CUE complex. For validation, extensive replica-exchange Monte Carlo simulations are performed of various protein complexes. Binding affinities for these complexes are in good agreement with the experimental data. The simulated structures are clustered on the basis of distance matrices between two proteins and ranked according to cluster population. In ∼ 70% of the complexes, the distance root-mean-square is less than 5 Å from the experimental structures. In ∼ 90% of the complexes, the binding interfaces on both proteins are predicted correctly, and in all other cases at least one interface is correct. Transient and nonspecifically bound structures are also observed. With the validated model, we simulate the interaction between the Vps27 multiprotein complex and a membrane-tethered ubiquitin. Ubiquitin is found to bind preferentially to the two UIM domains of Vps27, but transient interactions between ubiquitin and the VHS and FYVE domains are observed as well. These specific and nonspecific interactions are found to be positively cooperative, resulting in a substantial enhancement of the overall binding affinity beyond the ∼ 300 μM of the specific domains. We also find that the interactions between ubiquitin and Vps27 are highly dynamic, with conformational rearrangements enabling binding of Vps27 to diverse targets as part of the multivesicular-body protein-sorting pathway.  相似文献   

10.
Despa F  Berry RS 《Biophysical journal》2008,95(9):4241-4245
Recent molecular-dynamics simulations have demonstrated that the use of an empirical hydrophobic potential displaying two minima, i.e., one for hydrophobes in close contact and one for hydrophobes separated by a hydration layer, leads to a marked improvement in protein structure prediction. This potential is supported by experimental data and simulations, but its physical origin and mathematical formulation have not been derived as yet. Here we show that water-mediated attraction (the “wetting regime”) between two hydrophobic molecules originates in the interaction between the dipoles induced at the surface of the hydrophobes by the surrounding structured water. As an example, we derive the effective hydrophobic potential that describes the interaction between two methane molecules, a classical model of a double-well energy function. We found an excellent agreement with published results from all-atom, explicit solvent molecular-dynamics simulations of this interaction. The approach presented here provides the theoretical basis for implementing an adequate representation of the wetting regime of the hydrophobic interactions in force fields used for structure prediction. The results are useful for modeling both protein folding and binding.  相似文献   

11.
Regulatory protein access to the DNA duplex ‘interior’ depends on local DNA ‘breathing’ fluctuations, and the most fundamental of these are thermally-driven base stacking-unstacking interactions. The smallest DNA unit that can undergo such transitions is the dinucleotide, whose structural and dynamic properties are dominated by stacking, while the ion condensation, cooperative stacking and inter-base hydrogen-bonding present in duplex DNA are not involved. We use dApdA to study stacking-unstacking at the dinucleotide level because the fluctuations observed are likely to resemble those of larger DNA molecules, but in the absence of constraints introduced by cooperativity are likely to be more pronounced, and thus more accessible to measurement. We study these fluctuations with a combination of Molecular Dynamics simulations on the microsecond timescale and Markov State Model analyses, and validate our results by calculations of circular dichroism (CD) spectra, with results that agree well with the experimental spectra. Our analyses show that the CD spectrum of dApdA is defined by two distinct chiral conformations that correspond, respectively, to a Watson–Crick form and a hybrid form with one base in a Hoogsteen configuration. We find also that ionic structure and water orientation around dApdA play important roles in controlling its breathing fluctuations.  相似文献   

12.
《Biophysical journal》2022,121(11):2069-2077
In the erythrocyte membrane, the interactions between glycophorin A (GPA) and Band 3 are associated strongly with the biological function of the membrane and several blood disorders. In this work, using coarse-grained molecular-dynamics simulations, we systematically investigate the effects of cholesterol and phosphatidylinositol-4,5-bisphosphate (PIP2) on the interactions of GPA with Band 3 in the model erythrocyte membranes. We examine the dynamics of the interactions of GPA with Band 3 in different lipid bilayers on the microsecond time scale and calculate the binding free energy between GPA and Band 3. The results indicate that cholesterols thermodynamically favor the binding of GPA to Band 3 by increasing the thickness of the lipid bilayer and by producing an effective attraction between the proteins due to the depletion effect. Cholesterols also slow the kinetics of the binding of GPA to Band 3 by reducing the lateral mobility of the lipids and proteins and may influence the binding sites between the proteins. The anionic PIP2 lipids prefer binding to the surface of the proteins through electrostatic attraction between the PIP2 headgroup and the positively charged residues on the protein surface. Ions in the solvent facilitate PIP2 aggregation, which promotes the binding of GPA to Band 3.  相似文献   

13.
Disulfide bonds serve to form physical cross-links between residues in protein structures, thereby stabilizing the protein fold. Apart from this purely structural role, they can also be chemically active, participating in redox reactions, and they may even potentially act as allosteric switches controlling protein functions. Specific types of disulfide bonds have been identified in static protein structures from their distinctive pattern of dihedral bond angles, and the allosteric function of such bonds is purported to be related to the torsional strain they store. Using all-atom molecular-dynamics simulations for ∼700 disulfide bonded proteins, we analyzed the intramolecular mechanical forces in 20 classes of disulfide bonds. We found that two particular classes, the −RHStaple and the −/+RHHook disulfides, are indeed more stressed than other disulfide bonds, but the stress is carried primarily by stretching of the S-S bond and bending of the neighboring bond angles, rather than by dihedral torsion. This stress corresponds to a tension force of magnitude ∼200 pN, which is balanced by repulsive van der Waals interactions between the cysteine Cα atoms. We confirm stretching of the S-S bond to be a general feature of the −RHStaples and the −/+RHHooks by analyzing ∼20,000 static protein structures. Given that forced stretching of S-S bonds is known to accelerate their cleavage, we propose that prestress of allosteric disulfide bonds has the potential to alter the reactivity of a disulfide, thereby allowing us to readily switch between functional states.  相似文献   

14.
Replica exchange molecular dynamics (MD) simulations of Met-enkephalin in explicit solvent reveal helical and nonhelical structures. Four predominant structures of Met-enkephalin are sampled with comparable probabilities (two helical and two nonhelical). The energy barriers between these configurations are low, suggesting that Met-enkephalin switches easily between configurations. This is consistent with the requirement that Met-enkephalin be sufficiently flexible to bind to several different receptors. Replica exchange simulations of 32 ns are shown to sample approximately five times more configurational space than constant temperature MD simulations of the same duration. The energy landscape for the replica exchange simulation is presented. A detailed study of replica trajectories demonstrates that the significant increases in temperature provided by the replica exchange technique enable transitions from nonhelical to helical structures that would otherwise be prevented by kinetic trapping. Met-enkephalin (Type Entrez Proteins; Value A61445; Service Entrez Proteins).  相似文献   

15.
Ab initio folding of proteins with all-atom discrete molecular dynamics   总被引:3,自引:0,他引:3  
Discrete molecular dynamics (DMD) is a rapid sampling method used in protein folding and aggregation studies. Until now, DMD was used to perform simulations of simplified protein models in conjunction with structure-based force fields. Here, we develop an all-atom protein model and a transferable force field featuring packing, solvation, and environment-dependent hydrogen bond interactions. We performed folding simulations of six small proteins (20-60 residues) with distinct native structures by the replica exchange method. In all cases, native or near-native states were reached in simulations. For three small proteins, multiple folding transitions are observed, and the computationally characterized thermodynamics are in qualitative agreement with experiments. The predictive power of all-atom DMD highlights the importance of environment-dependent hydrogen bond interactions in modeling protein folding. The developed approach can be used for accurate and rapid sampling of conformational spaces of proteins and protein-protein complexes and applied to protein engineering and design of protein-protein interactions.  相似文献   

16.
17.
Pseudomonas aeruginosa is a Gram-negative bacterium that does not contain large, nonspecific porins in its outer membrane. Consequently, the outer membrane is highly impermeable to polar solutes and serves as a barrier against the penetration of antimicrobial agents. This is one of the reasons why such bacteria are intrinsically resistant to antibiotics. Polar molecules that permeate across the outer membrane do so through substrate-specific channels proteins. To design antibiotics that target substrate-channel proteins, it is essential to first identify the permeation pathways of their natural substrates. In P. aeruginosa, the largest family of substrate-specific proteins is the OccD (previously reported under the name OprD) family. Here, we employ equilibrium and steered molecular-dynamics simulations to study OccD1/OprD, the archetypical member of the OccD family. We study the permeation of arginine, one of the natural substrates of OccD1, through the protein. The combination of simulation methods allows us to predict the pathway taken by the amino acid, which is enabled by conformational rearrangements of the extracellular loops of the protein. Furthermore, we show that arginine adopts a specific orientation to form the molecular interactions that facilitate its passage through part of the protein. We predict a three-stage permeation process for arginine.  相似文献   

18.
Yead Jewel  Prashanta Dutta  Jin Liu 《Proteins》2016,84(8):1067-1074
During lactose/H+ symport, the Escherichia coli lactose permease (LacY) undergoes a series of global conformational transitions between inward‐facing (open to cytoplasmic side) and outward‐facing (open to periplasmic side) states. However, the exact local interactions and molecular mechanisms dictating those large‐scale structural changes are not well understood. All‐atom molecular dynamics simulations have been performed to investigate the molecular interactions involved in conformational transitions of LacY, but the simulations can only explore early or partial global structural changes because of the computational limits (< 100 ns). In this work, we implement a hybrid force field that couples the united‐atom protein models with the coarse‐grained MARTINI water/lipid, to investigate the proton‐dependent dynamics and conformational changes of LacY. The effects of the protonation states on two key glutamate residues (Glu325 and Glu269) have been studied. Our results on the salt‐bridge dynamics agreed with all‐atom simulations at early short time period, validating our simulations. From our microsecond simulations, we were able to observe the complete transition from inward‐facing to outward‐facing conformations of LacY. Our results showed that all helices have participated during the global conformational transitions and helical movements of LacY. The inter‐helical distances measured in our simulations were consistent with the double electron‐electron resonance experiments at both cytoplasmic and periplasmic sides. Our simulations indicated that the deprotonation of Glu325 induced the opening of the periplasmics side and partial closure of the cytoplasmic side of LacY, while protonation of the Glu269 caused a stable cross‐domain salt‐bridge (Glu130‐Arg344) and completely closed the cytoplasmic side. Proteins 2016; 84:1067–1074. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
Pseudomonas aeruginosa is a Gram-negative bacterium that does not contain large, nonspecific porins in its outer membrane. Consequently, the outer membrane is highly impermeable to polar solutes and serves as a barrier against the penetration of antimicrobial agents. This is one of the reasons why such bacteria are intrinsically resistant to antibiotics. Polar molecules that permeate across the outer membrane do so through substrate-specific channels proteins. To design antibiotics that target substrate-channel proteins, it is essential to first identify the permeation pathways of their natural substrates. In P. aeruginosa, the largest family of substrate-specific proteins is the OccD (previously reported under the name OprD) family. Here, we employ equilibrium and steered molecular-dynamics simulations to study OccD1/OprD, the archetypical member of the OccD family. We study the permeation of arginine, one of the natural substrates of OccD1, through the protein. The combination of simulation methods allows us to predict the pathway taken by the amino acid, which is enabled by conformational rearrangements of the extracellular loops of the protein. Furthermore, we show that arginine adopts a specific orientation to form the molecular interactions that facilitate its passage through part of the protein. We predict a three-stage permeation process for arginine.  相似文献   

20.
NLDB (Natural Ligand DataBase; URL: http://nldb.hgc.jp) is a database of automatically collected and predicted 3D protein–ligand interactions for the enzymatic reactions of metabolic pathways registered in KEGG. Structural information about these reactions is important for studying the molecular functions of enzymes, however a large number of the 3D interactions are still unknown. Therefore, in order to complement such missing information, we predicted protein–ligand complex structures, and constructed a database of the 3D interactions in reactions. NLDB provides three different types of data resources; the natural complexes are experimentally determined protein–ligand complex structures in PDB, the analog complexes are predicted based on known protein structures in a complex with a similar ligand, and the ab initio complexes are predicted by docking simulations. In addition, NLDB shows the known polymorphisms found in human genome on protein structures. The database has a flexible search function based on various types of keywords, and an enrichment analysis function based on a set of KEGG compound IDs. NLDB will be a valuable resource for experimental biologists studying protein–ligand interactions in specific reactions, and for theoretical researchers wishing to undertake more precise simulations of interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号