首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Ammonia is the preferred nitrogen source for many algae including the cyanobacterium Synechococcus elongatis (Synechococcus R-2; PCC 7942). Modelling ammonia uptake by cells is not straightforward because it exists in solution as NH3 and NH 4 + . NH3 is readily diffusible not only via the lipid bilayer but also through aquaporins and other more specific porins. On the other hand, NH 4 + requires cationic transporters to cross a membrane. Significant intracellular ammonia pools (≈1–10 mol?m?3) are essential for the synthesis of amino acids from ammonia. The most common model envisaged for how cells take up ammonia and use it as a nitrogen source is the “pump–leak model” where uptake occurs through a simple diffusion of NH3 or through an energy-driven NH 4 + pump balancing a leak of NH3 out of the cell. The flaw in such models is that cells maintain intracellular pools of ammonia much higher than predicted by such models. With caution, [14C]-methylamine can be used as an analogue tracer for ammonia and has been used to test various models of ammonia transport and metabolism. In this study, simple “proton trapping” accumulation by the diffusion of uncharged CH3NH2 has been compared to systems where CH3NH 3 + is taken up through channels, driven by the membrane potential (ΔU i,o) or the electrochemical potential for Na+μNa i,o + ). No model can be reconciled with experimental data unless the permeability of CH3NH2 across the cell membrane is asymmetric: permeability into the cell is very high through gated porins, whereas permeability out of the cell is very low (≈40 nm?s?1) and independent of the extracellular pH. The best model is a Na in + /CH3NH 3 + in co-porter driven by ΔμNa i,o + balancing synthesis of methylglutamine and a slow leak governed by Ficks law, and so there is significant futile cycling of methylamine across the cell membrane to maintain intracellular methylamine pools high enough for fixation by glutamine synthetase. The modified pump–leak model with asymmetric permeability of the uncharged form is a viable model for understanding ammonia uptake and retention in plants, free-living microbes and organisms in symbiotic relationships.  相似文献   

2.
3.
In plants of wheat (Triticum aestivum L.) grown in the media with nitrate (NO 3 ? plants), ammonium (NH 4 + plants), and without nitrogen (N-deficient plants), the response to oxidative stress induced by the addition of 300 mM NaCl to the nutrient solution was investigated. Three-day-long salinization induced chlorophyll degradation and accumulation of malondialdehyde (MDA) in the leaves. These signs of oxidative stress were clearly expressed in NO 3 ? and N-deficient plants and weakly manifested in NH 4 + plants. In none of the treatments, salinization induced the accumulation of MDA in the roots. Depending on the conditions of N nutrition, salt stress was accompanied by diverse changes in the activity of antioxidant enzymes in the leaves and roots. Resistance of leaves of NH 4 + plants to oxidative stress correlated with a considerable increase in the activities of ascorbate peroxidase and glutathione reductase. Thus, wheat plants grown on the NH 4 + -containing medium were more resistant to the development of oxidative stress in the leaves than those supplied with nitrate.  相似文献   

4.
Ammonia (NH3) fluxes between beech leaves (Fagus sylvatica) and the atmosphere were investigated in a 90-year-old forest canopy and related to leaf nitrogen (N) pools and glutamine synthetase (GS) activities. The stomatal ammonia compensation point, ?? NH3, was measured by both a twig cuvette and bioassay techniques involving measurements of pH and ammonium (NH 4 + ) concentration in the leaf apoplastic solution. The ?? NH3 determined on the basis of the gas exchange measurements followed a seasonal variation with early-season peaks during leaf expansion (9.6 nmol NH3 mol?1 air) and late-season peaks during leaf senescence (7.3 nmol NH3 mol?1 air). In the mid-season, the ?? NH3 of mature green leaves was much lower (around 3 nmol NH3 mol?1 air) and dropped below the NH3 concentration in the ambient atmosphere. For comparison, ?? NH3 obtained by the apoplastic bioassay were 7.0, 3.7 and 6.4 nmol NH3 mol?1 air in early-, mid-, and late -season, thus agreeing reasonably well with ?? NH3 values derived from the gas exchange measurements. Potential NH3 emission fluxes during early and late season were 1.31 and 0.51 nmol m?2 leaf surface area s?1, respectively, while leaves were a sink for NH3 during mid-season. During leaf establishment and senescence, both apoplastic and bulk tissue NH 4 + concentrations were relatively high coinciding with low activities of glutamine synthetase, which is a key enzyme in leaf N metabolism. In conclusion, the exchange of NH3 between beech leaves and the atmosphere followed a seasonal variation with NH3 emission peaks being related to N mobilization during early leaf establishment and remobilization during late leaf senescence.  相似文献   

5.
Water stress is a primary limitation on plant growth. In previous studies, it has been found that ammonium enhances the tolerance of rice plants to water stress, but how water is related to nitrogen form and water stress remains unknown. To study the effects of nitrogen form (NH 4 + , NO 3 ? , and a mixture of NH 4 + and NO 3 ? ) on the growth and water absorption of rice (Oryza sativa L.) seedlings, a hydroponic experiment with water stress, simulated by the addition of polyethylene glycol (PEG, 10% w/v, MW 6000), was conducted in a greenhouse. The results showed that, compared with non-water stress, under water stress, the fresh weight of rice seedlings increased by 14% with NH 4 + nutrition, whereas it had decreased by about 20% with either NO 3 ? or mixed nitrogen nutrition. No significant difference was found in the transpiration rate of excised shoots or in xylem exudation of excised roots in NH 4 + supply between the two water situations, whereas xylem flow decreased by 57% and 24% under water stress in NO 3 ? and mixed nutrition, and root hydraulic conductivity decreased by 29% and 54% in plants in NH 4 + and NO 3 ? nutrition conditions, respectively. Although water absorption ability decreased in both NH 4 + and NO 3 ? nutrition, aquaporin activity was higher in NH 4 + than in NO 3 ? nutrition, regardless of water stress. We conclude that NH 4 + nutrition can improve water handling in rice seedlings and subsequently enhance their resistance to drought.  相似文献   

6.
It has been pointed out that tea (Camellia sinensis (L.) O. Kuntze) prefers ammonium (NH 4 + ) over nitrate (NO 3 ? ) as an inorganic nitrogen (N) source. 15N studies were conducted using hydroponically grown tea plants to clarify the characteristics of uptake and assimilation of NH 4 + and NO 3 ? by tea roots. The total 15N was detected, and kinetic parameters were calculated after feeding 15NH 4 + or 15NO 3 ? to tea plants. The process of N assimilation was studied by monitoring the dynamic 15N abundance in the free amino acids of tea plant roots by GC-MS. Tea plants supplied with 15NH 4 + absorbed significantly more 15N than those supplied with 15NO 3 ? . The kinetics of 15NH 4 + and 15NO 3 ? influx into tea plants followed a classic biphasic pattern, demonstrating the action of a high affinity transport system (HATS) and a low affinity transport system (LATS). The V max value for NH 4 + uptake was 54.5 nmol/(g dry wt min), which was higher than that observed for NO 3 ? (39.3 nmol/(g dry wt min)). KM estimates were approximately 0.06 mM for NH 4 + and 0.16 mM for NO 3 ? , indicating a higher rate of NH 4 + absorption by tea plant roots. Tea plants fed with 15NH 4 + accumulated larger amounts of assimilated N, especially glutamine (Gln), compared with those fed with 15NO 3 ? . Gln, Glu, theanine (Thea), Ser, and Asp were the main free amino acids that were labeled with 15N under both conditions. The rate of N assimilation into Thea in the roots of NO 3 ? -supplied tea plants was quicker than in NH 4 + -supplied tea plants. NO 3 ? uptake by roots, rather than reduction or transport within the plant, seems to be the main factor limiting the growth of tea plants supplied with NO 3 ? as the sole N source. The NH 4 + absorbed by tea plants directly, as well as that produced by NO 3 ? reduction, was assimilated through the glutamine synthetase-glutamine oxoglutarate aminotransferase pathway in tea plant roots. The 15N labeling experiments showed that there was no direct relationship between the Thea synthesis and the preference of tea plants for NH 4 + .  相似文献   

7.

Aims

Alkali stress (AS) is an important agricultural contaminant and has complex effects on plant metabolism, specifically root physiology. The aim of this study was to test the role of nitrogen metabolism regulation in alkali tolerance of rice variety 'Nipponbare'.

Methods

In this study, the rice seedlings were subjected to salinity stress (SS) or AS. Growth, the contents of inorganic ions, NH 4 + -nitrogen (free amino acids), and NO 3 ? -nitrogen in the stressed seedlings were then measured. The expression of some critical genes involved in nitrogen metabolism were also assayed to test their roles in the regulation of nitrogen metabolism during adaptation of rice variety 'Nipponbare' to AS.

Results

AS showed a stronger inhibiting effect on rice variety 'Nipponbare' growth than SS. AS may have more complex effects on nitrogen metabolism than SS.

Conclusions

Effects of AS on the nitrogen metabolism of rice variety 'Nipponbare' mainly comprised two mechanisms. Firstly, in roots, AS caused the reduction of NO 3 ? content, which caused two harmful consequences, the large downregulation of OsNR1 expression and the subsequent reduction of NH 4 + production in roots. On the other hand, under AS (pH, 9.11), almost all the NH 4 + was changed to NH3, which caused a severe deficiency of NH 4 + surrounding the roots. Both events might cause a severe deficiency of NH 4 + in roots. Under AS, the increased expression of several OsAMT family members in roots might be an adaptative response to the reduction of NH 4 + content in roots or the NH 4 + deficiency in rhizosphere. Also, the down-regulation of OsNADH-GOGAT and OsGS1;2 in roots might be due to NH 4 + deficiency in roots. Secondly, in shoots, AS caused a larger acuumulatiuon of Na+, which possibly affected photorespiration and led to a continuous decrease of NH 4 + production in shoots, and inhibited the expression of OsFd-GOGAT and OsGS2 in chloroplasts.  相似文献   

8.
A bacterial culture of Nitrosomonas sp. was isolated from a nitrifying biofilm to construct a biosensor for ammonium nitrogen (NH 4 + ?N) measurements in high ammonia wastewaters. The pure culture of microorganisms was immobilized into agarose gel matrix to attain a stable biosensor with a long service life. Biosensors were calibrated using (NH4)2SO4 solution and a steady-state method. Subsequently, several experiments with synthetic and industrial wastewaters were conducted. A linear range up to 20 mg/L of NH 4 + ?N, and sensitivities between 0.030 and 0.036 were gained with biosensors. During 14 days of stable service life of the Nitrosomonas sp. biosensors, variation of the signal was less than 7%. Response times of biosensors were 15 ~ 25 min, while recovery times were up to 25 min. Measurements with high ammonia content synthetic and industrial wastewaters were conducted, and 8.3 and 5.6% over estimation of NH 4 + ?N was gained, respectively, compared with results of Nessler method. In spite of the small overestimation, the biosensor based on a pure culture of Nitrosomonas sp. and calibrated with (NH4)2SO4 is suitable for the analysis of NH 4 + ?N in high ammonia content wastewaters.  相似文献   

9.
Labeled nitrogen (15?N) was applied to a soil-based substrate in order to study the uptake of N by Glomus intraradices extraradical mycelium (ERM) from different mineral N (NO 3 ? vs. NH 4 + ) sources and the subsequent transfer to cowpea plants. Fungal compartments (FCs) were placed within the plant growth substrate to simulate soil patches containing root-inaccessible, but mycorrhiza-accessible, N. The fungus was able to take up both N-forms, NO 3 ? and NH 4 + . However, the amount of N transferred from the FC to the plant was higher when NO 3 ? was applied to the FC. In contrast, analysis of ERM harvested from the FC showed a higher 15?N enrichment when the FC was supplied with 15NH 4 + compared with 15NO 3 ? . The 15?N shoot/root ratio of plants supplied with 15NO 3 ? was much higher than that of plants supplied with 15NH 4 + , indicative of a faster transfer of 15NO 3 ? from the root to the shoot and a higher accumulation of 15NH 4 + in the root and/or intraradical mycelium. It is concluded that hyphae of the arbuscular mycorrhizal fungus may absorb NH 4 + preferentially over NO 3 ? but that export of N from the hyphae to the root and shoot may be greater following NO 3 ? uptake. The need for NH 4 + to be assimilated into organically bound N prior to transport into the plant is discussed.  相似文献   

10.
Growth of 2-month-old nonnodulatedHippophaë rhamnoides seedlings supplied with combined N was compared with that of nodulated seedlings grown on zero N. Plant growth was significantly better with combined N than with N2 fixation and, although not statistically significant for individual harvests, tended to be highest in the presence of NH 4 + , a mixture of NH 4 + and NO 3 ? producing the highest yields. Growth was severely reduced when solely dependent on N2 fixation and, unlike the combined-N plants, shoot to root ratios had only slightly increased after an initial decrease. An apparently insufficient nodule mass (nodule weight ratio <5 per cent) during the greater part of the experimental period is suggested as the main cause of the growth reduction in N2-fixing plants. Thein vivo nitrate reductase activity (NRA) of NO 3 ? dependent plants was almost entirely located in the roots. However, when grown with a combination of NO 3 ? and NH 4 + , root NRA was decreased by approximately 85 per cent.H. rhamnoides demonstrated in the mixed supply a strong preference for uptake of N as NH 4 + , NO 3 ? contributing only for approximately 20 per cent to the total N assimilation. Specific rates of N acquisition and ion uptake were generally highest in NO 3 ? +NH 4 + plants. The generation of organic anions per unit total plant dry weight was approximately 40 per cent less in the NH 4 + plants than in the NO 3 ? plants. Measured extrusions of H+ or OH? (HCO 3 ? ) were generally in good agreement with calculated values on the basis of plant composition, and the acidity generated with N2 fixation amounted to 0.45–0.55 meq H+. (mmol Norg)?1. Without acidity control and in the presence of NH 4 + , specific rates of ion uptake and carboxylate generation were strongly depressed and growth was reduced by 30–35 per cent. Growth of nonnodulatedH. rhamnoides plants ceased at the lower pH limit of 3.1–3.2 and deterioration set in; in the case of N2-fixing plants the nutrient solution pH stabilized at a value of 3.8–3.9 without any apparent adverse effects upon plant performance. The chemical composition of experimental and field-growing plants is being compared and some comments are made on the nitrogen supply characteristics of their natural sites.  相似文献   

11.

Aims and background

The ability to suppress soil nitrification through the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI). Earlier, we reported that sorghum roots release higher BNI-activity when grown with NH 4 + , but not with NO 3 - as N source. Also for BNI release, rhizosphere pH of <5.0 is needed; beyond this, a negative effect on BNI release was observed with nearly 80% loss of BNI activity at pH >7.0. This study is aimed at understanding the inter-functional relationships associated with NH 4 + uptake, rhizosphere-pH and plasma membrane H+-ATPase (PM H+-ATPase) activity in regulating the release of BNIs (biological nitrification inhibitors) from sorghum roots.

Methods

Sorghum was grown hydroponically and root exudates were collected from intact plants using a pH-stat system to separate the secondary acidification effects by NH 4 + uptake on BNIs release. A recombinant luminescent Nitrosomonas europaea bioassay was used to determine BNI-activity. Root plasma membrane was isolated using a two-phase partitioning system. Hydrolytic H+-ATPase activity was determined. Split-root system setup was deployed to understand the localized responses to NH 4 + , H+-ATPase-stimulator (fusicoccin) or H+-ATPase-inhibitor (vanadates) on BNI release by sorghum.

Results

Presence of NH 4 + in the rhizosphere stimulated the expression of H+-ATPase activity and enhanced the release of BNIs from sorghum roots. Fusicoccin, which stimulates H+-ATPase activity, also stimulated BNIs release in the absence of NH 4 + ; vanadate, which suppresses H+-ATPase activity, also suppressed the release of BNIs. NH 4 + levels (in rhizosphere) positively influenced BNIs release and root H+-ATPase activity in the concentration range of 0-1.0 mM, indicating a close relationship between BNI release and root H+-ATPase activity with a possible involvement of carrier-mediated transport for the release of BNIs in sorghum.

Conclusion

Our results suggest that NH 4 + uptake, PM H+-ATPase activity, and rhizosphere acidification are functionally inter-connected with BNI release in sorghum. Such knowledge is critical to gain insights into why BNI function is more effective in light-textured, mildly acidic soils compared to other soil types.  相似文献   

12.
To test the hypothesis that rhizosphere acidification would enhance the hydrolyzation of organic phosphates by increasing phosphatase activity. A Petri dish experiment with sterile agar and a pot experiment with a low P soil were used. In the Petri dish experiment, roots of each plant were cultured in two compartments, each of which contained agar with one of three nitrogen combinations: NH 4 + /N0 (N0 = nitrogen free), NH 4 + /NO 3 - , and NO 3 - /N0. Phytin was supplied as the sole phosphorus (P) source to all compartments. In the pot experiment, the soil in each pot was treated with N0, KNO3, or (NH4)2SO4) together with 0 or 75 mg kg?1 phytin-P. Dry weight, P concentration, and P content of roots were highest in the NH 4 + compartments in the Petri dish experiment. In the pot experiment, dry weight, P concentration, and P content of both shoots and roots were higher with NH 4 + than with NO 3 - . NH 4 + treatments reduced rhizosphere pH, promoted the hydrolization of phytin, enhanced acid phosphatase activity in the rhizosphere, and increased phytin-P utilization relative to N0 and NO 3 - treatments. Phosphatase activity was negatively correlated with rhizosphere pH but was positively correlated with plant P content in both experiments. Rhizosphere acidification optimized the activity of acid phosphatase excreted by maize roots and promoted phytin mineralization. NH 4 + -induced acidification in the maize rhizosphere improved the growth of maize roots by improving P uptake from phytin; the improved growth, in turn, increased NH 4 + uptake and acidification.  相似文献   

13.
The effect of nitrogen starvation on the NO3-dependent induction of nitrate reductase (NR) and nitrite reductases (NIR) has been investigated in the halophilic alga Dunaliella salina. When D. salina cells previously grown in a medium with NH 4 + as the only nitrogen source (NH 4 + -cells) were transferred into NO 3 ? medium, NR was induced in the light. In contrast, when cells previously grown in N-free medium were transferred into a medium containing NO 3 ? , NR was induced in light or in darkness. Nitrate-dependent NR induction, in darkness, in D. salina cells previously grown at a photon flux density of 500 umol · m?2 s?1 was observed after 4 h preculture in N-free medium, whilst in cells grown at 100 umol · m?2 s?1 NR induction was observed after 7–8 h. An inhibitor of mRNA synthesis (6-methylpurine) did not inhibit NO 3 ? -induced NR synthesis when the cells, previously grown in NH 4 + medium, were transferred into NO 3 ? medium (at time 0 h) after 4-h-N starvation. However, when 6-methylpurine was added simultaneously with the transfer of the cells from NH 4 + to NO 3 ? medium (at time 0 h), NO 3 ? induced NR synthesis was completely inhibited. The activity of NIR decreased in N-starved cells and the addition of NO 3 ? to those cells greatly stimulated NIR activity in the light. The ability to induce NR in darkness was observed when glutamine synthetase activity reached its maximal level during N starvation. Although cells grown in NO 3 ? medium exhibited high NR activity, only 0.33% of the total NR was found in intact chloroplasts. We suggest that the ability, to induce NR in darkness is dependent on the level of N starvation, and that NR in D. salina is located in the cytosol. Light seems to play an indirect regulatory role on NO 3 ? uptake and NR induction due to the expression of NR and NO 3 ? -transporter mRNAs.  相似文献   

14.
The effects of carbon, nitrogen, phosphate, and copper on cell growth and production of the isoflavone puerarin by suspension cultures of Pueraria tuberosa (Roxb. ex. Willd.) DC were investigated. Among the various sugars evaluated (glucose, galactose, fructose, maltose, and sucrose), use of sucrose in the medium led to the maximum accumulation of puerarin. A sucrose-feeding strategy in which additional sucrose was added to the flasks 15?d into the culture cycle stimulated both cell biomass and puerarin production. The maximum production of puerarin was obtained when a concentration balance of 20:60?mM NH 4 + /NO 3 ? was used as the nitrogen source. Alteration in the concentration balance of nitrogen components (NH 4 + /NO 3 ? 60:20?mM) or the use of either NH 4 + or NO 3 ? alone decreased biomass production and puerarin accumulation compared with the control culture (NH 4 + /NO 3 ? 20:20?mM). High amounts of phosphate (2.5 and 5?mM) in the medium inhibited puerarin production whereas 0.625?mM phosphate promoted puerarin production (68.3???g/g DW on day?25). An increase in Cu2+ concentration from 0.025 to 0.05?mg/l in the P. tuberosa cell culture medium resulted in a 2.2-fold increase in puerarin production (up to 141???g/g DW on day?25) but reduced cell culture biomass.  相似文献   

15.
Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage were investigated in three characids (cardinal, hemigrammus, moenkhausia tetras), using radiotracer flux techniques to study the unidirectional influx (J in), efflux (J out), and net flux rates (J net) of Na+ and Cl?, and the net excretion rate of ammonia (J Amm). The fish were collected directly from the Rio Negro, and studied in their native “blackwater” which is acidic (pH 4.5), ion-poor (Na+, Cl? ~20 µM), and rich in dissolved organic matter (DOM 11.5 mg C l?1). J in Na , J in Cl , and J Amm were higher than in previous reports on tetras obtained from the North America aquarium trade and/or studied in low DOM water. In all three species, J in Na was unaffected by amiloride (10?4 M, NHE and Na+ channel blocker), but both J in Na and J in Cl were virtually eliminated (85–99 % blockade) by AgNO3 (10?7 M). A time course study on cardinal tetras demonstrated that J in Na blockade by AgNO3 was very rapid (<5 min), suggesting inhibition of branchial carbonic anhydrase (CA), and exposure to the CA-blocker acetazolamide (10?4 M) caused a 50 % reduction in J in Na .. Additionally, J in Na was unaffected by phenamil (10?5 M, Na+ channel blocker), bumetanide (10?4 M, NKCC blocker), hydrochlorothiazide (5 × 10?3 M, NCC blocker), and exposure to an acute 3 unit increase in water pH. None of these treatments, including partial or complete elimination of J in Na (by acetazolamide and AgNO3 respectively), had any inhibitory effect on J Amm. Therefore, Na+ uptake in Rio Negro tetras depends on an internal supply of H+ from CA, but does not fit any of the currently accepted H+-dependent models (NHE, Na+ channel/V-type H+-ATPase), or co-transport schemes (NCC, NKCC), and ammonia excretion does not fit the current “Na+/NH4 + exchange metabolon” paradigm. Na+, K+-ATPase and V-type H+-ATPase activities were present at similar levels in gill homogenates, Acute exposure to high environmental ammonia (NH4Cl, 10?3 M) significantly increased J in Na , and NH4 + was equally or more effective than K+ in activating branchial Na+,(K+) ATPase activity in vitro. We propose that ammonia excretion does not depend on Na+ uptake, but that Na+ uptake (by an as yet unknown H+-dependent apical mechanism) depends on ammonia excretion, driven by active NH4 + entry via basolateral Na+,(K+)-ATPase.  相似文献   

16.
The effective cross section for the H 2 + +H 2 + → H 3 + +p reaction in the energy range 5.7–11.5 eV is measured by the split beam method. The maximum of the cross section at an energy of ~8 eV is related to the production of the H 4 ++ compound system. The reaction threshold W thr≈5 eV provides evidence in favor of the classical model of the H 2 + ion with the charge fixed on one of the nuclei throughout the collision event.  相似文献   

17.
The effective cross section for the H 2 + + H 2 + → H 3 + + p reaction in the energy range 5.7–11.5 eV is measured by the split beam method. The cross-section maximum at an energy of ~8 eV is related to the production of the H 4 ++ compound system. The reaction threshold W thr ≈5 eV provides evidence in favor of the classical model with the H 2 + ion charge fixed on one of the two nuclei during the entire collision event.  相似文献   

18.
Utilization of nitrogen in the form of either nitrate (NO 3 ? ) or ammonium (NH 4 + ) ions may affect the carbohydrate metabolism and energy budget of plants. Recent studies showed that greater expenses of NO 3 ? to NH 4 + reduction mostly occur in the roots and during darkness. Fertilization of corn with 15N-labeled nitrate and ammonium, combined with pulse labeling of plants in a 14CO2 atmosphere at the V6 and V8 growth stages, allowed us to evaluate the effect of N form on the CO2 efflux from soil. NH 4 + oxidation was inhibited by adding dicyandiamide. In respect to ammonium, nitrate addition increased root-derived CO2 efflux from corn by 2.6 times at stage V6 and by 1.8 times at stage V8. The time of peak 14CO2 efflux from soil also differed between two growing stages: at V6, efflux peaked only on the second day after pulse labeling, while at V8 this occurred within the first 6 h. The strong effect of NO 3 ? and NH 4 + on root respiration requires considering the N form in the soil and the nitrate reduction site location in a plant when modeling soil respiration changes and when separately estimating individual CO2 sources that contribute to the total soil CO2 efflux.  相似文献   

19.
Nitrogen cycling in forest soils across climate gradients in Eastern China   总被引:9,自引:0,他引:9  
A 15N tracing study was carried out to investigate the potential gross nitrogen (N) dynamics in thirteen forest soils in Eastern China ranging from temperate to tropical zones (five coniferous forests, six deciduous broad-leaf forests, one temperate mixed forest, one evergreen broad-leaf forests ecosystems), and to identify the major controlling factors on N cycling in these forest ecosystems. The soil pH ranged from 4.3 to 7.9 and soil organic carbon (SOC) ranged from 6.6 g?kg?1 to 83.0 g?kg?1. The potential gross N transformation rates were quantified by 15N tracing studies where either the ammonium or nitrate pools were 15N labeled in parallel treatments. Gross mineralization rates ranged from 0.915 μg N g?1 soil day?1 to 2.718 μg N g?1 soil day?1 in the studied forest soils. The average contribution of labile organic-N (M Nlab ) to total gross mineralization (M Nrec +M Nlab ) was 86% (58% to 99%), indicating that turnover of labile organic N plays a dominant role in the studied forest ecosystems. The gross mineralization rates in coniferous forest soils were significantly lower (ranging between 0.915 and 1.228 μg N g?1 soil day?1) compared to broad-leaf forest soils (ranging from 1.621 to 2.718 μg N g?1 soil day?1) (p?<?0.01). Thus, the dominant vegetation may play an important role in regulating soil N mineralization. Nitrate production (nitrification) occurred via two pathways, oxidation of NH 4 + and organic N the forest soils. Correlations with soil pH indicated that this is a key factor controlling the oxidation of NH 4 + and organic N in theses forest ecosystems. NH 4 + oxidation decreased with a decline in pH while organic N oxidation increased. The climatic conditions (e.g. moisture status) at the various sites governed the NO 3 ? -N consumption processes (dissimilatory NO 3 ? reduction to NH 4 + (DNRA) or immobilization of NO 3 ? ). Total NO 3 ? consumption and the proportion of total NO 3 ? consumption to total NO 3 ? production decreased with an increase in the drought index of ecosystems, showing that strong interactions appear to exist between climatic condition (e.g. the drought index), N mineralization and the rate of DNRA. Interactions between vegetation, climatic conditions govern internal N cycling in these forests soils.  相似文献   

20.
In order to reveal the character of ammonia emission in senescent tobacco (Nicotiana tabacum), the content of NH4+, total nitrogen, and soluble protein, and the activities of nitrogen metabolism-related enzymes were measured in leaves of a quick-leaf-senescence phenotype ZY90 and a slow-leaf-senescence phenotype NC89. Compared with NC89, ZY90 had a higher NH4+ accumulation, a lower glutamine synthetase activity, and a significantly higher stomatal ammonia compensation point, and ammonia emission during 40 to 60 d after leaf emergence. During senescence, the quick-leafsenescence phenotype was characterized by nitrogen re-transfer by ammonia emmission, whereas the slow-leafsenescence phenotype by nitrogen re-assimilation. The ammonia emission was primarily regulated by glutamine synthetase activity, apoplastic pH, and NH4+ content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号