首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
Localization of arylsulphatase in neurons   总被引:2,自引:1,他引:1  
Abstract— Arylsulphatase activity, with 4-methylumbelliferone sulphate as substrate, was measured by a quantitative histochemical method in individual anterior horn nerve cell bodies and adjacent neuropil of man and monkey; and in molecular and granular layers and subjacent white matter of cerebellum of monkey, rat and guinea pig. The activity was much higher in neuronal perikarya than in neuropil, and higher in the granular layer of cerebellum than in the molecular or white matter, thus resembling the distinctive distribution, reported in monkey, of three other lysosomal enzymes, β-galactosidase, β-glucuronidase and α-naphthyl acid phosphatase. One exception was encountered: the white matter of guinea pig cerebellum had more arysulphatase activity than the granular layer. For comparison, other lysosomal enzymes also were measured in rat and guinea pig cerebellum; in these species, α-naphthyl acid phosphatase distribution was found to differ from that of β-galactosidase and arysulphatase, and from the pattern common to four lysosomal enzymes in the monkey.  相似文献   

2.
3.
Eight lysosomal enzymes were measured in different types of rat liver cells. Hepatocytes were purified by low speed centrifugation of a cell suspension obtained by treating the perfused liver with collagenase. Nonparenchymal cells (NPC) were purified by centrifugation after treating the initial cell suspension with pronase, which selectively destroys the parenchymal cells (PC). Kupffer cells were found to attach selectively to tissue culture dishes after overnight culture of an NPC suspension. The specific activity of lysosomal enzymes was generally higher in NPC than in hepatocytes, but the different enzymes were concentrated to different degrees in the NPC. Specific activity of acid phosphatase was 1.7 times higher in NPC than in hepatocytes. Specific activity of acid DNAase, on the other hand, was 8 times higher in NPC than in hepatocytes. Other enzymes showed intermediate values. Assuming that 30% of the liver cells are nonparenchymal it may be calculated that from 7% (acid phosphatase) to 25% (acid DNAase) of the hepatic lysosomal enzymes are present in the NPC. The pattern of lysosomal enzymes in cultured Kupffer cells was similar to that of the NPC from which the Kupffer cells were derived. Cathepsin D and β-glucuronidase were, however, elevated in Kupffer cells as compared with NPC. The enzyme pattern in Kupffer cells was almost identical with that of rat peritoneal macrophages.  相似文献   

4.
Peroxisomal proliferators induce in rodents hepatic hyperplasia and hypertrophy; the significant increase in the peroxisomal population is accompanied by specific and reversible induction of some peroxisomal enzymes. In suckling rats born from clofibrate-treated mothers, a massive removal of proliferated organelles occurs within 3 days of recovery. In the present paper we examined the early stages of the recovery period in liver of male rats treated with clofibrate for 5 days. The lysosomal involvement in the removal of drug-induced peroxisomes was investigated under physiological conditions, ie in the absence of inhibitors of the autophagic process. Biochemical results indicate that peroxisomal β-oxidation, but not catalase activity, returns to the control values within the examined period. Total acid phosphatase activity is not affected by clofibrate treatment, but following fractionation on a linear density gradient the lysosomal marker enzyme activity is shifted towards lower density values, particularly at day 1 and 2 of recovery. This class of organelles possibly represents lysosomes involved in active autophagic processes. Acid phosphatase cytochemistry shows an increase of lysosome number at day 1 of recovery. Combination of acid phosphatase cytochemistry either with catalase cytochemistry or with catalase immunogold labelling allows to reveal organelles containing both marker enzymes. These results strongly support the involvement of autophagic processes in the removal of proliferated peroxisomes.  相似文献   

5.
Although the subcellular distribution profile of acid phosphatase in HeLa cells is typical of a lysosomal enzyme, different lysosomal (70–80%) and supernatant forms (20–30%) have been demonstrated by their differences in pH activity curves, substrate specificities, thermal stability, sensitivity to inhibitors, and kinetics. Enzymes of the lysosomal fraction displayed anomalous kinetics in the hydrolysis of p-nitrophenyl phosphate. The major lysosomal acid phosphatase activity appears to be associated with the membrane.The total acid phosphatase activity in the cell is controlled by the concentration of serum in the medium. The specific activity in the homogenates of cells grown in high serum concentration (30%) is about twice that of cells grown in low serum concentration (1%). This doubling of specific activity holds for the lysosomal enzyme (or enzymes), but little change occurs in the supernatant form (or forms). Two other lysosomal enzymes, β-glucuronidase and N-acetyl-β-d-hexosaminidase, do not increase in specific activity. The serum-dependent formation of acid phosphatase is sensitive to cycloheximide, actinomycin D, and cordycepin. Cycloheximide blocks the increase in enzymatic activity immediately, whereas cordycepin and actinomycin D have no effect for at least 8 h. These findings suggest that de novo protein synthesis is involved in the induction of lysosomal acid phosphatase by serum and that the mRNA for this enzyme is relatively stable.  相似文献   

6.
Tetrahymena were grown in proteose-peptone medium supplemented with glucose, mannose, fructose, galactose, acetate, succinate, or pyruvate and then washed and resuspended in a non-nutrient salt solution and the amounts of 7 acid hydrolases secreted into the medium in a one hour incubation were measured. Cells that had been grown in the presence of glucose secreted about half the amounts of acid phosphatase, β-N-acetylglucosaminidase and acid protease as did control cells grown in unsupplemented medium. Pyruvate was about as effective as glucose and both were slightly more effective than acetate or fructose. Succinate had little effect. Similar experiments showed that α-mannosidase, β-fucosidase, and β-galactosidase are secreted into the salt solution and that secretion is reduced by prior growth of the cells in medium supplemented with glucose or mannose but not galactose. Except for α-mannosidase, these reductions in amounts of hydrolase secreted were not accompanied by appreciable changes in intracellular activity, and therefore demonstrate a persistent effect of growth in the presence of certain metabolites on the subsequent secretion of lysosomal hydrolases. Since the inhibition of subsequent secretion depended on both the individual metabolite and the particular hydrolase examined, it appears that the effect of metabolites is not limited to a general inhibition of secretion but may differentially alter some properties of lysosomal subpopulations. A preliminary characterization of the secreted acid protease of Tetrahymena suggests that there may be two acid proteases released, since up to 25% of the activity was not inhibited by high concentrations of pepstatin, leupeptin, or chymostatin.  相似文献   

7.
The induction of several biochemical indicators of larval tissue histolysis in the Medfly, Ceratitis capitata (Diptera: Tephritidae) (Wiedemann) was studied. Using synchronized third instar larvae, we have determined the time of occurence of gut evacuation (12 h before puparium formation, bpf), disappearance of digestive enzymes (10 h bpf), and jumping from the food (8 h bpf). We can also correlate these events temporally with other early landmarks of metamorphosis.The decrease in protein content between 0 hours and 144 hours after puparium formation (0–144 h apf) corresponds to a sharp increase of total acid proteolytic activity measured in vitro from 0 to 44 h apf. This activity appears to be lysosomal, judging by the activation of other lysosomal markers, such as acid phosphatase and -glycosidases. The maximum proteolytic activity occurs during the pre-pupa to pupa transition, i.e. during morphogenesis from the cryptocephalic to the phanerocephalic pupa. The results of endopeptidase inhibitor assays indicate that in dipterans, members of the aspartic and cystein proteinase families are responsible for the degradation of larval tissues.  相似文献   

8.
Cultured skin fibroblasts from a patient with I-Cell disease (mucolipidosis II) were assayed for a number of lysosomal enzymes using both natural and synthetic substrates. The cells from this patient were found to have very low activity for galactosylceramide β-galactosidase, lactosylceramide β-galactosidases (using two assay methods that measure different enzymes), GM1 ganglioside β-galactosidase and sphingomyelinase. Glucosylceramide β-glucosidase activity was found to be normal. Acid hydrolase activities toward many synthetic substrate were measured and all except β-glucosidase and acid phosphatase were found to be extremely low (as has been reported by others). Acid phosphatase and β-glucosidase were in the low normal range. These studies expand on previously published reports on I-Cell disease that only present data from synthetic substrates, and also report the fibroblast culture deficiencies of galactosyl-ceramide β-galactosidase (the Krabbe disease enzyme) and sphingomyelinase (the Niemann-Pick disease enzyme) activities for the first time. Those two enzymes do not have a readily available synthetic analog to assay. Acid β-galactosidase activity measured with both the 4-methylumbelliferyl derivative and GM1 ganglioside was partially deficient in leukocytes prepared from this patient. New methods for measuring 4-methylumbelliferyl-β-D-glucoside and glucosylceramide β-glucosidase activities are also presented.  相似文献   

9.
ABSTRACT. Inhibition, inactivation, pH, and kinetic studies using both homogenates and purified lysosomal fractions of Paramecium caudalum and of P. tetraurelia were carried out to examine the lysosomal acid phosphatase (AcPase) and its relationship to p-nitrophenylphosphatase (pNPPase), glucose-6-phosphatase (G6Pase), and 5′-nucleotidase (AMPase). The results generally support the idea that Paramecium cells contain a distinct lysosomal AcPase with a broad substrate specificity. The hydrolysis of glucose-6-phosphate (G6P) and adenosine 5′-monophosphate (AMP) was shown to be due to this enzyme, suggesting that true G6Pase and AMPase may be lacking in these two species; however, some hydrolysis of AMP at pH 7.5 catalyzed by an unknown soluble enzyme distinct from alkaline phosphatase and Na+-K+-ATPase was observed. Since the hydrolysis of p-nitrophenylphosphate (pNPP) at acid pH was also shown to be due to AcPase alone, pNPPase could be used as a rapid assay for Paramecium AcPase. At an alkaline pH, however, this activity was catalyzed by an alkaline phosphatase located in the cytosol fraction. P. caudatum AcPase was shown to have kinetic properties similar to those of purified rat liver and human prostatic AcPase and to have relative substrate affinities in the order of G6P < β-glycerophosphate < pNPP < AMP. These different substrate affinities might account for the observed differences in the inhibition of the four lysosomal activities by NaF, L(+)-tartrate, and molybdate, all of which inhibited the hydrolysis of G6P, β-glycerophosphate, and pNPP competitively, but which exhibited a noncompetitive inhibition of a mixed type with the hydrolysis of AMP.  相似文献   

10.
Synaptosomes were prepared from the cerebral cortex of adult rats by a rapid technique of centrifugation in a Ficoll-sucrose discontinuous gradient. The synaptosomal fraction contained 40 per cent of the total gradient activity of acid α-naphthyl phosphatase (EC 3.1.3.2). Quantitative electron microscopy of this fraction revealed rare, typical, extrasynaptosomal dense body lysosomes. pH-activity profiles of free and Triton X-100 (total) activities were prepared for α-naphthyl phosphatase, β-glucuronidase (EC 3.2.1.31), β-galactosidase (EC 3.2.1.23), arylsulfatase (EC 3.1.6.1) and N-acetylglucosaminidase (EC 3.2.1.30). The ratios of total to free activity varied in the order: arylsulfatase > β-galactosidase > β-glucuronidase > N-acetylglucosaminidase > acid phosphohydrolase. Incubation of synaptosomal fractions at pH 5 and 37°C produced significant activation of β-galactosidase and N-acetylglucosaminidase but no activation of cryptic lactate dehydrogenase (EC 1.1.1.27). Hyposmotic suspension and subfractionation of the synaptosomal fraction produced considerable solubilization of lactate dehydrogenase, arylsulfatase and β-galactosidase but only partial liberation of α-naphthyl phosphatase, the remainder being associated with synaptosomal membrane fragments. Incomplete equilibrium sedimentation of synaptosomes in a continuous sucrose gradient (0·55-1·5 M) provided a broad lactate dehydrogenase and Na + K ATPase (EC 3.6.1.4) peak (peak I) at low sucrose densities. β-Glucuronidase, β-glucosidase and α-naphthyl phosphatase were significantly present in peak I. Conversely, N-acetylglucosaminidase, arylsulphatase and β-galactosidase were predominantly located in denser particles sedimenting through 1·2 M sucrose (peak II). Electron microscopy confirmed the heterogeneity of this second peak and the presence of numerous extrasynapto-somal dense body lysosomes.  相似文献   

11.
—A longitudinal study of the maturation of mouse cerebral lysosomal enzymes has been completed. Activity of the enzymes, acid phosphatase (I.U.B. 3.1.3.2), β-glucuronidase (I.U.B. 3.2.1.31) and β-acetylglucosaminidase (I.U.B. 3.2.1.30) was assayed spectrofluorimetrically on portions of supernatant from 0.25 M sucrose homogenates spun at 6 x 103 -min. Activities were obtained in native (free) and Triton X-100 activated samples (total). The neonatal period was characterized by relatively low free and high total acid phosphatase activities. An abrupt rise in free activity occurred during the period 10–20 days. Discontinuous anion exchange DEAE cellulose chromatography (0.01 m -tris–maleate, pH 6.3) with elution by ascending molarities of NaCl of the Triton X-100 activated supernatant revealed three major peaks in the adult. A fourth peak, designated as fraction II (‘maturation fraction’) occurred only during the neonatal period, a time also characterized by increased specific activity of fraction I, with no change in fraction IV. The chromatographic fractions were further characterized by optimal pH, ascorbate, fluoride, Cu2+ and Fe2+ ions. The maturation profiles of total, β-glucuronidase and total, β-acetylglucosaminidase differed from each other, and from that of total acid phosphatase. Comparable differences existed in the profiles of the free activities, and the ratio of free:total activity differed for each enzyme at any selected time especially during the neonatal period. These findings are are discussed with reference to the maturation of isoenzyme fractions with age, and suggest that the changes in structure-linked organization of individual lysosomal hydrolases are functions of heterogeneity in enzyme complement of individual lysosomes.  相似文献   

12.
In contrast to other tissues (e.g. brain, heart), no cAMP dependent protein kinase activity and little cAMP-binding activity could be detected in crude homogenates of purified human PMN leucocytes. This was due to the presence of an inhibitor of cAMP binding and protein kinase activity in PMN leucocytes. Since the inhibitor was entirely segregated in PMN lysosomes (rich in β-glucuronidase and acid phosphatase), lysosomefree supernatants yielded cAMP-dependent protein kinase (> 5-fold stimulation with 5 μM cAMP) and considerable cAMP binding activity. The inhibitor was not dialyzable, and unlike the usual protein kinase modulators, was heat-labile. Preparations of beef-heart protein kinase, treated with the PMN inhibitor, lost cAMP-binding and protein kinase activities simultaneously. The presence of this lysosomal inhibitor may invalidate studies of cAMP binding and protein kinase activities in crude homogenates prepared from lysosome-rich tissues.  相似文献   

13.
Two lysosomal enzymes, cathepsin D and acid phosphatase, were detected in significant amounts in the lysosome-containing subcellular fractions of rat parotid tissue and found to have dissimilar distributions in these fractions. The total levels of these enzymes were measured at various times throughout a complete secretory cycle induced synchronously by fasting rats overnight and administering isoproterenol at time zero. The results showed a 30% increase in cathepsin D activity in the glands by 10 h post-stimulation, and a 20% decrease in acid phosphatase activity 7 h after stimulation. These results suggest that there are cyclic changes in lysosomal enzymes during the secretory cycle of this gland, but that these changes are complex ones and cannot be related to specific cellular processes at this time.  相似文献   

14.
Antioxidants are known to influence metabolism and promote cell survival in a number of cell culture systems. However, their effects on the modulation of bone cell differentiationin vitroare not clearly defined. In the present studies we have investigated the effects of β-mercaptoethanol (βME) and ascorbate alone and in combination on human osteoprogenitors derived from bone marrow fibroblasts. In primary marrow cultures, βME stimulated colony formation (2-fold), alkaline phosphatase activity (3.5-fold) and, increased DNA synthesis (8-fold) after 21 days. Cell proliferation was increased significantly by βME during the first 4 days of a 10-day culture period, indicating stimulation of marrow osteoprogenitor proliferation. Ascorbate did not significantly augment the effects of βME in primary cultures or long-term cultures of passaged bone marrow fibroblasts. These findings indicate a potential beneficial role for βME addition for the optimal maintenance of colony formation, cell proliferation and differentiation of marrow osteoprogenitor cells in primary human bone marrow fibroblast cultures.  相似文献   

15.
The appearance of the lysosomal enzymes acid phosphatase, arylsulfatase, and β-glucuronidase was studied during endochondral bone and bone marrow formation induced by implantation of demineralized bone matrix. The activities of acid phosphatase and β-glucuronidase gradually increased from the stage of mesenchymal cell proliferation on Day 3 onward to reach a peak on Day 13, during maximal bone remodeling. However, arysulfatase activity exhibited a sharp increase on Day 9, associated with the onset of cartilage hypertrophy and chondrolysis. The peak of arylsulfatase activity was also attained on Day 13. The activities of all three enzymes declined on Day 15 but acid phosphatase again exhibited an increase during hematopoietic bone marrow differentiation on Days 19–21. Histochemical and ultrastructural studies revealed intense lysosomal enzyme activity in macrophage-like cells on Day 7 and thereafter. During chondrolysis and bone remodeling, these cells were present in a perivascular location. Osteoclasts also exhibited strong reactivity for the lysosomal enzymes. Due to its characteristic temporal appearance during development of endochondral bone, arysulfatase may be used as a marker enzyme for chondrolysis and bone resorption.  相似文献   

16.
Summary The effect of ischemia on the stability, i.e. the permeability of the lysosomal membrane of rat liver has been studied using quantitative histochemical analysis of acid phosphatase activity. Ischemia in vitro was performed for 0–240 min at 37° C and ischemia in vivo for 60 min was followed by 1, 5, 24 and 48 h of reperfusion. Acid phosphatase activity was demonstrated in cryostat sections using naphthol AS-BI phosphoric acid as substrate and polyvinyl alcohol was added to the incubation medium to counteract diffusion phenomena. Ischemia in vitro up to 240 min did not affect the localization nor the total activity of acid phosphatase activity. After 60-min ischemia in vivo followed by 1-h reperfusion distinct areas showed decreased acid phosphatase activity. A further decrease in activity was observed after 5 h reperfusion. Final reaction product generated by acid phosphatase activity was rather diffusely distributed in border zones between normal and damaged tissue after 24 and 48 h of reperfusion following 60 min ischemia in vivo. It is concluded that not ischemia itself but rather reperfusion affects the stability of the lysosomal membrane due to the occurrence of oxygen-derived free radicals and/or imbalanced Ca2+ concentration. Restoration of the blood flow causes leakage of acid phosphatase from the lysosomes into the cytoplasm of liver parenchymal cells and from there to the blood.  相似文献   

17.
Granules containing acid hydrolases have been detected in human platelets but have not been thoroughly characterized. We have studied the activity and characteristics of glycohydrolases present in normal human platelets, evaluated their release upon stimulation with thrombin, and assessed the contribution of platelet - released lysosomal contents to the glycohydrolase activity present in normal serum. Platelets contained a remarkable glycohydrolase activity with a prevalence of β - N-acetylhexosaminidase. All glycohydrolases were released to some extent upon stimulation with thrombin and contributed to the glycohydrolase activity found in human serum. α-Mannosidase and α-galactosidase were partially inactivated after release by a mechanism as yet undefined. In addition, thrombin stimulation affects the intraplatelet isoenzyme pattern of β-N-acetylhexosaminidase by producing the appearance of a new form.  相似文献   

18.
Synopsis A method is described for measuring the latency of lysosomal acid phosphatase in cultured rat heart endotheloid cells.210Pb was added to a medium used to demonstrate acid phosphatase activity by the Gomori lead method, and the amount of lead deposited was measured with a liquid scintillation counter. Deposition rates were measured after enzyme activation pretreatments with acetate buffer (pH 5.0) at various osmolalities, and after formaldehyde fixation. Formaldehyde, alloxan, or fluoride in the Gomori medium were evaluated for their differential effects on lysosomal and non-lysosomal acid phosphatase. The method was found to provide a sensitive, rapid and quantitative evaluation of acid phosphatase latency and should be useful for studying the integrity of lysosomes within cells.  相似文献   

19.
T. R. Ricketts 《Protoplasma》1970,71(1-2):127-137
Summary Increased endocytosis inTetrahymena pyriformis, produced by presenting starved cells with either peptone-yeast extract medium or killed yeast cell suspension, results in increased cellular acid phosphatase activity.Tetrahymena, grown in peptone-yeast extract medium, showed increased acid phosphatase activity after phagocytosis of yeast cells. This increase was not apparent until about one hour after presentation and was maximal at about 2.5 hours.Tetrahymena, grown on yeast suspension, showed little increase in acid phosphatase activity on presentation with peptone-yeast extract medium. These results may indicate that endocytosis, of either particles or solutes, produces an adaptive increase in acid phosphatase activity (presumably lysosomal in nature) which is related to feeding.Histochemical examination failed to localise the increase in acid phosphatase activity cellularly, but small particles, of about 1 diameter, which showed acid phosphatase activity and were presumably lysosomes were noted. Closely orientated yeast cells showed varying intensities of lead deposition, from absence to intense staining. This suggests that newly ingested yeast cells may be ingested initially in a single phagosome and that thereafter one or more lysosomes may fuse with them.  相似文献   

20.
—By an adaptation of the fluorometric method of Campbell and Moss (1961), the activity of α-naphthyl acid phosphatase was measured in individual neurons of monkey and human spinal cord and found to be many times higher in nerve cell bodies than in the surrounding neuropil. It was also measured in cerebellar cortex and found most concentrated in the granular (neuronal) layer. As this distribution is distinctive and paralleled by two other acid hydrolases, β-galactosidase and β-glucuronidase, it is considered to offer additional support for the lysosomal concept in nervous tissue and to indicate that nerve cell perikarya are much richer in lysosomes than are axons, dendrites or glial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号