首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of human pancreas   总被引:2,自引:0,他引:2  
The developmental sequence of human pancreatic secretory proteins has not previously been studied in detail. We applied immunohistochemistry to study 20 fetal and neonatal pancreas' (8th to 39th gestational weeks) using antisera against the following pancreatic secretory proteins: pancreatic secretory trypsin inhibitor (PSTI), serine proteinases (trypsin, chymotrypsin, and elastase I), and amylase. PSTI was first detected in developing buds of the pancreas during the 8th gestational week, and proteinases were observed in acinar cells during the 14th week of gestation. Immunoreactivity for both PSTI and proteinases was found in most acinar cells soon after their appearance. Immunoreactivity for amylase could not be detected in fetal or neonatal pancreas tissue. PSTI was also found in developing islets during the 14th gestational week, but the number of immunoreactive cells had decreased by term. Cells positive for serine proteinases were occasionally in contact with islets in second-trimester fetuses. In discussing these results, we give particular attention to the nonparallel appearance of secretory products in the fetal pancreas, and the significance of cells immunoreactive for secretory proteins in endocrine islets.  相似文献   

2.
3.
The time of the first appearance and distribution of substance(s) reacting with the bovine pancreatic polypeptide (BPP) antiserum No. 146-6, i.e., BPP-like immunoreactivity, were studied in the gastrointestinal tract of 5-24-week-old human fetuses using an indirect immunoperoxidase method. The first immunostaining was identified at the 12th week of gestation in the oxyntic and colonic mucosa, and at the 10th week in the ileum. Serial sections alternately labelled with BPP and glicentin (GLI-1) antisera show several patterns. In the enteric and oxyntic mucosa, there is a cell population reacting only with the GLI-1 antiserum intermixed with cells containing both BPP-like and GLI-1-like immunoreactivities. In the oxyntic mucosa, however, certain cells might store BPP-like material only. Specificity tests illustrate cross-reactivity occurring in immunocytochemical studies of extrapancreatic BPP. The ability of synthetic BPP or a chemically related peptide, peptide YY to abolish the BPP antiserum immunoreaction, as well as previous radioimmunoassay data, raise the question of the presence of authentic BPP in GLI-1-containing cells.  相似文献   

4.
Summary The pancreas from eleven species of snakes representing both advanced and primitive families has been investigated for the presence of eleven regulatory peptides reported to occur in the mammalian endocrine pancreas. Of the eleven peptides studied, insulin, pancreatic glucagon and somatostatin were present in endocrine cells within the islets of all the species investigated. The neuropeptide, vasoactive intestinal polypeptide, was located within nerve terminals innervating the islets in the Boidinae, Colubrinae, Elaphidae and Crotalidae but absent from the Natricinae investigated.No immunoreactivity was demonstrable with the antisera to substance P, met-enkephalin, C-terminal gastrin, bombesin, glicentin and gastric inhibitory polypeptide. Pancreatic polypeptide-like immunoreactivity was demonstrable only in the boid snakes and exclusively stained by a C-terminal specific antiserum.  相似文献   

5.
Polyhormonal aspect of the endocrine cells of the human fetal pancreas   总被引:7,自引:0,他引:7  
Histological studies were performed on 30 pancreases obtained from normal human fetuses aged between the 9th and 38th week. For immunocytochemistry, the avidin-biotin-peroxidase method was used to identify and colocalise insulin, glucagon, somatostatin, pancreatic polypeptide and proliferating cell nuclear antigen. In the 9th week, cells containing all investigated peptides were present. During the fetal period, two populations of endocrine cells have been distinguished, Langerhans islets and freely dispersed cells. The free cells were polyhormonal, containing insulin, glucagon, somatostatin and pancreatic polypeptide, and were localised in the walls of pancreatic ducts throughout the whole gland. During the development of the islets we have observed four stages: (1) the scattered polyhormonal cell stage (9th–10th week), (2) the immature polyhormonal islet stage (11th–15th week), (3) the insulin monohormonal core islet stage (16th–29th week), in which zonular and mantle islets are observed, and (4) the polymorphic islet stage (from the 30th week onwards), which is characterised by the presence of monohormonal cells expressing glucagon or somatostatin. Bigeminal and polar islets also appeared during this last stage. The islets consisted of an insulin core surrounded by a thick (in the part developing from the dorsal primordium) or thin rim (part of the pancreas concerned with the ventral primordium) of intermingled mono- or dihormonal glucagon-positive or somatostatin-positive cells. The most externally located polyhormonal cells exhibited a reaction for glucagon, somatostatin and pancreatic polypeptide. Apart from the above-mentioned types of islets, all arrangements observed in earlier stages were present. Proliferating cell nuclear antigen-positive cells (single in the large islets and more numerous in the smaller ones) were predominantly observed in the outermost layer. Taken together our data indicate that, during the human prenatal development of the islet, endocrine cells are able to synthesise several different hormones. Maturation of these cells involved or depended on a change from a polyhormonal to a monohormonal state and is concerned with decreasing proliferative capacity. This supports the concept of a common precursor stem cell for the hormone-producing cells of the fetal human pancreas. Accepted: 1 June 1999  相似文献   

6.
Summary Pancreatic polypeptide (PP)-containing cells were detected by using anti-bovine PP (BPP) serum in the pancreas and gastrointestinal tract of human fetuses, premature infants and in the pancreas, antrum and jejunum of adult man obtained by biopsy from patients with normal gastroduodenal endoscopy. The localization was established by studying the distribution of PP cells in comparison to the distribution of glucagon-, somatostatin- and insulin cells. The first PP cells are seen in the pancreas at 10 weeks of gestation. They are located preferentially in the lower part of the head of the pancreas. The specificity of immunocytological reaction was ascertained by the inhibition of the reaction by bovine pancreatic polypeptide, glucagon and insulin did not modify the immunocytological reaction.  相似文献   

7.
In the present study, we investigated types of pancreatic endocrine cells and its respective peptides in the Brazilian sparrow species using immunocytochemistry. The use of polyclonal specific antisera for somatostatin, glucagon, avian pancreatic polypeptide (APP), YY polypeptide (PYY) and insulin, revealed a diversified distribution in the pancreas. All these types of immunoreactive cells were observed in the pancreas with different amounts. Insulin-Immunoreactive cells to (B cells) were most numerous, preferably occupying the central place in the pancreatic islets. Somatostatin, PPA, PYY and glucagon immunoreactive cells occurred in a lower frequency in the periphery of pancreatic islets.  相似文献   

8.
Recently, a putative hormone, glucagon-like peptide I (GLP I), has been identified in the predicted sequences of the precursors to pancreatic glucagon in human, rat, hamster, and ox. The distribution of GLP I immunoreactivity in canine and feline pancreas and gastrointestinal tract was examined immunohistochemically and was compared with that of two other antigenic determinants of pancreatic pro-glucagon, i.e., glucagon and the NH2 terminus of glicentin. All three determinants occurred in the same population of islet cells in normal pancreas and in pancreas consisting predominantly of islet tissue from dogs with canine pancreatic acinar atrophy. Northern blot analysis of mRNA from the latter tissue, using a rat pre-pro-glucagon complementary DNA probe, revealed a single mRNA species similar in size to the pre-pro-glucagon mRNA detected in fetal rat pancreas. The three antigenic determinants of pancreatic pro-glucagon were co-localized also in intestinal L-cells and in canine gastric A-cells. Canine and feline pancreatic pro-glucagons therefore resemble those identified in other mammals and may also occur in gastrointestinal endocrine cells. Although there is evidence that the GLP I sequence is not liberated from pancreatic pro-glucagon, our results raise the possibility that this putative hormone may be a cleavage product of pro-glucagon in the gastrointestinal tract.  相似文献   

9.
大鼠胰腺嗜铬颗粒素A分布的免疫组织化学研究   总被引:3,自引:0,他引:3  
本研究用ABC免疫组织化学方法,在Bouin液固定的常规石蜡切片上,观察了啥铬颗粒素A在大鼠胰腺内分泌细胞内的定位和分布,并用相邻切片双标记法,观察了它与胰高血糖素、胰岛素、生长抑素的共存关系。结果发现,大鼠胰腺嗜铬颗粒素A样免疫反应细胞主要分布于胰岛的周边部,胰腺外分泌部的导管和腺泡等处均未见CgA祥物质存在。用相邻薄切片免疫显色技术证明,大鼠胰腺中CgA样物质与胰高血糖素共存。结果提示,CgA可能是胰腺内分泌细胞的一个新的标志物,在胰腺功能调节上发挥着重要作用。  相似文献   

10.
Cells immunoreactive for insulin, glucagon, somatostatin, bovine pancreatic polypeptide and 5-hydroxytryptamine are found in the pancreas of the newborn opossum and of all later stages examined. All immunoreactive cell types are present in primary and secondary islets and within elements of the exocrine pancreas. Cells immunoreactive for glucagon, bovine pancreatic polypeptide, somatostatin and 5-hydroxytryptamine generally are confined to the periphery of secondary (intralobular) islets, whereas insulin-immunoreactive cells occupy the central region. Endocrine cells within primary (interlobular) islets are randomly scattered. A small number of pancreatic-polypeptide-immunoreactive cells are reactive for the amine 5-hydroxytryptamine also, but the reverse is not observed. The endocrine pancreas continues to differentiate and develop throughout postnatal life and into adulthood. Little difference was observed between the head and tail regions of the opossum pancreas for the measurements made.  相似文献   

11.
Activin A is expressed in endocrine precursor cells of the fetal pancreatic anlage. To determine the physiological significance of activins in the pancreas, a transgenic mouse line expressing the truncated type II activin receptor under the control of beta-actin promoter was developed. Histological analyses of the pancreas revealed that the pancreatic islets of the transgenic mouse were small in size and were located mainly along the pancreatic ducts. Immunoreactive insulin was detected in islets, some acinar cells, and in some epithelial cells in the duct. In addition, there were abnormal endocrine cells outside the islets. The shape and the size of the endocrine cells varied and some of them were larger than islets. These cells expressed immunoreactive insulin and glucagon. In the exocrine portion, there were morphologically abnormal exocrine cells, which did not form a typical acinar structure. The cells lacked spatial polarity characteristics of acinar cells but expressed immunoreactive amylase, which was distributed diffusely in the cytoplasm. Plasma glucose concentration was normal in the transgenic mouse before and after the administration of glucose. The insulin content of the pancreas in transgenic and normal mice was nearly identical. These results suggest that activins or related ligands regulate the differentiation of the pancreatic endocrine and exocrine cells.  相似文献   

12.
The parenchymal cells of the islets of Langerhans belong to the extensive human neuroendocrine system. Its messenger substances are biogenic amines and neurohormonal peptides. Like other neuroendocrine cells, the islet cells might have originated from the neural crest. However, in the fetal life, their stem cells are located in the epithelium of the pancreatic ductuli. As early as at the 8th gestational week, these stem cells have been found to contain secretory granules of the neuroendocrine type. Evidences for production of insulin, somatostatin, glucagon, and PP (the pancreatic polypeptide) have been obtained immunohistochemically in the samples from the 10–12th gestational weeks. In the samples from the 14th week, cell clusters have been observed, which are outgrowing from the ductular epithelium and forming primitive Langerhans islets. The insulin cells predominate markedly and are shown to respond functionally to glucose stimulation. By the 16th week, the islets become vascularized, with the primary innervation. The completely formed endocrine pancreas, as it is observed at birth, is revealed at the 26th gestational week. Based on some light-microscopical, ultrastructural, and immunohistochemical characteristics of the islet parenchymal cells and their supply with blood vessels and nerves, three phases of the gland embryonal/fetal development are identified.  相似文献   

13.
Pancreatic secretory trypsin inhibitor (PSTI) has been thought to be only a secretory trypsin inhibitor of human pancreas, but the serum content of immunoreactive PSTI is elevated without pancreatic disease. Using the peroxidase-antiperoxidase method, immunoreactive cells for PSTI were found in human pancreas, stomach, duodenum, appendix, colon and urinary tract of both fetus and adult, adult gall bladder, and fetal lung. PSTI-immunoreactive cells were identified in fetal pancreas at the tenth gestational week, and in extrapancreatic tissues at the sixteenth (gastrointestinal and urinary tract) and twentieth weeks (lung). PSTI-immunoreactive cells of fetal lung were present in neuroepithelial bodies. Strongly positive cells in fetal duodenum were argyrophilic and resembled endocrine cells. Immunohistochemical study was also performed on tissues associated with inflammatory diseases of gastrointestinal tract. The distribution pattern of immunoreactive cells in the stomach varied in accordance with chronic gastritis. Immunoreactive cells were also found in endocrine micro-nests and in a carcinoid tumor associated with fundic gastritis. These results suggest that PSTI may play some physiological role other than secretory trypsin inhibition of the pancreas.  相似文献   

14.
Summary Morphological features of the endocrine cells in the duct system of the pancreas and the biliary tract have been recently characterized in the adult animal with respect to their physiological roles. In the present study, we have investigated their chronological appearance as well as their developmental progress at various stages of the rat fetal and postnatal life. On day 12 of gestation, glucagon and insulin, as well as CCK cells, were identified in the pancreatic primordium. On day 14, glucagon and CCK cells were first detected in the epithelial lining of the common hepatic and the hepatic ducts. These cells remained the dominant endocrine type in the duct system during the fetal period. Insulin and pancreatic polypeptide cells were first observed in the common hepatic duct only on days 16 and 18 of gestation respectively. In spite of their presence in the islets, somatostatin cells were not detected in the duct system during fetal life. They started to appear in the accessory pancreatic duct of the neonate, and subsequently in the common hepatic duct as well as in the small pancreatic ones on day 7 after birth. During postnatal development, the endocrine cells showed progressive or retrogressive changes in different portions of the duct system according to the cell type. In general, somatostatin, CCK and pancreatic polypeptide cells showed an increase, while glucagon and insulin cells gradually dwindled in number up to the adult stage. Somatostatin cells exhibited a significant increase in number, becoming the highest population among the duct endocrine cells in the adult. Throughout the developmental progress, the endocrine cells appear to be allocated in regions relevant to their possible influence modulating the exocrine secretion as well as the drainage of the pancreatic and bile fluid. To whom correspondence should be address.  相似文献   

15.
Glucagon- and glicentin-immunoreactive cells in the human digestive tract   总被引:3,自引:0,他引:3  
Summary The distribution and cellular location of substances reacting with anti-glucagon or anti-glicentin sera, i.e., glucagon-like and glicentin-like immunoreactivities, were studied in the human digestive tract using the immunofluorescence and immunoperoxidase methods. Both types of immunoreactivity were (1) absent in the antrum, (2) abundant in cells located at the periphery of pancreatic islets, (3) unevenly present in cells scattered in the epithelium of the small intestinal mucosa, the glicentin-immunoreactive cells being particularly abundant in the ileum. In the pancreas, and, when simultaneously present, in the intestine, both glucagon and glicentin immunoreactivities were located in the same cells.The precise ultrastructural location of each immunoreactivity was readily made using colloidal gold and ferritin tracers on ultrathin sections of glutaraldehyde-osmium fixed and epoxy resin-embedded tissues. In the pancreas, both glucagon and glicentin immunoreactivities were found in the granules of the A-type cells; the glucagon immunoreactivity was only present in the core of the granule, whereas the glicentin immunoreactivity was found either in the peripheral halo only, or throughout the entire granule. In the small intestine, both immunoreactivities were located inside the granules of the L-type cells.Quantitative specificity tests suggested that the glucagon- and the glicentin-like substances of the pancreas differ from those found in the intestine.Work supported by INSERM, A.T.P. number: 167539  相似文献   

16.
Summary The distribution of peptide hormone-like immunostaining in the gastrointestinal tract of 11 teleost species was investigated by immunofluorescence.Cells immunoreactive for somatostatin were found in the glandular epithelium of the stomach of four species and in the epithelium of the pyloric appendage of one species. The mid-gut epithelium contained cells reactive with antibodies to glucagon (three species), gastrin (five species), pancreatic polypeptide (five species), and substance P (two species). Cells immunoreactive for met-enkephalin were found in the epithelium of both the mid-gut and the stomach of six species.In six species in which the endocrine pancreas was investigated, insulin-, glucagon-, and somatostatin-like immunoreactivity was observed. Pancreatic polypeptide was definitely localised by immunostaining in cells of the endocrine pancreas of only one out of three species examined.Vasoactive intestinal polypeptide-, neurotensin-, bombesin-, and enkephalin-like immunoreactivity was identified in the gastrointestinal nerve fibres in various species.In view of the considerable species variation found, caution should be exercised in generalising about the peptides present in the gastrointestinal tract of fish.  相似文献   

17.
The non-tumoral endocrine pancreas from a patient with elevated plasma levels of glucagon due to a malignant glucagonoma was studied immunocytochemically, ultrastructurally and morphometrically. Compared with normal pancreatic islets from control subjects, those of the pancreas from the patient with a glucagonoma showed an almost complete disappearance of A cells, a decrease in immunoreactive insulin in B cells associated with cytological features indicating enhanced synthesis and secretion of this hormone, and an increase in immunoreactive somatostatin and pancreatic polypeptide (PP) accompanied by unusually high numbers of D and PP cells. In addition, numerous B cells were found outside the islets, either forming micro-islets or scattered in the exocrine tissue (nesidioblastosis). The possible mechanisms involved in determining the changes in the secretory activity of B cells and the alterations in the cell composition of the islets are discussed.  相似文献   

18.
M El-Salhy 《Histochemistry》1984,80(2):193-205
The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish, Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scattered islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, alpha-endorphin, beta-endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P- immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

19.
Summary Ablation, transplantation and culture experiments were used to determine the respective roles of the pancreatic dorsal and ventral anlagen in the formation of the endocrine cells. Three successive waves of endocrine formation occur in the pancreas of Bufo bufo at three developmental stages (III6, IV1 and IV2). Each wave is derived from a different source: the first originates from the dorsal anlage, the second from the exocrine tissue of the cortex of the pancreas and the third from the pancreatic duct. Each generation of islets has a specific composition of different cell types. The first wave is only composed of insulin islets; the second wave gives rise to single insulin, glucagon and somatostatin cells; while the third wave generates single cells synthesizing one of the three hormones, homogeneous islets of insulin cells, rare glucagon islets and heterogeneous islets containing insulin cells in the centre and a few glucagon or somatostatin cells at the periphery.  相似文献   

20.
This study was designed to localize transforming growth factor alpha (TGF-) and epidermal growth factor receptor (EGFR) expression in the developing human gastrointestinal tract and pancreas. Immunohistochemical techniques using specific antibodies against human TGF- and EGFR were performed on digestive tissues of fetuses from 9 to 10 to 24 weeks of gestation, children and adults. In fetuses, TGF- and EGFR proteins were expressed in all epithelial tissues studied with a good correlation and from an age as early as 9 to 10 weeks of gestation, except for TGF- in the esophagus. The strongest TGF- immunostaining was noted in the stomach and the proximal colon. Unexpectedly, immunoreactive gut endocrine cells were observed with the two antibodies used. Relatively numerous in fetuses, they decreased in number with age and were rare in adults particularly along the colon. Enteroglucagon-secreting cells were shown to express TGF- while some gastrin, somatostatin and pancreatic glucagon cells were immunostained with EGFR antibodies. The presence of TGF- and of its recetor in digestive tract epithelium and pancreatic tissues early in fetal life suggests a functional role for TGF- during the developmental process of the digestive system. We demonstrate that TGF- is also produced by endocrine cells and might have an additional mode of action other than paracrine, at least during fetal life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号