首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of the potential benefits to human health there is an increased interest in producing milk containing lower-saturated fatty acid (SFA) and higher unsaturated fatty acid (FA) concentrations, including cis-9 18:1 and cis-9, trans-11-conjugated linoleic acid (CLA). Twenty-four multiparous Holstein cows were used in two experiments according to a completely randomized block design, with 21-day periods to examine the effects of incremental replacement of prilled palm fat (PALM) with sunflower oil (SFO) in high-concentrate diets containing 30 g/kg dry matter (DM) of supplemental fat (Experiment 1) or increases in the forage-to-concentrate (F : C) ratio from 39 : 61 to 48 : 52 of diets containing 30 g/kg DM of SFO (Experiment 2) on milk production, digestibility and milk FA composition. Replacing PALM with SFO had no effect on DM intake, but tended to increase organic matter digestibility, yields of milk, protein and lactose, and decreased linearly milk fat content. Substituting SFO for PALM decreased linearly milk fat 8:0 to 16:0 and cis-9 16:1, and increased linearly 18:0, cis-9 18:1, trans-18:1 (Δ4 to 16), 18:2 and CLA concentrations. Increases in the F : C ratio of diets containing SFO had no effect on intake, yields of milk, milk protein or milk lactose, lowered milk protein content in a quadratic manner, and increased linearly NDF digestion and milk fat secretion. Replacing concentrates with forages in diets containing SFO increased milk fat 4:0 to 10:0 concentrations in a linear or quadratic manner, decreased linearly cis-9 16:1, trans-6 to -10 18:1, 18:2n-6, trans-7, cis-9 CLA, trans-9, cis-11 CLA and trans-10, cis-12 CLA, without altering milk fat 14:0 to 16:0, trans-11 18:1, cis-9, trans-11 CLA or 18:3n-3 concentrations. In conclusion, replacing prilled palm fat on with SFO in high-concentrate diets had no adverse effects on intake or milk production, other than decreasing milk fat content, but lowered milk fat medium-chain SFA and increased trans FA and polyunsaturated FA concentrations. Increases in the proportion of forage in diets containing SFO increased milk fat synthesis, elevated short-chain SFA and lowered trans FA concentrations, without altering milk polyunsaturated FA content. Changes in fat yield on high-concentrate diets containing SFO varied between experiments and individual animals, with decreases in milk fat secretion being associated with increases in milk fat trans-10 18:1, trans-10, cis-12 CLA and trans-9, cis-11 CLA concentrations.  相似文献   

2.
Supplementing dairy cow diets with oilseed preparations has been shown to replace milk saturated fatty acids (SFA) with mono- and/or polyunsaturated fatty acids (MUFA, PUFA), which may reduce risk factors associated with cardio-metabolic diseases in humans consuming milk and dairy products. Previous studies demonstrating this are largely detailed, highly controlled experiments involving small numbers of animals, but in order to transfer this feeding strategy to commercial situations further studies are required involving whole herds varying in management practices. In experiment 1, three oilseed supplements (extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) and milled rapeseed (MR)) were included in grass silage-based diets formulated to provide cows with ~350 g oil/day, and compared with a negative control (Control) diet containing no supplemental fat, and a positive control diet containing 350 g/cow per day oil as calcium salt of palm oil distillate (CPO). Diets were fed for 28-day periods in a 5×4 Latin Square design, and milk production, composition and fatty acid (FA) profile were analysed at the end of each period. Compared with Control, all lipid supplemented diets decreased milk fat SFA concentration by an average of 3.5 g/100 g FA, by replacement with both cis- and trans-MUFA/PUFA. Compared with CPO, only CPLO and MR resulted in lower milk SFA concentrations. In experiment 2, 24 commercial dairy farms (average herd size±SEM 191±19.3) from the south west of the United Kingdom were recruited and for a 1 month period asked to supplement their herd diets with either CPO, EL, CPLO or MR at the same inclusion level as the first study. Bulk tank milk was analysed weekly to determine FA concentration by Fourier Transform mid-IR spectroscopy prediction. After 4 weeks, EL, CPLO and MR all decreased herd milk SFA and increased MUFA to a similar extent (average −3.4 and +2.4 g/100 g FA, respectively) when compared with CPO. Differing responses observed between experiments 1 and 2 may be due in part to variations in farm management conditions (including basal diet) in experiment 2. This study demonstrates the importance of applying experimental research into commercial practice where variations in background conditions can augment different effects to those obtained under controlled conditions.  相似文献   

3.
Dehydrated lucerne is used as a protein source in dairy cow rations, but little is known about the effects of lucerne on greenhouse gas production by animals. Eight Holstein dairy cows (average weight: 582 kg) were used in a replicated 4×4 Latin square design. They received diets based on either maize silage (M) or grass silage (G) (45% of diet on dry matter (DM) basis), with either soya bean meal (15% of diet DM) completed with beet pulp (15% of diet DM) (SP) or dehydrated lucerne (L) (30% of diet DM) as protein sources; MSP, ML, GSP and GL diets were calculated to meet energy requirements for milk production by dairy cows and degradable protein for rumen microbes. Dry matter intake (DMI) did not differ among diets (18.0 kg/day DMI); milk production was higher with SP diets than with L diets (26.0 v. 24.1 kg/day), but milk production did not vary with forage type. Milk fatty-acid (FA) composition was modified by both forage and protein sources: L and G diets resulted in less saturated FA, less linoleic acid, more trans-monounsaturated FA, and more linolenic acid than SP and M diets, respectively. Enteric methane (CH4) production, measured by the SF6 tracer method, was higher for G diets than for M diets, but did not differ with protein source. The same effects were observed when CH4 was expressed per kg milk. Minor effects of diets on rumen fermentation pattern were observed. Manure CH4 emissions estimated from faecal organic matter were negatively related to diet digestibility and were thus higher for L than SP diets, and higher for M than G diets; the resulting difference in total CH4 production was small. Owing to diet formulation constraints, N intake was higher for SP than for L diets; interaction between forage type and protein source was significant for N intake. The same statistical effects were found for N in milk. Faecal and urinary N losses were determined from total faeces and urine collection. Faecal N output was lower for M than for G diets but did not differ between protein sources. Urinary N output did not differ between forage types, but was lower for cows fed L diets than for cows fed SP diets, potentially resulting in lower ammonia emissions with L diets. Replacing soya bean meal plus beet pulp with dehydrated lucerne did not change CH4 production, but resulted in more N in faeces and less N in urine.  相似文献   

4.
The lipid content and fatty acid (FA) profile in pig tissues are strongly influenced by genotype and nutrient supply, with implications in meat quality. The de novo lipid synthesis and pattern of FA unsaturation could be an important cause of variation in the overall efficiency of energy utilization among breeds. To test the effects of pig genotype and CP supply on the evolution of back-fat tissue FA profile throughout the growing and finishing stages, 32 Iberian (IB) and Landrace × Large White (LR × LW) barrows were offered one of two diets differing in CP content (13% or 17% as fed). A pair-fed procedure (0.8 × ad libitum intake of IB pigs) was used. Subcutaneous fat samples were taken at the dorso-lumbar region at ∼38, 50, 65, 90 and 115 kg BW. Higher proportions of total monounsaturated FA (MUFA; P < 0.01) and lower proportions of total saturated FA (SFA; P < 0.01 to 0.05) were found in the outer back-fat layer of pigs both at 50 and 115 kg BW. Pig genotype affected the FA composition of both subcutaneous back-fat layers. The proportions of C18:0 and SFA in fat tissue were higher in IB than in LR × LW pigs from 38 to 65 kg BW, especially in the outer layer. In addition, MUFA contents were higher in IB pigs at 115 kg BW in both layers (+5% on average; P < 0.01). Increased proportions of C18:2 n-6 and polyunsaturated FA (PUFA) were found in LR × LW pigs, irrespective of the stage of growth and back-fat layer (P⩽0.02). At 50 kg BW, pigs receiving the high-protein diet presented the highest C18:2 n-6, C18:3 n-3, C20:5 n-3 and PUFA contents. A significant genotype × CP content interaction was observed for C18:3 n-3 because of the increased concentration of this FA in LR × LW pigs when offered the 17% CP diet (P < 0.05). Higher C16:0 and SFA contents (+5%; P = 0.03) were found in pigs offered the 13% CP diet and slaughtered at 115 kg BW. There was a genotype × CP interaction for MUFA concentration because of the higher MUFA content observed in IB pigs offered the highest protein content diet (P = 0.03). Our results suggest that genetic variation in de novo lipid synthesis and pattern of FA unsaturation might contribute to explain differences in back-fat FA profile of IB and LR × LW pigs under identical nutritional management. They could be also relevant to explain the low efficiency of nutrient and energy utilization in the IB pig.  相似文献   

5.
The objective of this study was to evaluate the effects of vegetable oil supplementation of ewe diets on the performance and fatty acid (FA) composition of their suckling lambs. Forty-eight pregnant Churra ewes (mean BW 64.3±0.92 kg) with their 72 newborn lambs (prolificacy=1.5) were assigned to one of four experimental diets, supplemented with 3% of hydrogenated palm (PALM), olive (OLI), soya (SOY) or linseed (LIN) oil. Lambs were nourished exclusively by suckling from their respective mothers. Ewes were milked once daily, and milk samples were taken once a week. When lambs reached 11 kg, they were slaughtered and samples were taken from musculus longissimus dorsi (intramuscular fat) and subcutaneous fat tissue. No changes were observed in milk yield, proximal composition or lamb performance (P>0.10). Milk and lamb subcutaneous and intramuscular fat samples from the PALM diet had the highest saturated fatty acid concentration, whereas those of the OLI, SOY and LIN diets had the lowest (P<0.05). The greatest monounsaturated fatty acid concentration was observed in milk from ewes fed OLI, and the least in milk and in lamb subcutaneous and intramuscular fat samples from LIN and PALM diets. Milk and lamb fat from ewes fed PALM displayed the highest 16:0 proportion and the lowest 18:0 (P<0.05). There were higher concentrations of cis-9 18:1 in OLI samples (P<0.05), more 18:2n-6 in SOY lambs and milk fat (P<0.001) and the highest levels of 18:3n-3 and 20:5n-3 in LIN samples (P<0.01). Milk and lamb subcutaneous and intramuscular samples from SOY and LIN diets contained the most cis-9, trans-11 conjugated linoleic acid, whereas PALM samples had the least (P<0.01). Sheep diet supplementation with different oils, constituting up to 3% of their diets, resulted in changes in the FA composition of milk and the subcutaneous and intramuscular fat of suckling lambs, but did not affect either milk production or lamb performance.  相似文献   

6.
Milk fatty acid (FA) profile has been previously used as a predictor of enteric CH4output in dairy cows fed diets supplemented with plant oils, which can potentially impact ruminal fermentation. The objective of this study was to investigate the relationships between milk FA and enteric CH4 emissions in lactating dairy cows fed different types of forages in the context of commonly fed diets. A total of 81 observations from three separate 3×3 Latin square design (32-day periods) experiments including a total of 27 lactating cows (96±27 days in milk; mean±SD) were used. Dietary forages were included at 60% of ration dry matter and were as follows: (1) 100% corn silage, (2) 100% alfalfa silage, (3) 100% barley silage, (4) 100% timothy silage, (5) 50 : 50 mix of corn and alfalfa silages, (6) 50 : 50 mix of barley and corn silages and (7) 50 : 50 mix of timothy and alfalfa silages. Enteric CH4output was measured using respiration chambers during 3 consecutive days. Milk was sampled during the last 7 days of each period and analyzed for components and FA profile. Test variables included dry matter intake (DMI; kg/day), NDF (%), ether extract (%), milk yield (kg/day), milk components (%) and individual milk FA (% of total FA). Candidate multivariate models were obtained using the Least Absolute Shrinkage and Selection Operator and Least-Angle Regression methods based on the Schwarz Bayesian Criterion. Data were then fitted into a random regression using the MIXED procedure including the random effects of cow, period and study. A positive correlation was observed between CH4 and DMI (r=0.59,P<0.001), whereas negative associations were observed between CH4 and cis9-17:1 (r=−0.58, P<0.001), and trans8, cis13-18:2 (r=−0.51,P<0.001). Three different candidate models were selected and the best fit candidate model predicted CH4 with a coefficient of determination of 0.84 after correction for cow, period and study effects and was: CH4 (g/day)=319.7−57.4×15:0−13.8×cis9-17:1−39.5×trans10-18:1−59.9×cis11-18:1−253.1×trans8, cis12-18:2−642.7×trans8, cis13-18:2−195.7×trans11, cis15-18:2+16.5×DMI. Overall and linear prediction biases of all models were not significant (P>0.19). Milk FA profile and DMI can be used to predict CH4emissions in dairy cows across a wide range of dietary forage sources  相似文献   

7.
Sheep rearing on mountain pastures is an ancestral tradition in northwestern Slovenia. The indigenous Bovec sheep are widespread there and are well adapted to the rough Alpine rearing conditions. Every year, after weaning, the sheep start grazing in the lowlands (L) and then gradually move to mountain pastures, and finally, to the highland (H) pastures of the Alps. Grazing positively affects the fatty acid (FA) composition in sheep milk fat with increased availability of polyunsaturated FA (PUFA) in grass, and subsequently, in milk. Consequently, the objective of this work was to study the FA profile in sheep milk during grazing in four geographical areas in the Alps. A total of 15 ewes of the Bovec sheep breed were randomly selected and milk samples from these ewes were taken at four different pasture locations that differed with regard to altitude: the L pasture location at an altitude of 480 m, the mountain pastures (M1 and M2) at altitudes of 1100 to 1300 m and 1600 to 1900 m, respectively, and the H pastures at altitudes of 2100 to 2200 m. Milk samples from the ewes were taken during the grazing season from April to September. The chemical and FA composition of the milk samples from each pasture location were determined. There were significant differences in the concentrations of FA among the L, M1, M2 and H milk samples. We observed decreases of the concentrations of saturated FA (SFA) in milk from L to H pastures. The concentration of α-linolenic FA, monounsaturated FA (MUFA), PUFA and n-3 PUFA in milk were increased significantly with pasture altitude. The n-6/n-3 PUFA ratio was reduced by the change of pasture altitude with the lowest value at the M1 pasture (1.5). The concentrations of total SFA decreased significantly and was lowest at the L pasture. Our results underline the importance of the effect of grazing in the Alpine region associated with pasture altitude on the FA profile of sheep milk. The first variation in FA concentration in sheep milk occurred between L and M1, although it was more evident on H pastures in the Alpine mountains. Changes of the FA profile in sheep milk due to pasture altitude were related to variation in FA concentration in the pasture and the botanical composition of the pasture location.  相似文献   

8.
This study investigates the feasibility to predict individual methane (CH4) emissions from dairy cows using milk mid-infrared (MIR) spectra. To have a large variability of milk composition, two experiments were conducted on 11 lactating Holstein cows (two primiparous and nine multiparous). The first experiment aimed to induce a large variation in CH4 emission by feeding two different diets: the first one was mainly composed of fresh grass and sugar beet pulp and the second one of maize silage and hay. The second experiment consisted of grass and corn silage with cracked corn, soybean meal and dried pulp. For each milking period, the milk yields were recorded twice daily and a milk sample of 50 ml was collected from each cow and analyzed by MIR spectrometry. Individual CH4 emissions were measured daily using the sulfur hexafluoride method during a 7-day period. CH4 daily emissions ranged from 10.2 to 47.1 g CH4/kg of milk. The spectral data were transformed to represent an average daily milk spectrum (AMS), which was related to the recorded daily CH4 data. By assuming a delay before the production of fermentation products in the rumen and their use to produce milk components, five different calculations were used: AMS at days 0, 0.5, 1, 1.5 and 2 compared with the CH4 measurement. The equations were built using Partial Least Squares regression. From the calculated R2cv, it appears that the accuracy of CH4 prediction by MIR changed in function of the milking days. In our experimental conditions, the AMS at day 1.5 compared with the measure of CH4 emissions gave the best results. The R2 and s.e. of the cross-validation were equal to 0.79 and 5.14 g of CH4/kg of milk. The multiple correlation analysis performed in this study showed the existence of a close relationship between milk fatty acid (FA) profile and CH4 emission at day 1.5. The lower R2 (R2 = 0.76) obtained between FA profile and CH4 emission compared with the one corresponding to the obtained calibration (R2c = 0.87) shows the interest to apply directly the developed CH4 equation instead of the use of correlations between FA and CH4. In conclusion, our preliminary results suggest the feasibility of direct CH4 prediction from milk MIR spectra. Additional research has the potential to improve the calibrations even further. This alternative method could be useful to predict the individual CH4 emissions at farm level or at the regional scale and it also could be used to identify low-CH4-emitting cows.  相似文献   

9.
Oilseeds offer some protection to the access of ruminal microorganisms and may be an alternative to calcium salts of fatty acids (FA), which are not fully inert in the ruminal environment. This study aimed to evaluate the effects of different sources of FA supplementation on apparent total tract nutrient digestibility, milk yield and composition, and energy balance (EB) of cows during the transition period and early lactation. We compared diets rich in C18:2 and C18:3 FA. Multiparous Holstein cows were randomly assigned to receive one of the four diets: control (n=11); whole flaxseed (WF, n=10), 60 and 80 g/kg (diet dry matter (DM) basis) of WF during the prepartum and postpartum periods, respectively; whole raw soybeans (WS, n=10), 120 and 160 g/kg (diet DM basis) of WS during the prepartum and postpartum periods, respectively; and calcium salts of unsaturated fatty acids (CSFA, n=11), 24 and 32 g/kg (diet DM basis) of CSFA during the prepartum and postpartum periods, respectively. Dry cows fed WF had higher DM and net energy of lactation (NEL) intake than those fed WS or CSFA. The FA supplementation did not alter DM and NDF apparent total tract digestibility, dry cows fed WF exhibited greater NDF total tract digestion than cows fed WS or CSFA. Feeding WS instead of CSFA did not alter NEL intake and total tract digestion of nutrients, but increased milk fat yield and concentration. Calculated efficiency of milk yield was not altered by diets. FA supplementation increased EB during the postpartum period. Experimental diets increased long-chain FA (saturated and unsaturated FA) in milk. In addition, cows fed WS and CSFA had higher C18:1 trans-11 FA and C18:2 cis, and lower C18:3 FA in milk than those fed WF. Furthermore, cows fed CSFA had higher C18:1 trans-11 and cis-9, trans-11 FA than cows fed WS. Although supplemental C18:2 and C18:3 FA did not influence the milk yield of cows, they positively affected EB and increased unsaturated long-chain FA in milk fat.  相似文献   

10.
It is well-established that altering the proportion of starch and fibre in ruminant diets can alter ruminal and post-ruminal digestion, although quantitative evidence that this reduces enteric methane (CH4) production in dairy cattle is lacking. The objective of this study was to examine the effect of varying grass-to-maize silage ratio (70 : 30 and 30 : 70 DM basis), offered ad libitum, with either a concentrate that was high in starch or fibre, on CH4 production, intake, performance and milk composition of dairy cows. A total of 20 cows were allocated to one of the four experimental diets in a two-by-two factorial design run as a Latin square with each period lasting 28 days. Measurements were conducted during the final 7 days of each period. Cows offered the high maize silage ration had a higher dry matter intake (DMI), milk yield, milk energy output and lower CH4 emissions when expressed per kg DMI and per unit of ingested gross energy, but there was no difference in total CH4 production. Several of the milk long-chain fatty acids (FA) were affected by forage treatment with the most notable being an increase in 18:0, 18:1 c9, 18:2 c9 c12 and total mono unsaturated FA, observed in cows offered the higher inclusion of maize silage, and an increase in 18:3 c9 c12 c15 when offered the higher grass silage ration. Varying the composition of the concentrate had no effect on DMI or milk production; however, when the high-starch concentrate was fed, milk protein concentration and milk FAs, 10:0, 14:1, 15:0, 16:1, increased and 18:0 decreased. Interactions were observed for milk fat concentration, being lower in cows offered high-grass silage and high-fibre concentrates compared with the high-starch concentrate, and FA 17:0, which was the highest in milk from cows fed the high-grass silage diet supplemented with the high-starch concentrate. In conclusion, increasing the proportion of maize silage in the diets of dairy cows increased intake and performance, and reduced CH4 production, but only when expressed on a DM or energy intake basis, whereas starch-to-fibre ratio in the concentrate had little effect on performance or CH4 production.  相似文献   

11.
Abstract

The objective of the study was to investigate the influence of two roughage-to-concentrate ratios, with or without linseed oil supplementation, on the flow of fatty acids in the intestinal chyme and the secretion in milk fat in late lactating cows. Seven late lactating cows fitted with cannulae in the dorsal rumen and simple T-shaped cannulae in the proximal duodenum were randomly assigned to four experimental periods applying an incomplete replicated 2×2 Latin square design. The rations consisted of meadow hay and a concentrate mixture given in a ratio of 70 : 30 or 30 : 70 on dry matter basis. The basal rations were fed without or with 200 g linseed oil daily. After three weeks of adaptation, samples from the duodenal chyme were taken to study the flow of fatty acids. Additionally, milk samples were analysed for their milk fat composition. Decreasing roughage/concentrate ratio and linseed oil supplementation significantly increased the flow of monounsaturated fatty acids (MUFA), trans-fatty acids (tFA) and conjugated linoleic acids (CLA) in the duodenum. Furthermore, linseed oil increased the flow of saturated fatty acids (SFA) in the duodenum. Higher concentrate portion (H 30) and linseed oil supplementation significantly decreased the milk fat content. SFA were lower (p < 0.05) and MUFA were higher (p < 0.05) in milk fat after linseed oil supplementation; H 30 resulted in more polyunsaturated fatty acids (PUFA, p < 0.05) in the milk. Linseed oil supplementation significantly increased tFA and CLA in milk fat. The higher CLA content in milk fat as compared to that in the digesta suggests that a substantial endogenous synthesis of CLA in the mammary gland tissue through Δ9-desaturase took place. Between 21% and 48% of duodenal t11-C18:1 were converted into c9, t11-CLA in milk fat.  相似文献   

12.
Phocids routinely fast for extended periods. During these fasts, energetic requirements are met primarily through the catabolism of blubber lipid. To assess whether fatty acid (FA) composition changes during the postweaning fast in northern elephant seals, blubber biopsies were acquired longitudinally from 43 pups at 2.3 ± 1.5 and 55.2 ± 3.7 days postweaning in 1999 and 2000. At weaning, short-chain monounsaturated FA (SC-MUFA, ≤18 carbons) dominated the blubber while saturated FA (SFA) were found in the next highest proportion. The major FA (all ≥1 % by mass) comprised approximately 91 % of total blubber FA. In both years, 18:1n-9 and 16:0 were the most prevalent FA. Major FA mobilized during the fast consisted of polyunsaturated FA (PUFA), SFA, and SC-MUFA. Long-chain MUFA (>18 carbons) tended to be conserved. The fractional mobilization value of 20:5n-3 was the highest, resulting in significant reductions of this PUFA. Although concentrations of some blubber FA changed significantly during the postweaning fast, the general FA signature of blubber was similar at weaning and near the end of the fast. Changes in some FA differed across years. For example, the concentration of 20:4n-6, a minor PUFA, was significantly reduced in 1999 but not in 2000. FA mobilization patterns in northern elephant seal pups are somewhat similar to those reported previously for other fasting phocids and terrestrial mammals, though there are some notable differences. Differences in FA mobilization patterns across mammalian species may be related to differences in diets, geographical distribution, environmental factors, physiological adaptations, and life history stage.  相似文献   

13.
This study investigated the relationships between methane (CH4) emission and fatty acids, volatile metabolites (V) and non-volatile metabolites (NV) in milk of dairy cows. Data from an experiment with 32 multiparous dairy cows and four diets were used. All diets had a roughage : concentrate ratio of 80 : 20 based on dry matter (DM). Roughage consisted of either 1000 g/kg DM grass silage (GS), 1000 g/kg DM maize silage (MS), or a mixture of both silages (667 g/kg DM GS and 333 g/kg DM MS; 333 g/kg DM GS and 677 g/kg DM MS). Methane emission was measured in climate respiration chambers and expressed as production (g/day), yield (g/kg dry matter intake; DMI) and intensity (g/kg fat- and protein-corrected milk; FPCM). Milk was sampled during the same days and analysed for fatty acids by gas chromatography, for V by gas chromatography–mass spectrometry, and for NV by nuclear magnetic resonance. Several models were obtained using a stepwise selection of (1) milk fatty acids (MFA), V or NV alone, and (2) the combination of MFA, V and NV, based on the minimum Akaike’s information criterion statistic. Dry matter intake was 16.8±1.23 kg/day, FPCM yield was 25.0±3.14 kg/day, CH4 production was 406±37.0 g/day, CH4 yield was 24.1±1.87 g/kg DMI and CH4 intensity was 16.4±1.91 g/kg FPCM. The observed CH4 emissions were compared with the CH4 emissions predicted by the obtained models, based on concordance correlation coefficient (CCC) analysis. The best models with MFA alone predicted CH4 production, yield and intensity with a CCC of 0.80, 0.71 and 0.69, respectively. The best models combining the three types of metabolites included MFA and NV for CH4 production and CH4 yield, whereas for CH4 intensity MFA, NV and V were all included. These models predicted CH4 production, yield and intensity better with a higher CCC of 0.92, 0.78 and 0.93, respectively, and with increased accuracy (Cb) and precision (r). The results indicate that MFA alone have moderate to good potential to estimate CH4 emission, and furthermore that including V (CH4 intensity only) and NV increases the CH4 emission prediction potential. This holds particularly for the prediction model for CH4 intensity.  相似文献   

14.
Even though extensive research has examined the role of nutrition on milk fat composition, there is less information on the impact of forages on milk fatty acid (FA) composition. In the current study, the effect of replacing grass silage (GS) with maize silage (MS) as part of a total mixed ration on animal performance and milk FA composition was examined using eight multiparous mid-lactation cows in a replicated 4 × 4 Latin square with 28-day experimental periods. Four treatments comprised the stepwise replacement of GS with MS (0, 160, 334 and 500 g/kg dry matter (DM)) in diets containing a 54 : 46 forage : concentrate ratio on a DM basis. Replacing GS with MS increased (P < 0.001) the DM intake, milk yield and milk protein content. Incremental replacement of GS with MS in the diet enhanced linearly (P < 0.001) the proportions of 6:0-14:0, decreased (P < 0.01) the 16:0 concentrations, but had no effect on the total milk fat saturated fatty acid content. Inclusion of MS altered the distribution of trans-18:1 isomers and enhanced (P < 0.05) total trans monounsaturated fatty acid and total conjugated linoleic acid content. Milk total n-3 polyunsaturated fatty acid (PUFA) content decreased with higher amounts of MS in the diet and n-6 PUFA concentration increased, leading to an elevated n-6 : n-3 PUFA ratio. Despite some beneficial changes associated with the replacement of GS with MS, the overall effects on milk FA composition would not be expected to substantially improve long-term human health. However, the role of forages on milk fat composition must also be balanced against the increases in total milk and protein yield on diets containing higher proportions of MS.  相似文献   

15.
The composition of phospholipids (PLs), fatty acids (FAs), molecular species of major membrane lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE) as well as the cholesterol (CL) level in the gills and liver of the plain sculpin Myxocephalus jaok were analyzed at different habitat temperatures (18, 9, 0°C). Polar lipids and cholesterol were shown to be actively involved in adaptation of the plain sculpin to changes in environmental temperature. A decrease in temperature evoked multidirectional changes in the level of monoenoic (MUFA) and polyenoic (PUFA) FAs, ω-3 PUFA, etheric PLs, and in the unsaturation index (UI) of FAs in PC and PE of th e plain sculpin organs. Changes in the composition of PL molecular forms were unidirectional in all organs but showed some organ specificity. Thus, PC showed an increase in the total percentage of SFA/PUFA and MUFA/PUFA containing predominantly 20:5, 22:5 and 22:6 of PUFA and a decrease in the percentage of SFA/MUFA and PUFA/PUFA as well as in the level of alkylacyl forms of PC. PE showed an increase in the percentage of MUFA/PUFA and a decrease in that of SFA/PUFA and PUFA/PUFA as well as in the level of alkenylacyl forms of PE. Despite a close FA composition of PC and PE, the repertoire of their molecular forms differed in an organ- and temperature-dependent manner. Molecular mechanisms of thermal adaptation in the plain sculpin organs were traced more distinctly at the level of PC and PE molecular forms rather than in their FA spectrum.  相似文献   

16.
It is known that supplementing dairy cow diets with full-fat oilseeds can be used as a strategy to mitigate methane emissions, through their action on rumen fermentation. However, direct comparisons of the effect of different oil sources are very few, as are studies implementing supplementation levels that reflect what is commonly fed on commercial farms. The objective was to investigate the effect of feeding different forms of supplemental plant oils on both methane emissions and milk fatty acid (FA) profile. Four multiparous, Holstein-Friesian cows in mid-lactation were randomly allocated to one of four treatment diets in a 4×4 Latin square design with 28-day periods. Diets were fed as a total mixed ration with a 50 : 50 forage : concentrate ratio (dry matter (DM) basis) with the forage consisting of 75 : 25 maize silage : grass silage (DM). Dietary treatments were a control diet containing no supplemental fat, and three treatment diets containing extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) or milled rapeseed (MR) formulated to provide each cow with an estimated 500 g additional oil/day (22 g oil/kg diet DM). Dry matter intake (DMI), milk yield, milk composition and methane production were measured at the end of each experimental period when cows were housed in respiration chambers for 4 days. There was no effect of treatment diet on DMI or milk protein or lactose concentration, but oilseed-based supplements increased milk yield compared with the control diet and milk fat concentration relative to control was reduced by 4 g/kg by supplemental EL. Feeding CPLO reduced methane production, and both linseed-based supplements decreased methane yield (by 1.8 l/kg DMI) and intensity (by 2.7 l/kg milk yield) compared with the control diet, but feeding MR had no effect on methane emission. All the fat supplements decreased milk total saturated fatty acid (SFA) concentration compared with the control, and SFA were replaced with mainly cis-9 18:1 but also trans FA (and in the case of EL and CPLO there were increases in polyunsaturated FA concentration). Supplementing dairy cow diets with these oilseed-based preparations affected milk FA profile and increased milk yield. However, only the linseed-based supplements reduced methane production, yield or intensity, whereas feeding MR had no effect.  相似文献   

17.
Two identical experimental protocols were followed at 200 and 3,600 m above sea level (a.s.l.) determining the changes of the milk fatty acid (FA) profile of Brown Swiss (BS) and indigenous Peruvian Criollo cows (CR) as a response to diets which were designed to cover the variation in feed quality caused by season. At each site (altitude), six BS and six CR cows, adapted to >3,500 m a.s.l., were fed three dietary treatments (DS, dry-season forage; RS rainy-season forage; OC, diet optimised to meet the cow's requirements) in a 2 × 2 × 3-factorial arrangement. Intakes of FA and milk yield increased from diet DS (low quality diet) to RS and OC (high quality diet) for both cow types. Milk fat proportions of conjugated linoleic acid (CLA), C18:3 c9,c12,c15, total n-3 and polyunsaturated FA (PUFA) were highest (p < 0.05) with diet OC and higher in the lowlands than in the highlands. Low intakes of diet DS obviously resulted in a ruminal energy deficiency and body lipid mobilisation. The ruminal energy deficiency with diet DS was especially pronounced in BS, apparently reducing biohydrogenation rate and leading to lower proportions of C18:0 and higher proportions of C18:3 c9,c12,c15 in milk fat (p < 0.05). Especially C18:3 c9,c12,c15 intake did not concur with its proportion in milk fat, suggesting a strong dependence on energy status. Milk yield and FA excretion with milk were higher for BS than for CR (p < 0.05) with all three diets although milk fat content was lower (p < 0.05) for BS than CR. Milk fat of BS was richer in CLA and PUFA than milk fat of CR (p < 0.05). The desaturase indices for 18 FA were also higher for BS than CR (p < 0.05), suggesting a slightly higher Δ9-desaturase activity for BS, especially with diet DS. Milk fat content was generally higher at the high altitude than at the lowland site (p < 0.05), whereas the FA profile was unexpectedly similar across sites. Various interactions were found among diet type, cow type and altitude (site) indicating that a combination of these factors contributes to the characteristic FA profile of the respective milk.  相似文献   

18.
Based on the potential benefits for long-term human health, there is interest in developing sustainable nutritional strategies for lowering medium-chain saturated fatty acids (FA) and increasing specific unsaturated FA in ruminant milk. Dietary supplements of extruded linseeds (EL), fish oil (FO) or a mixture of EL and FO increase cis-9,trans-11 CLA and long-chain n-3 polyunsaturated FA in bovine milk. Supplements of FO cause milk fat depression in lactating cows, but information for dairy goats is limited. A total of 14 Alpine goats were used in a replicated 3×3 Latin square with 28-days experimental periods to examine the effects of EL alone or in combination with FO on animal performance, milk fat synthesis and milk FA composition. Treatments comprised diets based on natural grassland hay supplemented with no additional oil (control), 530 of EL or 340 g/day of EL and 39 g/day of FO (ELFO). Compared with the control, ELFO tended (P=0.08) to lower milk fat yield, whereas EL increased (P<0.01) milk fat content and yield (15% and 10%, respectively). Relative to EL, ELFO decreased (P<0.01) milk fat content and yield (19% and 17%, respectively). Relative to the control and ELFO, EL decreased (P<0.05) milk 10:0 to 16:0 and odd- and branched-chain FA content and increased 18:0, cis-18:1, trans-13 18:1 (and their corresponding ∆-9 (desaturase products), trans-12,cis-14 CLA, cis-13,trans-15 CLA, cis-12,trans-14 CLA and trans-11,cis-13 CLA and 18:3n-3 concentrations. ELFO was more effective for enriching (P<0.05) milk cis-9, trans-11 CLA and trans-11 18:1 concentrations (up to 5.4- and 7.1-fold compared with the control) than EL (up to 1.7- and 2.5-fold increases). Furthermore, ELFO resulted in a substantial increase in milk trans-10 18:1 concentration (5.4% total FA), with considerable variation between individual animals. Relative to the control and EL, milk fat responses to ELFO were characterized by increases (P<0.05) in milk trans-16:1 (Δ9 to 11), trans-18:1 (Δ6 to 11), trans-18:2, CLA (cis-9,trans-11, trans-9,cis-11, trans-8,trans-10 and trans-7,trans-9) and 20- and 22-carbon FA concentrations. Overall, EL resulted in a relatively high cis-9 18:1 concentration and an increase in the 18:3n-3/18:2n-6 ratio, whereas combining EL and FO resulted in substantial increases in trans-FA, marginal enrichment in 20:5n-3 and 22:6n-3 and lower 16:0 concentration changes associated with a decrease in milk fat content. In conclusion, data provide further evidence of differential mammary lipogenic responses to diet in the goat compared with the cow and sheep.  相似文献   

19.
In one of the most extensive analyses to date we show that the balance of diet n-3 and n-6 polyunsaturated fatty acids (PUFA) is the most important determinant of membrane composition in the rat under 'normal' conditions. Young adult male Sprague-Dawley rats were fed one of twelve moderate-fat diets (25% of total energy) for 8weeks. Diets differed only in fatty acid (FA) profiles, with saturate (SFA) content ranging 8-88% of total FAs, monounsaturate (MUFA) 6-65%, total PUFA 4-81%, n-6 PUFA 3-70% and n-3 PUFA 1-70%. Diet PUFA included only essential FAs 18:2n-6 and 18:3n-3. Balance between n-3 and n-6 PUFA is defined as the PUFA balance (n-3 PUFA as % of total PUFA) and ranged 1-86% in the diets. FA composition was measured for brain, heart, liver, skeletal muscle, erythrocytes and plasma phospholipids, as well as adipose tissue and plasma triglycerides. The conformer-regulator model was used (slope=1 indicates membrane composition completely conforming to diet). Extensive changes in diet SFA, MUFA and PUFA had minimal effect on membranes (average slopes 0.01, 0.07, 0.07 respectively), but considerable influence on adipose tissue and plasma triglycerides (average slopes 0.27, 0.53, 0.47 respectively). Diet balance between n-3 and n-6 PUFA had a biphasic influence on membrane composition. When n-3 PUFA<10% of total PUFA, membrane composition completely conformed to diet (average slope 0.95), while diet PUFA balance>10% had little influence (average slope 0.19). The modern human diet has an average PUFA balance ~10% and this will likely have significant health implications.  相似文献   

20.
The aim of this study was to evaluate the effects on dairy performance and milk fatty acid (FA) composition of (i) supplementation with extruded linseed (EL), (ii) supplementation with synthetic or natural antioxidants, namely vitamin E and plant extracts rich in polyphenols (PERP), (iii) cow breed (Holstein v. Montbéliarde) and (iv) time of milking (morning v. evening). After a 3-week pre-experimental period 24 lactating cows (12 Holstein and 12 Montbéliarde) were divided up into four groups of six cows: the first group received a daily control diet (diet C) based on maize silage. The second group received the same diet supplemented with EL (diet EL, fat level approximately 5% of dietary dry matter (DM)). The third group received the EL diet plus 375 IU/kg diet DM of vitamin E (diet ELE). The fourth group received the ELE diet plus 10 g/kg diet DM of a PERP mixture (diet ELEP). Compared with the diet C, feeding EL-rich diets led to lower concentrations of total saturated FA (SFA) and higher concentrations of stearic and oleic acids, each trans and cis isomer of 18:1 (except c12-18:1), non-conjugated isomers of 18:2, some isomers (c9t11-, c9c11- and t11t13-) of conjugated linoleic acid (CLA), and 18:3n-3. The vitamin E supplementation had no effect on milk yield, milk fat or protein percentage and only moderate effects on milk concentrations of FA (increase in 16:0, decreases in 18:0 and t6/7/8-18:1). The addition of PERP to vitamin E did not modify milk yield or composition and slightly altered milk FA composition (decrease in total saturated FA (SFA) and increase in monounsaturated FA (MUFA)). The minor effects of vitamin E may be partly linked to the fact that no milk fat depression occurred with the EL diet. During both periods the Holstein cows had higher milk production, milk fat and protein yields, and milk percentages of 4:0 and 18:3n-3, and lower percentages of odd-branched chain FA (OBCFA) than the Montbéliarde cows. During the experimental period the Holstein cows had lower percentages of total cis 18:1, and c9,c11-CLA, and higher percentages of 6:0, 8:0, t12-, t16/c14- and t13/14-18:1, and 18:2n-6 than Montbéliarde cows because of several significant interactions between breed and diet. Also, the total SFA percentage was higher for morning than for evening milkings, whereas those of MUFA, total cis 18:1, OBCFA and 18:2n-6 were lower. Extruded linseed supplementation had higher effect on milk FA composition than antioxidants, breed or time of milking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号