首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.

Background & Aims

In recent years, nonalcoholic steatohepatitis (NASH) has become a considerable healthcare burden worldwide. Pathogenesis of NASH is associated with type 2 diabetes mellitus (T2DM) and insulin resistance. However, a specific drug to treat NASH is lacking. We investigated the effect of the selective sodium glucose cotransporter 2 inhibitor (SGLT2I) ipragliflozin on NASH in mice.

Methods

We used the Amylin liver NASH model (AMLN), which is a diet-induced model of NASH that results in obesity and T2DM. AMLN mice were fed an AMLN diet for 20 weeks. SGLT2I mice were fed an AMLN diet for 12 weeks and an AMLN diet with 40 mg ipragliflozin/kg for 8 weeks.

Results

AMLN mice showed steatosis, inflammation, and fibrosis in the liver as well as obesity and insulin resistance, features that are recognized in human NASH. Ipragliflozin improved insulin resistance and liver injury. Ipragliflozin decreased serum levels of free fatty acids, hepatic lipid content, the number of apoptotic cells, and areas of fibrosis; it also increased lipid outflow from the liver.

Conclusions

Ipragliflozin improved the pathogenesis of NASH by reducing insulin resistance and lipotoxicity in NASH-model mice. Our results suggest that ipragliflozin has a therapeutic effect on NASH with T2DM.  相似文献   

2.

Background

Nonalcoholic fatty liver disease (NAFLD) is a major public health burden in western societies. The progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), is characterized by hepatosteatosis, inflammation, oxidative stress, and hepatic damage that can progress to fibrosis and cirrhosis; risk factors for hepatocellular carcinoma. Given the scope of NASH, validating treatment protocols (i.e., low fat diets and weight loss) is imperative.

Methods

We evaluated the efficacy of two diets, a non-purified chow (NP) and purified (low-fat low-cholesterol, LFLC) diet to reverse western diet (WD)-induced NASH and fibrosis in Ldlr-/- mice.

Results

Mice fed WD for 22–24 weeks developed robust hepatosteatosis with mild fibrosis, while mice maintained on the WD an additional 7–8 weeks developed NASH with moderate fibrosis. Returning WD-fed mice to the NP or LFLC diets significantly reduced body weight and plasma markers of metabolic syndrome (dyslipidemia, hyperglycemia) and hepatic gene expression markers of inflammation (Mcp1), oxidative stress (Nox2), fibrosis (Col1A, LoxL2, Timp1) and collagen crosslinking (hydroxyproline). Time course analyses established that plasma triglycerides and hepatic Col1A1 mRNA were rapidly reduced following the switch from the WD to the LFLC diet. However, hepatic triglyceride content and fibrosis did not return to normal levels 8 weeks after the change to the LFLC diet. Time course studies further revealed a strong association (r2 ≥ 0.52) between plasma markers of inflammation (TLR2 activators) and hepatic fibrosis markers (Col1A, Timp1, LoxL2). Inflammation and fibrosis markers were inversely associated (r2 ≥ 0.32) with diet-induced changes in hepatic ω3 and ω6 polyunsaturated fatty acids (PUFA) content.

Conclusion

These studies establish a temporal link between plasma markers of inflammation and hepatic PUFA and fibrosis. Low-fat low-cholesterol diets promote reversal of many, but not all, features associated with WD-induced NASH and fibrosis in Ldlr-/- mice.  相似文献   

3.

Background

Optimal treatment for nonalcoholic steatohepatitis (NASH) has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model.

Methodology/Principal Findings

Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient plus high fat (MCD+HF) diet with or without 0.1% metformin for 8 weeks. Co-administration of metformin significantly decreased fasting plasma glucose levels, but did not affect glucose tolerance or peripheral insulin sensitivity. Metformin ameliorated MCD+HF diet-induced hepatic steatosis, inflammation, and fibrosis. Furthermore, metformin significantly reversed hepatic steatosis and inflammation when administered after the development of experimental NASH.

Conclusions/Significance

These histological changes were accompanied by reduced hepatic triglyceride content, suppressed hepatic stellate cell activation, and the downregulation of genes involved in fatty acid metabolism, inflammation, and fibrogenesis. Metformin prevented and reversed steatosis and inflammation of NASH in an experimental non-diabetic model without affecting peripheral insulin resistance.  相似文献   

4.

Background

Pork is an essential component of the diet that has been linked with major degenerative diseases and development of non-alcoholic steatohepatitis (NASH). Previous studies have. Previous studies have demonstrated the in vitro antioxidant activity of silicon (Si). Furthermore, when Si is added to restructured pork (RP) strongly counterbalances the negative effect of high-cholesterol-ingestion, acting as an active hypocholesterolemic and hypolipemic dietary ingredient in aged rats.

Objective

This study was designed to evaluate the effects of Si vs hydroxytyrosol (HxT) RP on liver antioxidant defense in aged rats fed cholesterol-enriched high saturated/high cholesterol diets as a NASH model.

Methods

Four diets were prepared: Control RP diet (C) with non-added cholesterol; Cholesterol-enriched high-saturated/high-cholesterol control RP diet (CHOL-C) with added cholesterol and cholic acid; Si- or HxT-RP cholesterol-enriched high-saturated/high-cholesterol diets (CHOL-Si and CHOL-HxT). Groups of six male Wistar rats (1-yr old) were fed these modified diets for eight weeks. Total cholesterol, hepatosomatic index, liver Nrf2 and antioxidant (CAT, SOD, GSH, GSSG, GR, GPx) markers were determined.

Results

Both CHOL-Si and CHOL-HxT diets enhanced the liver antioxidant status, reduced hepatosomatic index and increased SOD actvity. Hydrogen peroxide removal seemed to be involved, explaining that the value of redox index was even lower than C without changing the CAT activity. CHOL-Si results were quite better than CHOL-HxT in most measured parameters.

Conclusions

Our study suggests that Si incorporated into RP matrix was able to counterbalance, more efficiently than HxT, the deleterious effect of consuming a high-saturated/high-cholesterol diet, by improving the liver antioxidant defenses in the context of NASH.  相似文献   

5.

Background

Trypanosoma cruzi, the causative agent of Chagas disease, has high affinity for lipoproteins and adipose tissue. Infection results in myocarditis, fat loss and alterations in lipid homeostasis. This study was aimed at analyzing the effect of high fat diet (HFD) on regulating acute T. cruzi infection-induced myocarditis and to evaluate the effect of HFD on lipid metabolism in adipose tissue and heart during acute T. cruzi infection.

Methodology/Principal Findings

CD1 mice were infected with T. cruzi (Brazil strain) and fed either a regular control diet (RD) or HFD for 35 days following infection. Serum lipid profile, tissue cholesterol levels, blood parasitemia, and tissue parasite load were analyzed to evaluate the effect of diet on infection. MicroPET and MRI analysis were performed to examine the morphological and functional status of the heart during acute infection. qPCR and immunoblot analysis were carried out to analyze the effect of diet on the genes involved in the host lipid metabolism during infection. Oil red O staining of the adipose tissue demonstrated reduced lipolysis in HFD compared to RD fed mice. HFD reduced mortality, parasitemia and cardiac parasite load, but increased parasite load in adipocytes. HFD decreased lipolysis during acute infection. Both qPCR and protein analysis demonstrated alterations in lipid metabolic pathways in adipose tissue and heart in RD fed mice, which were further modulated by HFD. Both microPET and MRI analyses demonstrated changes in infected RD murine hearts which were ameliorated by HFD.

Conclusion/Significance

These studies indicate that Chagasic cardiomyopathy is associated with a cardiac lipidpathy and that both cardiac lipotoxicity and adipose tissue play a role in the pathogenesis of Chagas disease. HFD protected mice from T. cruzi infection-induced myocardial damage most likely due to the effects of HFD on both adipogenesis and T. cruzi infection-induced cardiac lipidopathy.  相似文献   

6.

Background & Aims

Non-alcoholic steatohepatitis (NASH) involves steatosis combined with inflammation, which can progress into fibrosis and cirrhosis. Exploring the molecular mechanisms of NASH is highly dependent on the availability of animal models. Currently, the most commonly used animal models for NASH imitate particularly late stages of human disease. Thus, there is a need for an animal model that can be used for investigating the factors that potentiate the inflammatory response within NASH. We have previously shown that 7-day high-fat-high-cholesterol (HFC) feeding induces steatosis and inflammation in both APOE2ki and Ldlr−/− mice. However, it is not known whether the early inflammatory response observed in these mice will sustain over time and lead to liver damage. We hypothesized that the inflammatory response in both models is sufficient to induce liver damage over time.

Methods

APOE2ki and Ldlr−/− mice were fed a chow or HFC diet for 3 months. C57Bl6/J mice were used as control.

Results

Surprisingly, hepatic inflammation was abolished in APOE2ki mice, while it was sustained in Ldlr−/− mice. In addition, increased apoptosis and hepatic fibrosis was only demonstrated in Ldlr−/− mice. Finally, bone-marrow-derived-macrophages of Ldlr−/− mice showed an increased inflammatory response after oxidized LDL (oxLDL) loading compared to APOE2ki mice.

Conclusion

Ldlr−/− mice, but not APOE2ki mice, developed sustained hepatic inflammation and liver damage upon long term HFC feeding due to increased sensitivity for oxLDL uptake. Therefore, the Ldlr−/− mice are a promising physiological model particularly vulnerable for investigating the onset of hepatic inflammation in non-alcoholic steatohepatitis.  相似文献   

7.

Introduction

Metabolic syndrome causes insulin resistance and is associated with risk factor clustering, thereby increasing the risk of atherosclerosis. Recently, endothelial nitric oxide synthase deficient (eNOS-/-) mice have been reported to show metabolic disorders. Interestingly, eNOS has also been reported to be expressed in non-endothelial cells including adipocytes, but the functions of eNOS in adipocytes remain unclear.

Methods and Results

The eNOS expression was induced with adipocyte differentiation and inhibition of eNOS/NO enhanced lipolysis in vitro and in vivo. Furthermore, the administration of a high fat diet (HFD) was able to induce non-alcoholic steatohepatitis (NASH) in eNOS-/- mice but not in wild type mice. A PPARγ antagonist increased eNOS expression in adipocytes and suppressed HFD-induced fatty liver changes.

Conclusions

eNOS-/- mice induce NASH development, and these findings provide new insights into the therapeutic approach for fatty liver disease and related disorders.  相似文献   

8.

Background

Clinical studies suggest that short-term insulin treatment in new-onset type 2 diabetes (T2DM) can promote prolonged glycemic control. The purpose of this study was to establish an animal model to examine such a “legacy” effect of early insulin therapy (EIT) in long-term glycemic control in new-onset T2DM. The objective of the study was to investigate the role of diet following onset of diabetes in the favorable outcomes of EIT.

Methodology

As such, C57BL6/J male mice were fed a high-fat diet (HFD) for 21 weeks to induce diabetes and then received 4 weeks of daily insulin glargine or sham subcutaneous injections. Subsequently, mice were either kept on the HFD or switched to a low-fat diet (LFD) for 4 additional weeks.

Principal Findings

Mice fed a HFD gained significant fat mass and displayed increased leptin levels, increasing insulin resistance (poor HOMA-IR) and worse glucose tolerance test (GTT) performance in comparison to mice fed a LFD, as expected. Insulin-treated diabetic mice but maintained on the HFD demonstrated even greater weight gain and insulin resistance compared to sham-treated mice. However, insulin-treated mice switched to the LFD exhibited a better HOMA-IR compared to those mice left on a HFD. Further, between the insulin-treated and sham control mice, in spite of similar HOMA-IR values, the insulin-treated mice switched to a LFD following insulin therapy did demonstrate significantly better HOMA-B% values than sham control and insulin-treated HFD mice.

Conclusion/Interpretation

Early insulin treatment in HFD-induced T2DM in C57BL6/J mice was only beneficial in animals that were switched to a LFD after insulin treatment which may explain why a similar legacy effect in humans is achieved clinically in only a portion of cases studied, emphasizing a vital role for diet adherence in diabetes control.  相似文献   

9.

Background & Aims

Non-alcoholic steatohepatitis (NASH) is characterized by steatosis and inflammation, which can further progress into fibrosis and cirrhosis. Recently, we demonstrated that combined deletion of the two main scavenger receptors, CD36 and macrophage scavenger receptor 1 (MSR1), which are important for modified cholesterol-rich lipoprotein uptake, reduced NASH. The individual contributions of these receptors to NASH and the intracellular mechanisms by which they contribute to inflammation have not been established. We hypothesize that CD36 and MSR1 contribute independently to the onset of inflammation in NASH, by affecting intracellular cholesterol distribution inside Kupffer cells (KCs).

Methods & Results

Ldlr−/− mice were transplanted with wild-type (Wt), Cd36−/− or Msr1−/− bone marrow and fed a Western diet for 3months. Cd36−/−- and Msr1−/−- transplanted (tp) mice showed a similar reduction in hepatic inflammation compared to Wt-tp mice. While the total amount of cholesterol inside KCs was similar in all groups, KCs of Cd36−/−- and Msr1−/−-tp mice showed increased cytoplasmic cholesterol accumulation, while Wt-tp mice showed increased lysosomal cholesterol accumulation.

Conclusion

CD36 and MSR1 contribute similarly and independently to the progression of inflammation in NASH. One possible explanation for the inflammatory response related to expression of these receptors could be abnormal cholesterol trafficking in KCs. These data provide a new basis for prevention and treatment of NASH.  相似文献   

10.

Background

It is well established that excessive consumption of a high fat diet (HFD) results in obesity; however, the consequences of obesity on postnatal skeletal development have not been well studied.

Methodology and Principal Findings

Total enteral nutrition (TEN) was used to feed postnatal day 27 male rats intragastrically with a high 45% fat diet (HFD) for four weeks to induce obesity. Fat mass was increased compared to rats fed TEN diets containing 25% fat (medium fat diet, MFD) or a chow diet (low fat diet, LFD) fed ad libitum with matched body weight gains. Serum leptin and total non-esterified fatty acids (NEFA) were elevated in HFD rats, which also had reduced bone mass compared to LFD-fed animals. This was accompanied by decreases in bone formation, but increases in the bone resorption. Bone marrow adiposity and expression of adipogenic genes, PPARγ and aP2 were increased, whereas osteoblastogenic markers osteocalcin and Runx2 were decreased, in bone in HFD rats compared to LFD controls. The diversion of stromal cell differentiation in response to HFD stemmed from down-regulation of the key canonical Wnt signaling molecule β-catenin protein and reciprocal up-regulation of nuclear PPARγ expression in bone. In a set of in vitro studies using pluripotent ST2 bone marrow mesenchymal stromal cells treated with serum from rats on the different diets or using the free fatty acid composition of NEFA quantified in rat serum from HFD-fed animals by GC-MS, we were able to recapitulate our in vivo findings.

Conclusions/Significance

These observations strongly suggest that increased NEFA in serum from rats made obese by HFD-feeding impaired bone formation due to stimulation of bone marrow adipogenesis. These effects of obesity on bone in early life may result in impaired attainment of peak bone mass and therefore increase the prevalence of osteoporosis later on in life.  相似文献   

11.
Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease characterized by lobular inflammation, hepatocellular ballooning, and fibrosis with an inherent risk for progression to cirrhosis and hepatocellular carcinoma (HCC). Mitochondrial dysfunction appears to play a role in the progression from simple steatosis to NASH. L-carnitine (L-b-hydroxy-g-N-trimethylaminobutyric acid), an essential nutrient that converts fat into energy in mitochondria, has been shown to ameliorate liver damage. The aim of the present study was to explore the preventive and therapeutic effect of L-carnitine in NASH model mice. Eight-week-old male STAM mice, a NASH-cirrhosis-hepatocarcinogenic model, were divided into 3 experimental groups and fed as follows: 1) high-fat diet (HFD) (control group); 2) HFD mixed with 0.28% L-carnitine (L-carnitine group); and 3) HFD mixed with 0.01% α-tocopherol (α-tocopherol group). After 4 or 8 weeks, mice were sacrificed. Blood samples and livers were collected, and hepatic tumors were counted and measured. Livers were subjected to histological study, immunohistochemical staining of 4-hydroxynonenal and ferritin, determination of 8-OHdG levels, mRNA and protein expressions for multiple genes, and metabolomic analysis. The intestinal microbiome was also analyzed. L-carnitine increased hepatic expression of genes related to long-chain fatty acid transport, mitochondrial β-oxidation, and antioxidant enzymes following suppression of hepatic oxidative stress markers and inflammatory cytokines in NASH, and mice treated with L-carnitine developed fewer liver tumors. Although α-tocopherol resulted in NASH improvement in the same manner as L-carnitine, it increased periodontitis-related microbiotic changes and hepatic iron transport-related gene expression and led to less effective for anti-hepatocarcinogenesis.

Conclusion

L-carnitine prevents progression of non-alcoholic steatohepatitis in a mouse model by upregulating the mitochondrial β-oxidation and redox system.  相似文献   

12.

Background

The current epidemics of type 2 diabetes mellitus (T2DM), non-alcoholic steatohepatitis (NASH), and Alzheimer's disease (AD) all represent insulin-resistance diseases. Previous studies linked insulin resistance diseases to high fat diets or exposure to streptozotocin, a nitrosamine-related compound that causes T2DM, NASH, and AD-type neurodegeneration. We hypothesize that low-level exposure to nitrosamines that are widely present in processed foods, amplifies the deleterious effects of high fat intake in promoting T2DM, NASH, and neurodegeneration.

Methods

Long Evans rat pups were treated with N-nitrosodiethylamine (NDEA) by i.p. Injection, and upon weaning, they were fed with high fat (60%; HFD) or low fat (5%; LFD) chow for 6 weeks. Rats were evaluated for cognitive impairment, insulin resistance, and neurodegeneration using behavioral, biochemical, molecular, and histological methods.

Results

NDEA and HFD ± NDEA caused T2DM, NASH, deficits in spatial learning, and neurodegeneration with hepatic and brain insulin and/or IGF resistance, and reductions in tau and choline acetyltransferase levels in the temporal lobe. In addition, pro-ceramide genes, which promote insulin resistance, were increased in livers and brains of rats exposed to NDEA, HFD, or both. In nearly all assays, the adverse effects of HFD+NDEA were worse than either treatment alone.

Conclusions

Environmental and food contaminant exposures to low, sub-mutagenic levels of nitrosamines, together with chronic HFD feeding, function synergistically to promote major insulin resistance diseases including T2DM, NASH, and AD-type neurodegeneration. Steps to minimize human exposure to nitrosamines and consumption of high-fat content foods are needed to quell these costly and devastating epidemics.  相似文献   

13.

Background

Blood donors unaware of Trypanosoma cruzi infection may donate infectious blood. Risk factors and the presence of T. cruzi antibodies in at-risk Dutch blood donors were studied to assess whether specific blood safety measures are warranted in the Netherlands.

Methodology

Birth in a country endemic for Chagas disease (CEC), having a mother born in a CEC, or having resided for at least six continuous months in a CEC were considered risk factors for T. cruzi infection. From March through September 2013, risk factor questions were asked to all donors who volunteered to donate blood or blood components. Serum samples were collected from donors reporting one or more risk factors, and screened for IgG antibodies to T. cruzi by EIA.

Results

Risk factors for T. cruzi infection were reported by 1,426 of 227,278 donors (0.6%). Testing 1,333 at-risk donors, none (0.0%; 95%, CI 0.0–0.4%) was seroreactive for IgG antibodies to T. cruzi. A total of 472 donors were born in a CEC; 553 donors reported their mother being born in a CEC; and 1,121 donors reported a long-term stay in a CEC. The vast majority of reported risk factors were related to Suriname and Brazil. Overall, the participants resided for 7,694 years in CECs, which equals 2.8 million overnight stays. Of those, 1.9 million nights were spent in Suriname.

Conclusions/Significance

Asymptomatic T. cruzi infection appears to be extremely rare among Dutch blood donors. Blood safety interventions to mitigate the risk of T. cruzi transmission by transfusion would be highly cost-ineffective in the Netherlands, and are thus not required.  相似文献   

14.

Purpose

Epigenetic modifications critically regulate the expression of immune-related genes in response to inflammatory stimuli. It has been extensively reported that a high concentrate (HC) diet can trigger systemic inflammation in dairy cows, yet it is unclear whether epigenetic regulation is involved in the expression of immune genes in the livers of dairy cows. This study aimed to investigate the impact of epigenetic modifications on the expression of immune-related genes.

Experimental Design

In eight mid-lactating cows, we installed a rumen cannula and catheters of the portal and hepatic veins. Cows were randomly assigned to either the treatment group fed a high concentrate (HC) diet (60% concentrate + 40% forage, n = 4) or a control group fed a low concentrate (LC) diet (40% concentrate + 60% forage, n = 4).

Results

After 10 weeks of feeding, the rumen pH was reduced, and levels of lipopolysaccharide (LPS) in the rumen, and portal and hepatic veins were notably increased in the HC group compared with the LC group. The expression levels of detected immune response-related genes, including Toll-like receptor 4 (TLR4), cytokines, chemokines, and acute phase proteins, were significantly up-regulated in the livers of cows fed a HC diet. Chromatin loosening at the promoter region of four candidate immune-related genes (TLR4, LPS-binding protein, haptoglobin, and serum amyloid A3) was elicited, and was strongly correlated with enhanced expression of these genes in the HC group. Demethylation at the promoter region of all four candidate immune-related genes was accompanied by chromatin decompaction.

Conclusion

After HC diet feeding, LPS derived from the digestive tract translocated to the liver via the portal vein, enhancing hepatic immune gene expression. The up-regulation of these immune genes was mediated by epigenetic mechanisms, which involve chromatin remodeling and DNA methylation. Our findings suggest that modulating epigenetic mechanisms could provide novel ways to treat systemic inflammatory responses elicited by the feeding of a HC diet.  相似文献   

15.

Background

The demographic transition of populations from rural areas to large urban centers often results in a disordered occupation of forest remnants and increased economic pressure to develop high-income buildings in these areas. Ecological and socioeconomic factors associated with these urban transitions create conditions for the potential transmission of infectious diseases, which was demonstrated for Chagas disease.

Methodology/Principal Findings

We analyzed 930 triatomines, mainly Triatoma tibiamaculata, collected in artificial and sylvatic environments (forests near houses) of a suburban area of the city of Salvador, Bahia State, Brazil between 2007 and 2011. Most triatomines were captured at peridomiciles. Adult bugs predominated in all studied environments, and nymphs were scarce inside houses. Molecular analyses of a randomly selected sub-sample (n=212) of triatomines showed Trypanosoma cruzi infection rates of 65%, 50% and 56% in intradomestic, peridomestic and sylvatic environments, respectively. We detected the T. cruzi lineages I and II and mixed infections. We also showed that T. tibiamaculata fed on blood from birds (50%), marsupials (38%), ruminants (7%) and rodents (5%). The probability of T. cruzi infection was higher in triatomines that fed on marsupial blood (odds ratio (OR) = 1.95, 95% confidence interval (CI) = 1.22-3.11). Moreover, we observed a protective effect against infection in bugs that fed on bird blood (OR = 0.43, 95% CI = 0.30-0.73).

Conclusions/Significance

The frequent invasion of houses by infected triatomines indicates a potential risk of T. cruzi transmission to inhabitants in this area. Our results reinforce that continuous epidemiological surveillance should be performed in areas where domestic transmission is controlled but enzootic transmission persists.  相似文献   

16.

Background

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease and a risk factor for cirrhosis, hepatocellular carcinoma and liver failure. Previously, we reported that dietary docosahexaenoic acid (DHA, 22:6,n-3) was more effective than eicosapentaenoic acid (EPA, 20:5,n-3) at reversing western diet (WD) induced NASH in LDLR-/- mice.

Methods

Using livers from our previous study, we carried out a global non-targeted metabolomic approach to quantify diet-induced changes in hepatic metabolism.

Results

Livers from WD + olive oil (WD + O)-fed mice displayed histological and gene expression features consistent with NASH. The metabolomic analysis of 320 metabolites established that the WD and n-3 polyunsaturated fatty acid (PUFA) supplementation had broad effects on all major metabolic pathways. Livers from WD + O-fed mice were enriched in saturated (SFA) and monounsaturated fatty acids (MUFA), palmitoyl-sphingomyelin, cholesterol, n-6 PUFA, n-6 PUFA-containing phosphoglycerolipids, n-6 PUFA-derived oxidized lipids (12-HETE) and depleted of C20-22 n-3 PUFA-containing phosphoglycerolipids, C20-22 n-3 PUFA-derived oxidized lipids (18-HEPE, 17,18-DiHETE) and S-lactoylglutathione, a methylglyoxal detoxification product. WD + DHA was more effective than WD + EPA at attenuating WD + O-induced changes in NASH gene expression markers, n-6 PUFA and oxidized lipids, citrate and S-lactosyl glutathione. Diet-induced changes in hepatic MUFA and sphingolipid content were associated with changes in expression of enzymes involved in MUFA and sphingolipid synthesis. Changes in hepatic oxidized fatty acids and S-lactoylglutathione, however, correlated with hepatic n-3 and n-6 C20-22 PUFA content. Hepatic C20-22 n-3 PUFA content was inversely associated with hepatic α-tocopherol and ascorbate content and positively associated with urinary F2- and F3-isoprostanes, revealing diet effects on whole body oxidative stress.

Conclusion

DHA regulation of hepatic SFA, MUFA, PUFA, sphingomyelin, PUFA-derived oxidized lipids and S-lactoylglutathione may explain the protective effects of DHA against WD-induced NASH in LDLR-/- mice.  相似文献   

17.

Background

Chagas disease is a zoonotic parasitic disease well-documented throughout the Americas and transmitted primarily by triatomine ‘kissing bug’ vectors. In acknowledgment of the successful history of vector control programs based on community participation across Latin America, we used a citizen science approach to gain novel insight into the geographic distribution, seasonal activity, and Trypanosoma cruzi infection prevalence of kissing bugs in Texas while empowering the public with information about Chagas disease.

Methodology/Principal Findings

We accepted submissions of kissing bugs encountered by the public in Texas and other states from 2013–2014 while providing educational literature about Chagas disease. In the laboratory, kissing bugs were identified to species, dissected, and tested for T. cruzi infection. A total of 1,980 triatomines were submitted to the program comprised of at least seven species, of which T. gerstaeckeri and T. sanguisuga were the most abundant (85.7% of submissions). Triatomines were most commonly collected from dog kennels and outdoor patios; Overall, 10.5% of triatomines were collected from inside the home. Triatomines were submitted from across Texas, including many counties which were not previously known to harbor kissing bugs. Kissing bugs were captured primarily throughout April-October, and peak activity occurred in June-July. Emails to our dedicated account regarding kissing bugs were more frequent in the summer months (June-August) than the rest of the year. We detected T. cruzi in 63.3% of tested bugs.

Conclusions/Significance

Citizen science is an efficient approach for generating data on the distribution, phenology, and infection prevalence of kissing bugs—vectors of the Chagas disease parasite—while educating the public and medical community.  相似文献   

18.

Background

Chronic liver disease is becoming a major cause of morbidity and mortality worldwide. During liver injury, hepatic stellate cells (HSCs) trans-differentiate into activated myofibroblasts, which produce extracellular matrix.Succinate and succinate receptor (G-protein coupled receptor91, GPR91) signaling pathway has now emerged as a regulator of metabolic signaling. A previous study showed that succinate and its specific receptor, GPR91, are involved in the activation of HSCs and the overexpression of α-smooth muscle actin (α-SMA).Metformin, a well-known anti-diabetic drug, inhibits hepatic gluconeogenesis in the liver. Many studies have shown that metformin not only prevented, but also reversed, steatosis and inflammation in a nonalcoholic steatohepatitis (NASH) animal model. However, the role of metformin in HSC activation and succinate-GPR91 signaling has not been clarified.

Methods

The immortalized human HSCs, LX-2?cells, were used for the in vitro study. For the in vivo study, male C57BL/J6 mice were randomly divided into 3 groups and were fed with a methionine-choline-deficient diet (MCD diet group) as a nonalcoholic steatohepatitis (NASH) mouse model with or without 0.1% metformin for 12 weeks, or were fed a control methionine-choline-sufficient diet (MCS diet group).

Results

In our study, metformin and 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR), which is an analog of adenosine monophosphate, were shown to suppress α-SMA expression via enhanced phosphorylation of AMP-activated protein kinase (AMPK) and inhibition of succinate-GPR91 signaling in activated LX-2?cells induced by palmitate- or succinate. Metformin and AICAR also reduced succinate concentration in the cell lysates when LX-2?cells were treated with palmitate. Moreover, metformin and AICAR reduced interleukin-6 and, transforming growth factor-β1 production in succinate-treated LX-2?cells. Both metformin and AICAR inhibited succinate-stimulated HSC proliferation and cell migration.Mice fed a MCD diet demonstrated increased steatohepatitis and liver fibrosis compared to that of mice fed control diet. Metformin ameliorated steatohepatitis, liver fibrosis, inflammatory cytokine production and decreased α -SMA and GPR91expression in the livers of the MCD diet-fed mice.

Conclusion

This study shows that metformin can attenuate activation of HSCs by activating the AMPK pathway and inhibiting the succinate-GPR91 pathway. Metformin has therapeutic potential for treating steatohepatitis and liver fibrosis.  相似文献   

19.
Acarbose attenuates experimental non-alcoholic steatohepatitis   总被引:7,自引:0,他引:7  
The alpha-glucosidase inhibitor acarbose is beneficial in the prevention of type 2 diabetes. To determine whether it attenuates the commonly associated non-alcoholic steatohepatitis (NASH), we used an experimental NASH model. Rats were fed ad libitum a nutritionally adequate high fat diet (71% of calories as fat) with or without acarbose (200 mg/1000 calories) for 3 weeks. All rats given the high fat diet only developed typical NASH whereas acarbose attenuated several of the characteristic hepatic alterations of NASH: there was less steatosis and inflammation, with a significant reduction in the mRNA of the hepatic inflammatory cytokine TNF-alpha and of its protein. There was also a decrease in the CYP2E1 mRNA and in collagen, with similar trends for CYP2E1 protein and procollagen mRNA. Because acarbose attenuates many of the hepatic alterations associated with experimental NASH, it is now indicated to determine whether it exerts similar beneficial effects in patients afflicted by this disease.  相似文献   

20.

Background

Trypanosoma cruzi is a parasitic protist that causes Chagas disease, which is prevalent in Latin America. Because of the unavailability of an effective drug or vaccine, and because about 8 million people are infected with the parasite worldwide, the development of novel drugs demands urgent attention. T. cruzi infects a wide variety of mammalian nucleated cells, with a preference for myocardial cells. Non-dividing trypomastigotes in the bloodstream infect host cells where they are transformed into replication-capable amastigotes. The amastigotes revert to trypomastigotes (trypomastigogenesis) before being shed out of the host cells. Although trypomastigote transformation is an essential process for the parasite, the molecular mechanisms underlying this process have not yet been clarified, mainly because of the lack of an assay system to induce trypomastigogenesis in vitro.

Methodology/Principal Findings

Cultivation of amastigotes in a transformation medium composed of 80% RPMI-1640 and 20% Grace’s Insect Medium mediated their transformation into trypomastigotes. Grace’s Insect Medium alone also induced trypomastigogenesis. Furthermore, trypomastigogenesis was induced more efficiently in the presence of fetal bovine serum. Trypomastigotes derived from in vitro trypomastigogenesis were able to infect mammalian host cells as efficiently as tissue-culture-derived trypomastigotes (TCT) and expressed a marker protein for TCT. Using this assay system, we demonstrated that T. cruzi inositol 1,4,5-trisphosphate receptor (TcIP3R)—an intracellular Ca2+ channel and a key molecule involved in Ca2+ signaling in the parasite—is important for the transformation process.

Conclusion/Significance

Our findings provide a new tool to identify the molecular mechanisms of the amastigote-to-trypomastigote transformation, leading to a new strategy for drug development against Chagas disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号