首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two distinct extracellular alpha-L-arabinofuranosidases (AFases; EC 3.2.1.55) were purified from the culture filtrate of Penicillium chrysogenum 31B. The molecular masses of the enzymes were estimated to be 79 kDa (AFQ1) and 52 kDa (AFS1) by SDS-PAGE. Both enzymes had their highest activities at 50 degrees C and were stable up to 50 degrees C. Enzyme activities of AFQ1 and AFS1 were highest at pH 4.0 to 6.5 and pH 3.3 to 5.0, respectively. Addition of 10 mg/ml arabinose to the reaction mixture decreased the AFS1 activity but hardly affected AFQ1. Both enzymes displayed broad substrate specificities; they released arabinose from branched arabinan, debranched arabinan, arabinoxylan, arabinogalactan, and arabino-oligosaccharides. AFS1 also showed low activity towards p-nitrophenyl-beta-D-xylopyranoside. An exo-arabinanase, which catalyzes the release of arabinobiose from linear arabinan at the nonreducing terminus, acted synergistically with both enzymes to produce L-arabinose from branched arabinan.  相似文献   

2.
This work describes the purification and characterization of an enzyme that exhibits arabinan hydrolase activity in seeds of Arabidopsis thaliana. The enzyme, designated XYL3, had an apparent molecular mass of 80 kDa when purified to homogeneity, and was identified using MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) as a putative beta-D-xylosidase that belongs to family 3 of glycoside hydrolases encoded by gene At5g09730. XYL3 hydrolysed synthetic substrates such as p-nitrophenyl-alpha-L-arabinofuranoside and p-nitrophenyl-beta-D-xyloside with similar catalytic efficiency. XYL3 released L-arabinose from (1-->5)-alpha-L-arabinofuranobiose, arabinoxylan, sugar beet arabinan, and debranched arabinan. The enzyme hydrolysed both arabinosyl-substituted side group residues and terminal arabinofuranosyl residues (1-->5)-alpha-linked to the arabinan backbone. This indicates that XYL3 is able to degrade all terminal arabinosyl residues and suggests that it participates in the in-vivo hydrolysis of arabinan. Analysis of gene expression patterns by semi-quantitative RT-PCR, in-situ hybridization and a promoter-GUS fusion demonstrated that AtBX3 was specifically expressed in the seed endosperm at the globular stage of the embryo. Immunolocalization using LM6 anti-arabinan antisera found that arabinan, the XYL3 substrate, was also present in this seed tissue. T-DNA null mutants for AtBX3 were identified. The mutant plants lacked the alpha-L-arabinofuranosidase and beta-D-xylosidase activities corresponding to XYL3. Mutants showed reduced seed size and are delayed in seedling germination compared with the wild type.  相似文献   

3.
A strain of a thermophilic bacterium, tentatively designated Bacillus thermodenitrificans TS-3, with arabinan-degrading activity was isolated. It produced an endo-arabinase (ABN) (EC 3.2.1.99) and two arabinofuranosidases (EC 3.2.1.55) extracellularly when grown at 60 degrees C on a medium containing sugar beet arabinan. The ABN (tentatively called an ABN-TS) was purified 7,417-fold by anion-exchange, hydrophobic, size exclusion, and hydroxyapatite chromatographies. The molecular mass of ABN-TS was 35 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the isoelectric point was pH 4.5. The enzyme was observed to be more thermostable than known ABNs; it had a half-life of 4 h at 75 degrees C. The enzyme had optimal activity at 70 degrees C and pH 6.0. The enzyme had apparent K(m) values of 8.5 and 45 mg/ml and apparent V(max) values of 1.6 and 1.1 mmol/min/mg of protein against debranched arabinan (alpha-1,5-arabinan) and arabinan, respectively. The enzyme had no pectin-releasing activity (protopectinase activity) from sugar beet protopectin, differing from an ABN (protopectinase-C) from mesophilic Bacillus subtilis IFO 3134. The pattern of degradation of debranched arabinan by ABN-TS indicated that the enzyme was an endo-acting enzyme and the main end products were arabinobiose and arabinose. The results of preliminary experiments indicated that the culture filtrate of strain TS-3 is suitable for L-arabinose production from sugar beet pulp at high temperature.  相似文献   

4.
An α-L-arabinofuranosidase (EC 3.2.1.55) of Trichoderma reesei was purified to homogeneity by cation- and anion-exchange chromatography. The enzyme had a molecular weight of 53 kDa as estimated by SDS electrophoresis. The isoelectric point of the enzyme was 7.5 and its pH optimum was 4.0. The enzyme hydrolyzed beet arabinan and released arabinose from wheat straw arabinoxylan.  相似文献   

5.
E Uesaka  M Sato  M Raiju    A Kaji 《Journal of bacteriology》1978,133(3):1073-1077
An alpha-L-arabinofuranosidase (EC 3.2.1.55) from the culture fluid of Rhodotorula flava IFO 0407 grown on beet arabinan as a carbon source has been highly purified. The purified enzyme has a pH optimum of 2.0. The enzyme is unusually acid stable, retaining 82% of its activity after being maintained for 24 h at pH 1.5 and at 30 degrees C. The apparent Km and Vmax values of the enzyme for phenyl alpha-L-arabinofuranoside were determined to be 9.1 mM and 72.5 mumol per min per mg of protein, respectively.  相似文献   

6.
An alpha-L-arabinofuranosidase gene was identified in a sequenced genome of a novel thermophilic bacterium, which belongs to the recently described phylum of Thermomicrobia. Amino acid sequence comparison of the enzyme (designated AraF) revealed similarity to glycoside hydrolases of family 51. The gene was cloned into Escherichia coli and its recombinant product expressed and purified. The enzyme appeared to be a hexamer. AraF was optimally active at 70 degrees C (over 10 min) and pH 6 having 92% residual activity after 1 h at 70 degrees C. AraF had a Km) value of 0.6 mM and V(max) value of 122 U mg(-1) on p-nitrophenyl-alpha-L-arabinofuranoside. AraF was almost equally active on branched arabinan and debranched arabinan, properties not previously found in alpha-L-arabinofuranosidases in GH family 51.  相似文献   

7.
The alpha-L-arabinofuranosidase (AF) from the fungus Rhizomucor pusillus HHT-1 released arabinose at appreciable rates from (1-->5)-alpha-L-arabinofuranooligosaccharides, sugar beet arabinan and debranched arabinan. This enzyme preferentially hydrolyzed the terminal arabinofuranosyl residue [alpha-(1-->5)-linked] of the arabinan backbone rather than the arabinosyl side chain [alpha-(1-->3)-linked residues]. The enzyme-hydrolyzed arabinan reacted at and debranched the arabinan almost at the same rate, and the degree of conversion for both cases was 65%. Methylation analysis of arabinan showed that the arabinosyl-linkage proportions were 2:2:2:1, respectively, for (1-->5)-Araf, T-Araf, (1-->3, 5)-Araf and (1-->3)-Araf, while the ratios for the AF-digested arabinan shifted to 3:1:2:1. Enzyme digestion resulted in an increase in the proportion of (1-->5)-linked arabinose and a decrease in the proportion of terminal arabinose indicated this AF cleaved the terminal arabinosyl residue of the arabinan back bone [alpha-(1-->5)-linked residues]. Peak assignments in the 13C NMR spectra also confirmed this linkage composition of four kinds of arabinose residues. Both 1H and 13C NMR spectra are dominated by signals of the alpha-anomeric configuration of the arabinofuranosyl moieties. No signals were recorded for arabinopyranosyl moieties in the NMR spectra. Methylation and NMR analysis of native and AF-digested arabinan revealed that this alpha-L-arabinofuranosidase can only hydrolyse alpha-L-arabinofuranosyl residues of arabinan.  相似文献   

8.
9.
The structure of arabinan and galactan domains in association with cellulose microfibrils was investigated using enzymatic and alkali degradation procedures. Sugar beet and potato cell wall residues (called 'natural' composites), rich in pectic neutral sugar side chains and cellulose, as well as 'artificial' composites, created by in vitro adsorption of arabinan and galactan side chains onto primary cell wall cellulose, were studied. These composites were sequentially treated with enzymes specific for pectic side chains and hot alkali. The degradation approach used showed that most of the arabinan and galactan side chains are in strong interaction with cellulose and are not hydrolysed by pectic side chain-degrading enzymes. It seems unlikely that isolated arabinan and galactan chains are able to tether adjacent microfibrils. However, cellulose microfibrils may be tethered by different pectic side chains belonging to the same pectic macromolecule.  相似文献   

10.
Treatment of either Mycobacterium tuberculosis or M. smegmatis with ethambutol results both in inhibition of arabinan synthesis and in copious loss of previously formed arabinan from the cell wall. The loss of arabinan has been shown to be due to the action of an endogenous arabinase. To better understand this phenomenon, a quantitative assay for endogenous arabinase was developed. Using the assay it was determined that various subcellular fractions of M. smegmatis showed significant amounts of endogenous arabinase activity. Surprisingly, treatment with ethambutol yielded only minor changes in the amounts of endogenous arabinase activities. Endogenous arabinase was present in the cell wall, and consistently, incubation of the M. smegmatis cell wall in only buffer resulted in the release of arabinan, mimicking the effect of ethambutol on whole cells. To determine if cell wall arabinan is rapidly turned over, the arabinan was labeled in the early log phase of culture by feeding [14C]glucose, followed by a “chase” with nonradioactive glucose. Most of the labeled arabinan remained in the cell wall after the culture was grown to late log phase. Thus, there is active arabinase in the cell wall, but arabinan is not rapidly removed unless ethambutol is present. Purification of the endogenous arabinase, using the assay described, is ongoing to help further discern its biological function.  相似文献   

11.
By screening 46 strains of Actinomycetes for their ability to hydrolyze arabinan, 16 strains were found to have α-l-arabinofuranosidase activity, and Streptomyces purpurascens IFO 3389 was selected as the most promising of the sixteen. An α-l-arabinofuranosidase [EC 3.2.1.55] has been highly purified from the culture fluid of this organism grown on beet arabinan as the carbon source. The molecular weight of the native enzyme was determined to be 495, 000 by gel filtration and that of the subunit to be 62,000 by SDS polyacrylamide gel electrophoresis. The pI value was 3.9. The purified enzyme was active on p-nitrophenyl α-l-arabinofuranoside and arabino-oligomers, and inactive on arabinan, arabinoxylan and arabinogalactan. The optimum pH was 6.5. The enzyme was inhibited by Hg2+, Ag+ and l-arabino-γ-lactone. The values of Km and Vmax for p-nitrophenyl α-l-arabinofuranoside were determined to be 8.2 × 10?5 m and 89.3 μmol per min per mg of protein, respectively.  相似文献   

12.
Pectic substances extracted from cabbage cell walls with water, at 80°, and (NH4)2C2O4, at 80°, accounted for 45%(w/w) of the purified cell wall material. Only a small amount of neutral arabinan was isolated. Partial acid hydrolysis and methylation analysis revealed that the major pectic polysaccharide had a rhamnogalacturonan backbone to which a highly branched arabinan was linked, at C-4 of the rhamnose units, mainly through short chains of (1→4)-linked galactopyranose residues. The bulk of the soluble pectic substances had only small amounts of proteins associated with them. After further extraction of the depectinated material with 1M and 4M KOH, to remove the hemicelluloses, the cellulose residue was found to contain a pectic polysaccharide which was solubilized by treatment with cellulase. The general structural features of the pectic polymers are discussed in the light of these results.  相似文献   

13.
Functional cloning in yeast has been used to isolate full-length cDNAs encoding an endo-alpha-1,5-L-arabinanase from the filamentous fungus Aspergillus aculeatus. Screening of a cDNA library constructed in a yeast expression vector for transformants that hydrolysed AZCL-arabinan identified 44 Saccharomyces cerevisiae clones all harbouring the same arabinanase-encoding cDNA. The cloned cDNA was expressed in A. oryzae and the recombinant enzyme was purified and characterized. The mode of action of the enzyme was studied by analysis of the digestion pattern towards debranched arabinan. The digestion profile obtained strongly suggests that the enzyme is an endo-arabinanase. In addition, the feasibility using Nicotiana tabacum as an alternative host for arabinanase expression was investigated.  相似文献   

14.
An intracellular alpha-L-arabinofuranosidase from Pichia capsulata X91 was purified and characterized. The enzyme was purified to homogeneity from a cell-free extract by ammonium sulfate treatment, Concanavalin A-Sepharose, ion-exchange chromatography with DEAE Bio-Gel A agarose, arabinose-Sepharose 6B affinity chromatography, and hydroxyapatite column chromatography. The apparent molecular mass of the enzyme was estimated to be 250 kDa by native-PAGE. The enzyme molecule was suggested to be a tetramer with a subunit molecular mass of 72 kDa by SDS-PAGE. The enzyme had an isoelectric point at 5.1, and was most active at pH 6.0 and at around 50 degrees C. The alpha-L-arabinofuranosidase was active at ethanol concentrations of wine. The enzyme was inhibited by Cu2+, Hg2+, and p-chloromercuribenzoate. The enzyme hydrolyzed beet arabinan and arabinogalactan, and efficiently released monoterpenols from an aroma precursor extracted from Muscat grape juice. A considerable amount of monoterpenols was produced in the Muscat wine coupled with the enzyme addition.  相似文献   

15.
Bacillus subtilis synthesizes at least one arabinanase encoded by the abnA gene that is able to degrade the polysaccharide arabinan. Here, we report the expression in Escherichia coli of the full-length abnA coding region with a His6-tag fused to the C-terminus. The recombinant protein was secreted to the periplasmic space and correctly processed by the E. coli signal peptidase. The substrate specificity of purified AbnA, the physico-chemical properties and kinetic parameters were determined. Functional analysis studies revealed Glu 215 as a key residue for AbnA hydrolytic activity and indicated that in addition to AbnA B. subtilis secretes other enzyme(s) able to degrade linear 1,5-alpha-l-arabinan.  相似文献   

16.
17.
The bacterium Bacillus licheniformis, which exhibits high hydrolytic activity toward arabinan, was isolated from soil, and its gene encoding endo-1,5-α-l-arabinanase was cloned and sequenced. The gene has an open reading frame that encodes 328 amino acids, including a signal peptide of 37 amino acids. Endo-1,5-α-l-arabinanase, a member of glycosyl hydrolase family 43, was expressed in Escherichia coli and purified as a 34-kD monomer with a specific activity of 27 U/mg. Optimal activity toward debranched arabinan (linear 1,5-α-l-arabinan) occurred at pH 6.0 and 35°C, with a k cat of 160/sec and a K m of 19 mg/mL.  相似文献   

18.
Exhaustive extraction of the endosperm from the seed of Gleditsia triacanthos using water at room temperature and 50 degrees C left a residue, which was further extracted at 95 degrees C. Precipitation of this extract with 2-propanol yielded major amounts of galactomannan components, while the supernatant was mainly composed of arabinose-rich constituents. Two fractions were obtained by anion-exchange chromatography. The fraction that eluted with water is an arabinan with (1-->5) alpha-L linkages and branching mainly on C-2, accompanied with equal amounts of a low-galactose galactomannan oligosaccharide, and a small proportion of a beta-(1-->4)-galactan. The fraction eluted with an increased ionic strength consists mainly of a similar arabinan, and lower proportions of a high-galactose galactomannan, galactan, and protein. The arabinan moiety in both fractions was characterized by chemical analysis and 1D and 2D NMR spectroscopic techniques.  相似文献   

19.
Bioassay-guided purification of sulphated polysaccharides from a green marine alga, Codium dwarkense, yielded two products, which contained sulphated arabinan and sulphated arabinogalactan. The product containing arabinan sulphate exhibited stronger blood anticoagulant activity than the one containing sulphated arabinogalactan.  相似文献   

20.
A gene encoding an alpha-L: -arabinofuranosidase, designated SaAraf43A, was cloned from Streptomyces avermitilis. The deduced amino acid sequence implies a modular structure consisting of an N-terminal glycoside hydrolase family 43 module and a C-terminal family 42 carbohydrate-binding module (CBM42). The recombinant enzyme showed optimal activity at pH 6.0 and 45 degrees C and was stable over the pH range of 5.0-6.5 at 30 degrees C. The enzyme hydrolyzed p-nitrophenol (PNP)-alpha-L: -arabinofuranoside but did not hydrolyze PNP-alpha-L: -arabinopyranoside, PNP-beta-D: -xylopyranoside, or PNP-beta-D: -galactopyranoside. Debranched 1,5-arabinan was hydrolyzed by the enzyme but arabinoxylan, arabinogalactan, gum arabic, and arabinan were not. Among the synthetic regioisomers of arabinofuranobiosides, only methyl 5-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside was hydrolyzed by the enzyme, while methyl 2-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside and methyl 3-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside were not. These data suggested that the enzyme only cleaves alpha-1,5-linked arabinofuranosyl linkages. The analysis of the hydrolysis product of arabinofuranopentaose suggested that the enzyme releases arabinose in exo-acting manner. These results indicate that the enzyme is definitely an exo-1,5-alpha-L: -arabinofuranosidase. The C-terminal CBM42 did not show any affinity for arabinogalactan and debranched arabinan, although it bound arabinan and arabinoxylan, suggesting that the CBM42 bound to branched arabinofuranosyl residues. Removal of the module decreased the activity of the enzyme with regard to debranched arabinan. The CBM42 plays a role in enhancing the debranched arabinan hydrolytic action of the catalytic module in spite of its preference for binding arabinofuranosyl side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号