首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 206 毫秒
1.
2.
3.
The present study investigated the potential interaction between miR-526b and lncRNA SLC16A1-AS1 in triple-negative breast cancer (TNBC). Expression of miR-526b and SLC16A1-AS1 in TNBC tumor tissues and paired nontumor tissues from 60 TNBC patients was detected by real-time polymerase chain reaction (RT-qPCR). The interaction between miR-526b and SLC16A1-AS1 was evaluated with overexpression experiments, followed by RT-qPCR. The proliferation and migration of cells were detected with cell counting kit-8 assay and Transwell assay, respectively. Apoptosis of cells was assessed by cell apoptosis assay. The expression of apoptosis-related proteins was quantified by Western blot analysis. MiR-526b was predicted to bind with SLC16A1-AS1. Overexpression of miR-526b in TNBC cells decreased the expression levels of SLC16A1-AS1, while overexpression of SLC16A1-AS1 did not affect the expression of miR-526b. In TNBC tissues, miR-526b was downregulated in TNBC tissues, while SLC16A1-AS1 was upregulated in TNBC tissues compared to that in nontumor tissues. The expression of SLC16A1-AS1 and miR-526b were inversely correlated. In vitro experiments showed that overexpression of SLC16A1-AS1 promoted cell proliferation and invasion but suppressed cell apoptosis. MiR-526b played an opposite role and suppressed the function of SLC16A1-AS1. MiR-526b is downregulated in TNBC and it targets SLC16A1-AS1 to regulate proliferation, apoptosis, and invasion of TNBC cells.  相似文献   

4.
The involvement of miR-204 in lung cancer development is unclear. In our study, we analyzed the expression of miR-204 in tumor- and adjacent-tissue samples from 141 patients with non-small cell lung cancer (NSCLC). MiR-204 expression was decreased in tumor samples compared with non-cancerous tissue-derived controls. Moreover, miR-204 expression negatively correlated with homeobox protein SIX1 expression, tumor size and metastasis. MiR-204 silencing in miR-204-positive NSCLC cell lines promoted cell invasion and proliferation. Concomitantly, MiR-204 overexpression resulted in reduced cell proliferation and invasion, upregulated E-cadherin and downregulated N-cadherin and Vimentin expression. SIX1 was identified as a potential target of miR-204, and SIX1 silencing partially compromised the invasive and proliferative capacity of miR-204-deficient cells. Thus, miR-204 may be involved in the NSCLC development.  相似文献   

5.
6.
7.
8.
Increasing evidence demonstrates the crucial regulatory functions of circular RNAs in different cancer types. The major aim of the current study was to establish functions of circPIP5K1A during ovarian cancer. Our results showed an increased expression of circPIP5K1A in both ovarian cancers and cell lines, which was associated with poor prognosis. In functional analyses, downregulation of circPIP5K1A suppressed ovarian cancer cell migration, proliferation, and invasion in vitro. The miR-661 was indicated as a target of circPIP5K1A and insulin-like growth factor-binding protein 5 (IGFBP5) as a target of miR-661. circPIP5K1A silencing triggered downregulation of IGFBP5 through inducing an increase in miR-66 levels, as determined by the luciferase reporter assay. Data from cell counting kit-8, colony formation, wound healing, and Transwell assays showed that overexpression of IGFBP5 effectively reversed the circPIP5K1A depletion effects. The results collectively indicated that circPIP5K1A contributed to ovarian cancer progression via targeting the miR-661/IGFBP5 axis, supporting its utility as a candidate target for therapy of the disease.  相似文献   

9.
吞噬和细胞活力蛋白1(engulfment and cell motility protein 1,ELMO1)可以促进多种癌细胞的侵袭和转移,但ELMO1的表达是否受miRNA的调控鲜有研究。本研究旨在探讨miR-145与ELMO1表达的相关性,以及miR-145通过结合ELMO1的mRNA对乳腺癌侵袭的影响。通过TargetScan (http://www.targetscan.org/)靶基因预测软件预测与ELMO1的3′UTR结合的miR-145。荧光素酶结果证实两者互补结合。Transwell侵袭结果显示,miR-145组和siELMO1+miR-145组MDA-231乳腺癌细胞穿膜数较对照组分别降低40%(P<0.05)和79%(P<0.05)。siELMO1+miR-145组和siELMO1组细胞穿膜数则无显著差异(P>0.05)。结果提示,miR-145通过与ELMO1的mRNA结合抑制细胞侵袭。qRT-PCR显示,低侵袭的MCF-7乳腺癌细胞miR-145的表达量较高侵袭的MDA-435细胞高80%(P<0.05),较MDA-231乳腺癌细胞高75%(P<0.05),即miR-145与癌细胞侵袭能力呈负相关。Western印迹结果表明,miR-145组ELMO1表达量低于阴性对照组,miR-145 抑制组ELMO1表达量高于抑制剂NC组(P<0.05),证明miR-145抑制ELMO1的表达。qRT-PCR显示,过表达miR-145后ELMO1 mRNA含量与对照组无显著差异(P>0.05)。结果提示,miR-145对ELMO1的调控作用通过抑制其翻译实现。F-肌动蛋白聚合实验表明,miR-145组和阴性对照组于20 s和60 s时F-肌动蛋白聚合结果存在明显区别(P<0.05)。Western 印迹结果表明,miR-145组活化的Rac1表达量较阴性对照组降低60%(P<0.05),抑制剂NC组活化的Rac1较miR-145 抑制组降低55%(P<0.05);miR-145组磷酸化的整合素β1较对照组于15 min时降低42%(P<0.05),于30 min时降低31%(P<0.05)。由此得出的miR-145过表达显著促进乳腺癌细胞F-肌动蛋白聚合、Rac1活化和整合素β1磷酸化结论。综上所述,miR-145通过靶向ELMO1的 mRNA抑制ELMO1翻译,从而抑制乳腺癌的侵袭。  相似文献   

10.
吞噬和细胞活力蛋白1(engulfment and cell motility protein 1,ELMO1)可以促进多种癌细胞的侵袭和转移,但ELMO1的表达是否受miRNA的调控鲜有研究。本研究旨在探讨miR-145与ELMO1表达的相关性,以及miR-145通过结合ELMO1的mRNA对乳腺癌侵袭的影响。通过TargetScan (http://www.targetscan.org/)靶基因预测软件预测与ELMO1的3′UTR结合的miR-145。荧光素酶结果证实两者互补结合。Transwell侵袭结果显示,miR-145组和siELMO1+miR-145组MDA-231乳腺癌细胞穿膜数较对照组分别降低40%(P<0.05)和79%(P<0.05)。siELMO1+miR-145组和siELMO1组细胞穿膜数则无显著差异(P>0.05)。结果提示,miR-145通过与ELMO1的mRNA结合抑制细胞侵袭。qRT-PCR显示,低侵袭的MCF-7乳腺癌细胞miR-145的表达量较高侵袭的MDA-435细胞高80%(P<0.05),较MDA-231乳腺癌细胞高75%(P<0.05),即miR-145与癌细胞侵袭能力呈负相关。Western印迹结果表明,miR-145组ELMO1表达量低于阴性对照组,miR-145 抑制组ELMO1表达量高于抑制剂NC组(P<0.05),证明miR-145抑制ELMO1的表达。qRT-PCR显示,过表达miR-145后ELMO1 mRNA含量与对照组无显著差异(P>0.05)。结果提示,miR-145对ELMO1的调控作用通过抑制其翻译实现。F-肌动蛋白聚合实验表明,miR-145组和阴性对照组于20 s和60 s时F-肌动蛋白聚合结果存在明显区别(P<0.05)。Western 印迹结果表明,miR-145组活化的Rac1表达量较阴性对照组降低60%(P<0.05),抑制剂NC组活化的Rac1较miR-145 抑制组降低55%(P<0.05);miR-145组磷酸化的整合素β1较对照组于15 min时降低42%(P<0.05),于30 min时降低31%(P<0.05)。由此得出的miR-145过表达显著促进乳腺癌细胞F-肌动蛋白聚合、Rac1活化和整合素β1磷酸化结论。综上所述,miR-145通过靶向ELMO1的 mRNA抑制ELMO1翻译,从而抑制乳腺癌的侵袭。  相似文献   

11.
MiR-1204 has been recently identified as an oncogenic miRNA in breast cancer. Our study aims to investigate the role of miR-1204 in ovarian squamous cell carcinoma. Expression of miR-1204 and glucose transporter 1 in ovarian biopsies and plasma of both OC patients and healthy controls was detected by qRT-PCR. Correlations between patients’ clinicopathological data were analyzed by Chi-square test. MiR-1204 overexpression OC cell lines were established. Expression of GLUT-1 protein was detected by western blot. Glucose uptake was measured by glucose uptake assay. Cell proliferation was detected by CCK-8 assay. We found that miR-1204 expression was significantly correlated with tumor size. Expression levels of miR-1204 and GLUT-1 were significantly high in OC patients. Expression levels of miR-1204 were positively correlated with expression levels of GLUT-1 in OC patients. MiR-1204 overexpression significantly promoted GLUT-1 expression, glucose uptake and cell proliferation. MiR-1204 may promote ovarian squamous cell carcinoma growth by increasing glucose uptake.  相似文献   

12.
Dishevelled-associated activator of morphogenesis 1 (Daam1) is a formin protein and participates in regulating cell migration of triple-negative breast cancer (TNBC) cells. The specific miRNA targeting Daam1 and mediating cell migration and invasion remains obscure. This experiment investigated the suppressive role of miR-613 in TNBC cells. The luciferase activity of Daam1 3′-untranslated region (3′-UTR) based reporters constructed in HEK-293T and MCF-7 cells suggested that Daam1 was the target gene of miR-613. Overexpressed miR-613 reduced the protein level of Daam1, weakened RhoA activity, and retarded the cell migration, cell invasion and colony formation of TNBC cells. Overexpression of Daam1 or RhoA rescued cell migration and invasion in miR-613-overexpressed TNBC cells, but failed to reverse colony formation. MiR-613 was significantly downregulated in breast cancer tissues compared with that in adjacent normal tissues. This downregulation in TNBC tissues and lymphnode metastatic breast cancer tissues was more obvious than that in non-TNBC tissues and non-metastatic cancer tissues, respectively. MiR-613 weakens the resistance of TNBC cells against paclitaxel rather than adriamycin, cyclophosphamide, docetaxel, and kaempferol. Taken together, miR-613 is involved in cell migration and invasion of TNBC cells via targeting Daam1/RhoA signaling pathway.  相似文献   

13.
MicroRNA-93, derived from a paralog (miR-106b-25) of the miR-17-92 cluster, is involved in the tumorigenesis and progression of many cancers such as breast, colorectal, hepatocellular, lung, ovarian, and pancreatic cancer. However, the role of miR-93 in endometrial carcinoma and the potential molecular mechanisms involved remain unknown. Our results showed that miR-93 was overexpressed in endometrial carcinoma tissues than normal endometrial tissues. The endometrial carcinoma cell lines HEC-1B and Ishikawa were transfected with miR-93-5P, after which cell migration and invasion ability and the expression of relevant molecules were detected. MiR-93 overexpression promoted cell migration and invasion, and downregulated E-cadherin expression while increasing N-cadherin expression. Dual-luciferase reporter assay showed that miR-93 may directly bind to the 3′ untranslated region of forkhead box A1 (FOXA1); furthermore, miR-93 overexpression downregulated FOXA1 expression while miR-93 inhibitor transfection upregulated FOXA1 expression at both mRNA and protein level. In addition, transfection with the most effective FOXA1 small interfering RNA promoted both endometrial cancer cell migration and invasion, and downregulated E-cadherin expression while upregulating N-cadherin expression. Therefore, we suggest that miR-93 may promote the process of epithelial–mesenchymal transition in endometrial carcinoma cells by targeting FOXA1.  相似文献   

14.
15.
miRNAs are emerging as critical regulators in carcinogenesis and tumor progression. Recently, microRNA-122 (miR-122) has been proved to play an important role in hepatocellular carcinoma, but its functions in the context of breast cancer (BC) remain unknown. In this study, we report that miR-122 is commonly downregulated in BC specimens and BC cell lines with important functional consequences. Overexpression of miR-122 not only dramatically suppressed cell proliferation, colony formation by inducing G1-phase cell-cycle arrest in vitro, but also reduced tumorigenicity in vivo. We then screened and identified a novel miR-122 target, insulin-like growth factor 1 receptor (IGF1R), and it was further confirmed by luciferase assay. Overexpression of miR-122 would specifically and markedly reduce its expression. Similar to the restoring miR-122 expression, IGF1R downregulation suppressed cell growth and cell-cycle progression, whereas IGF1R overexpression rescued the suppressive effect of miR-122. To identify the mechanisms, we investigated the Akt/mTOR/p70S6K pathway and found that the expression of Akt, mTOR and p70S6K were suppressed, whereas re-expression of IGF1R which did not contain the 3′UTR totally reversed the inhibition of Akt/mTOR/p70S6K signal pathway profile. We also identified a novel, putative miR-122 target gene, PI3CG, a member of PI3K family, which further suggests miR-122 may be a key regulator of the PI3K/Akt pathway. In clinical specimens, IGF1R was widely overexpressed and its mRNA levels were inversely correlated with miR-122 expression. Taken together, our results demonstrate that miR-122 functions as a tumor suppressor and plays an important role in inhibiting the tumorigenesis through targeting IGF1R and regulating PI3K/Akt/mTOR/p70S6K pathway. Given these, miR-122 may serve as a novel therapeutic or diagnostic/prognostic-target for treating BC.  相似文献   

16.
MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors. However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3′-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.  相似文献   

17.
Breast cancer (BC) is a common malignancy which is the most frequently diagnosed cancer in women all over the worldwide. This study aimed to investigate the roles of miR-1469 in the development of BC, as well as its regulatory mechanism. The expression levels of miR-1469 in BC tissues, serum, and cell lines were determined. Effects of overexpression of miR-1469 on MCF7 cell viability, colony-forming ability, apoptosis, migration, and invasion were then investigated. Furthermore, the potential target of miR-1469 in MCF7 cells was explored. Besides, the association between miR-1469, PTEN/PI3K/AKT, and Wnt/β-catenin pathways was elucidated. Notably, confirmatory experiments by downregulation of miR-1469 in SK-BR-3 cells were further performed. The miR-1469 expression was significantly downregulated in BC tissues, serum, and cell lines. The overexpression of miR-1469 significantly inhibited the proliferation, arrested cell-cycle at G2/M phase, increased apoptosis, suppressed migration, and invasion of MCF-7 cells. In addition, HOXA1 was verified as a direct target of miR-1469, and the effects of overexpression of miR-1469 on the malignant behaviors of MCF7 cells were significantly counteracted by overexpression of HOXA1 concurrently. Furthermore, the overexpression of miR-1469 suppressed the activation of PTEN/PI3K/AKT and Wnt/β-catenin pathways, which was reversed overexpression of HOXA1 concurrently. Besides, confirmatory experiments showed that the inhibition of miR-1469 promoted the malignant behaviors of SK-BR-3 cells, which was inversed after miR-1469 inhibition and HOXA1 knockdown at the same time. Our findings reveal that downregulation of miR-1469 may promote the development of BC by targeting HOXA1 and activating PTEN/PI3K/AKT and Wnt/β-catenin pathways. MiR-1469 may serve as a promising target for BC therapy.  相似文献   

18.
MicroRNAs are involved in cancer pathogenesis and act as tumor suppressors or oncogenes. It has been recently reported that miR-148a expression is down-regulated in several types of cancer. The functional roles and target genes of miR-148a in prostate cancer, however, remain unknown. In this report, we showed that miR-148a expression levels were lower in PC3 and DU145 hormone-refractory prostate cancer cells in comparison to PrEC normal human prostate epithelial cells and LNCaP hormone-sensitive prostate cancer cells. Transfection with miR-148a precursor inhibited cell growth, and cell migration and invasion, and increased the sensitivity to anti-cancer drug paclitaxel in PC3 cells. Computer-aided algorithms predicted mitogen- and stress-activated protein kinase, MSK1, as a potential target of miR-148a. Indeed, miR-148a overexpression decreased expression of MSK1. Using luciferase reporter assays, we identified MSK1 as a direct target of miR-148a. Suppression of MSK1 expression by siRNA, however, showed little or no effects on malignant phenotypes of PC3 cells. In PC3PR cells, a paclitaxel-resistant cell line established from PC3 cells, miR-148a inhibited cell growth, and cell migration and invasion, and also attenuated the resistance to paclitaxel. MiR-148a reduced MSK1 expression by directly targeting its 3′-UTR in PC3PR cells. Furthermore, MSK1 knockdown reduced paclitaxel-resistance of PC3PR cells, indicating that miR-148a attenuates paclitaxel-resistance of hormone-refractory, drug-resistant PC3PR cells in part by regulating MSK1 expression. Our findings suggest that miR-148a plays multiple roles as a tumor suppressor and can be a promising therapeutic target for hormone-refractory prostate cancer especially for drug-resistant prostate cancer.  相似文献   

19.
《Reproductive biology》2022,22(4):100702
Circular RNA (circRNA) have been shown to exert vital functions in the pathological progressions of ovarian cancer (OC). Herein, this study aimed to investigate the role and mechanisms of circ_0015756 in OC progression. Levels of circ_0015756, microRNA (miR)? 145–5p and phosphoserine aminotransferase 1 (PSAT1) were detected using quantitative real-time polymerase chain reaction, Western blot or immunohistochemistry assays. Cell proliferation, apoptosis, migration and invasion were determined using cell counting kit-8, 5-Ethynyl-2′-Deoxyuridine (Edu) incorporation, flow cytometry, transwell and Western blot assays. The binding interaction between miR-145–5p and circ_0015756 or PSAT1 was confirmed by bioinformatics prediction and dual-luciferase reporter assay. Tumor formation assay in nude mice was performed to determine the tumor growth in vivo. Circ_0015756 was highly expressed in OC tissues and cells. Knockdown of circ_0015756 suppressed cancer cell growth, migration and invasion in vitro, as well as impeded tumor growth in vivo. In a mechanical study, circ_0015756 directly bound to miR-145–5p, and inhibition of miR-145–5p reversed the effects of circ_0015756 knockdown on OC cells. Moreover, miR-145–5p directly targeted PSAT1, and miR-145–5p weakened OC cell growth, migration and invasion via targeting PSAT1. Importantly, further studies confirmed that circ_0015756 could indirectly regulate PSAT1 expression via sponging miR-145–5p. In all, circ_0015756 accelerated OC tumorigenesis through regulating miR-145–5p/PSAT1 axis, providing a new therapeutic target for OC.  相似文献   

20.
Emerging studies have revealed the critical role of long non-coding RNAs (lncRNAs) in epithelial ovarian cancer (EOC) development and progression. Till now, the roles and potential mechanisms regarding FEZF1 antisense RNA 1 (FEZF1-AS1) within ovarian cancer (OC) remain unclear. The objective of this study was to uncover the biological function and the underlying mechanism of LncRNA FEZF1-AS1 in OC progression. FEZF1-AS1 expression levels were studied in cell lines and tissues of human ovarian cancer. In vitro studies were performed to evaluate the impact of FEZF1-AS1 knock-down on the proliferation, invasion, migration and apoptosis of OC cells. Interactions of FEZF1-AS1 and its target genes were identified by luciferase reporter assays. Our data showed overexpression of FEZF1-AS1 in OC cell lines and tissues. Cell migration, proliferation, invasion, wound healing and colony formation were suppressed by silencing of FEZF1-AS1. In contrast, cell apoptosis was promoted by FEZF1-AS1 knock-down in vitro. Furthermore, online bioinformatics analysis and tools suggested that FEZF1-AS1 directly bound to miR-130a-5p and suppressed its expression. Moreover, the inhibitory effects of miR-130a-5p on the OC cell growth were reversed by FEZF1-AS1 overexpression, which was associated with the increase in SOX4 expression. In conclusion, our results revealed that FEZF1-AS1 promoted the metastasis and proliferation of OC cells by targeting miR-130a-5p and its downstream SOX4 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号