首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Although shade coffee plantations are potentially valuable habitats for wildlife conservation, little information exists on the extent to which they provide resident wildlife populations with resources necessary for survival and reproduction. A 14-month study of the ecology of mantled howling monkeys Alouatta palliata living in a Nicaraguan shade coffee plantation was therefore conducted. Trees were surveyed at randomly located enumeration points in the coffee plantation and monitored for phenophase production to characterize resource availability. Day-long focal animal follows were used to characterize the ranging and habitat preferences of the howlers. The study site had a diverse canopy, with over 60 tree species providing shade for coffee cultivation; high tree diversity ensured year-round availability of the howlers' preferred foods. Howlers did not avoid feeding or ranging in areas of shade coffee cultivation. However, when foraging in coffee they favored large shade trees for feeding and were less likely to use areas of shade coffee with small trees and fewer arboreal pathways. Results suggest, in conjunction with controls on hunting and protection of nearby forests, that shade coffee can serve as alternate wildlife habitat and corridors between forest fragments for howling monkeys and possibly other forest mammals. Specific management recommendations to improve the conservation value of shade coffee for primates are made and the potential role of coffee plantations in primate conservation at a regional scale are discussed.  相似文献   

2.
The soil Coleoptera community was sampled with pitfall traps in shaded and unshaded coffee agroecosystems in Veracruz, Mexico. The insect collection resulted in a total of 31 species which belong to nine families. The most frequent families collected in this study (in terms of species and number of organisms) were Scarabaeidae and Carabidae.Species diversity was measured using the Hill's family of diversity numbers. The Coleoptera community was more diverse in shaded than in unshaded coffee. Also, the collected organisms were more evenly distributed between species in shaded coffee.The diversity of the scarab beetles was shown to be strongly affected by the degree of forest perturbation. The richness and evenness of scarab beetles was correlated with the diversity of shade trees present in coffee agro-ecosystems; scarab richness drops from 19 species collected in virgin tropical rain-forests, to five species in polyspecific shade (more than ten species of shade trees) and six species in monogeneric shade (three species of shade trees) coffee agro-ecosystems, and to three scarab species in unshaded coffee. Evenness in scarab beetles follows a similar pattern: a single species tends to gradually become dominant as more shade trees are removed from the agro-ecosystem. It is suggested that some shade trees should be preserved within the agro-ecosystem during the intensification of coffee production in Mexico.  相似文献   

3.
I examined the effects of two farm management variables, shade‐tree species and crop structure, on the winter (dry season) arthropod and bird communities in a Jamaican shade coffee plantation. Birds and canopy arthropods were more abundant in areas of the plantation shaded by the tree Inga vera than by Pseudalbizia berteroana. The abundance of arthropods (potential pests) on the coffee crop, however, was unaffected by shade‐tree species. Canopy arthropods, particularly psyllids (Homoptera), were especially abundant on Inga in late winter, when it was producing new leaves and nectar‐rich flowers. Insectivorous and nectarivorous birds showed the strongest response to Inga; thus the concentration of birds in Inga may be a response to abundant food. Coffee‐tree arthropod abundance was much lower than in the shade trees and was affected little by farm management variables, although arthropods tended to be more abundant in dense (unpruned) than open (recently pruned) areas of the plantation. Perhaps in response, leaf‐gleaning insectivorous birds were more abundant in dense areas. These results underscore that although some shade coffee plantations may provide habitat for arthropod and bird communities, differences in farm management practices can significantly affect their abundances. Furthermore, this study provides evidence suggesting that bird communities in coffee respond to spatial variation in arthropod availability. I conclude that /. vera is a better shade tree than P. berteroana, but a choice in crop structures is less clear due to changing effects of prune management over time.  相似文献   

4.
Tropical montane cloud forest landscapes are changing, and forest conversion to other land uses is a major driver of biodiversity loss. Land use intensification can lead to significant losses in biodiversity and carbon storage (C); however, the impacts may vary greatly depending on land use type, management practices, and environmental context. We investigated how biodiversity and C are related along a gradient of land use intensification characterized by four dominant land uses in the upper part of Antigua River watershed, Mexico. The land uses were montane cloud forest, secondary forest, and traditional and intensive shade coffee plantations. We determined tree species composition, diversity, ecosystem structure, wood density and C content in dominant tree species to assess aboveground biomass (AGB) and C storage within eight study sites across the land use intensity gradient. A total of 83 tree species was recorded. A canonical correspondence analysis indicated that land uses are separated by particular tree species assemblages. Forests had higher basal area, density, and biomass than coffee plantations, however, the traditional shade coffee plantation had values similar to secondary forest. Calculating C using the standard estimate of 50% of AGB resulted in an overestimation of stored C by 5.8 to 4.1% compared to calculations based on actual measurements. Carbon storage in AGB and biodiversity were strongly and positively related across the land use intensity gradient, although the distinction between the two different intensities of coffee plantation management was not consistently as clear as we had expected. Carbon was highest in forest, but secondary forests and traditional shade coffee plantation had similar C, while intensive coffee had the lowest C content. These results highlight the importance of considering the potential of low intensity land uses such as traditional coffee plantations to mitigate biodiversity loss and preserve ecosystem functions as part of conservation efforts.  相似文献   

5.
Much of the remaining “forest” vegetation in eastern Chiapas, Mexico is managed for coffee production. In this region coffee is grown under either the canopy of natural forest or under a planted canopy dominated by Inga spp. Despite the large differences in diversity of dominant plant species, both planted and rustic shade coffee plantations support a high overall diversity of bird species; we recorded approximately 105 species in each plantation type on fixed radius point counts. We accumulated a combined species list of 180 species on repeatedly surveyed transects through both coffee plantation types. These values are exceeded regionally only by moist tropical forest. Of the habitats surveyed, shade coffee was second only to acacia groves in the abundance and diversity of Nearctic migrants. The two plantation types have similar bird species lists and both are similar in composition to the dominant woodland—mixed pine-oak. Both types of shade coffee plantation habitats differ from other local habitats in supporting highly seasonal bird populations. Survey numbers almost double during the dry season—an increase that is found in omnivorous migrants and omnivorous, frugivorous, and nectarivorous resident species. Particularly large influxes were found for Tennessee warblers (Vermivora peregrina) and northern orioles (Icterus galbula) in Inga dominated plantations.  相似文献   

6.
Tropical landscapes are dominated by agroecosystems, but the potential value of agroecosystems for the survival of species is often overlooked. In agroecosystems, species conservation is especially important when functional groups such as predators are affected. In Central Sulawesi, we sampled arthropods on cocoa in a gradient of land-use intensity from extensively used forest gardens to intensively used agroforestry systems. The abundance and diversity of all arthropods did not correlate with land-use intensity, so human impact was not followed by high species losses. However, the number of species and abundance of the phytophagous arthropods increased and that of the entomophagous arthropods decreased with land-use intensity. The reduced predator–prey ratio in intensified systems can be related to their reduced species richness of shade trees and the changed microclimate (increased temperature, decreased humidity and canopy cover). In conclusion, transformation of traditional into intensified agroforestry systems had a great impact on arthropod community structure on cocoa. Since predator–prey ratios decreased with increasing land-use intensity, local farmers should have least pest problems in the traditionally diversified agroforestry systems.  相似文献   

7.
Expansion of coffee cultivation is one of the causes of deforestation and biodiversity loss. However, shade grown coffee has been promoted as a means for preserving biodiversity in the tropics. In this study we compared tree diversity in two types of coffee management regimes with the sacred groves in the Western Ghats of India. We computed species accumulation curves, species diversity indices and evenness indices to compare the different management regimes. Results of diversity indices showed that shade coffee had less diversity compared to sacred groves. Exotic species dominated the tree diversity in lands where the tree harvesting rights are with the growers. Native trees dominated the tree diversity when growers had no ownership rights on trees. A species accumulation curve suggested that the sacred grove had higher species richness compared to other two habitats. Lack of incentive to preserve endemic species as shade trees is forcing growers to plant more exotic species in shade grown coffee plots. If encouraged, shade grown coffee can preserve some biodiversity, but cannot provide all ecological benefits of a natural forest.  相似文献   

8.
As large nature reserves occupy only a fraction of the earth’s land surface, conservation biologists are critically examining the role of private lands, habitat fragments, and plantations for conservation. This study in a biodiversity hotspot and endemic bird area, the Western Ghats mountains of India, examined the effects of habitat structure, floristics, and adjacent habitats on bird communities in shade-coffee and cardamom plantations and tropical rainforest fragments. Habitat and birds were sampled in 13 sites: six fragments (three relatively isolated and three with canopy connectivity with adjoining shade-coffee plantations and forests), six plantations differing in canopy tree species composition (five coffee and one cardamom), and one undisturbed primary rainforest control site in the Anamalai hills. Around 3300 detections of 6000 individual birds belonging to 106 species were obtained. The coffee plantations were poorer than rainforest in rainforest bird species, particularly endemic species, but the rustic cardamom plantation with diverse, native rainforest shade trees, had bird species richness and abundance comparable to primary rainforest. Plantations and fragments that adjoined habitats providing greater tree canopy connectivity supported more rainforest and fewer open-forest bird species and individuals than sites that lacked such connectivity. These effects were mediated by strong positive effects of vegetation structure, particularly woody plant variables, cane, and bamboo, on bird community structure. Bird community composition was however positively correlated only to floristic (tree species) composition of sites. The maintenance or restoration of habitat structure and (shade) tree species composition in shade-coffee and cardamom plantations and rainforest fragments can aid in rainforest bird conservation in the regional landscape.  相似文献   

9.
The ongoing destruction of tropical rainforests has increased the interest in the potential value of tropical agroforests for the conservation of biodiversity. Traditional, shaded agroforests may support high levels of biodiversity, for some groups even approaching that of undisturbed tropical forests. However, it is unclear to what extent forest fauna is represented in this diversity and how management affects forest fauna in agroforests. We studied lower canopy ant and beetle fauna in cacao agroforests and forests in Central Sulawesi, Indonesia, a region dominated by cacao agroforestry. We compared ant and beetle species richness and composition in forests and cacao agroforests and studied the impact of two aspects of management intensification (the decrease in shade tree diversity and in shade canopy cover) on ant and beetle diversity. The agroforests had three types of shade that represented a decrease in tree diversity (high, intermediate and low diversity). Species richness of ants and beetles in the canopies of the cacao trees was similar to that found in lower canopy forest trees. However, the composition of ant and beetle communities differed greatly between the agroforest and forest sites. Forest beetles suffered profoundly from the conversion to agroforests: only 12.5% of the beetle species recorded in the forest sites were also found in the agroforests and those species made up only 5% of all beetles collected from cacao. In contrast, forest ants were well represented in agroforests, with 75% of all species encountered in the forest sites also occurring on cacao. The reduction of shade tree diversity had no negative effect on ants and beetles on cacao trees. Beetle abundances and non-forest ant species richness even increased with decreasing shade tree diversity. Thinning of the shade canopy was related to a decrease in richness of forest ant species on cacao trees but not of beetles. The contrasting responses of ants and beetles to shade tree management emphasize that conservation plans that focus on one taxonomic group may not work for others. Overall ant and beetle diversity can remain high in shaded agroforests but the conservation of forest ants and beetles in particular depends primarily on the protection of natural forests, which for forest ants can be complemented by the conservation of adjacent shaded cacao agroforests.  相似文献   

10.
Ethiopian Afromontane moist forests where coffee grows as understorey shrub are traditionally managed by the local communities for coffee production through thinning of the shade tree canopy and slashing of competing undergrowth. This management practice has a negative impact on the coffee shrubs, because the removal of shade tree saplings and seedlings reduces the succession potential of the shade tree canopy, which threatens the very existence of the shade coffee production system. We assessed the functionality of small exclosures to initiate coffee shade tree canopy restoration through natural regeneration. Our results show that small exclosures have a strong restoration potential for the coffee shade trees preferred by farmers (Albizia schimperiana, A. gummifera and Millettia ferruginea), as evidenced from their seedling abundance, survival and growth. The regeneration of late‐successional tree species of the moist Afromontane forest was not successful in the small exclosures, most probably due to the low abundance or absence of adult trees as seed sources for regeneration. Therefore, temporary establishment of small exclosures in degraded coffee forest fragments where shade trees are getting old or dying is recommended for sustainable shade coffee production.  相似文献   

11.
Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats--nearly half the Neotropical bat species--change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures.  相似文献   

12.
Shaded coffee agroecosystems traditionally have few pest problems potentially due to higher abundance and diversity of predators of herbivores. However, with coffee intensification (e.g., shade tree removal or pruning), some pest problems increase. For example, coffee leaf miner outbreaks have been linked to more intensive management and increased use of agrochemicals. Parasitic wasps control the coffee leaf miner, but few studies have examined the role of predators, such as ants, that are abundant and diverse in coffee plantations. Here, we examine linkages between arboreal ant communities and coffee leaf miner incidence in a coffee plantation in Mexico. We examined relationships between incidence and severity of leaf miner attack and: (1) variation in canopy cover, tree density, tree diversity, and relative abundance of Inga spp. shade trees; (2) presence of Azteca instabilis, an arboreal canopy dominant ant; and (3) the number of arboreal twig‐nesting ant species and nests in coffee plants. Differences in vegetation characteristics in study plots did not correlate with leaf miner damage perhaps because environmental factors act on pest populations at a larger spatial scale. Further, presence of A. instabilis did not influence presence or severity of leaf miner damage. The proportion of leaves with leaf miner damage was significantly lower where abundance of twig‐nesting ants was higher but not where twig‐nesting ant richness was higher. These results indicate that abundance of twig‐nesting ants in shaded coffee plantations may contribute to maintenance of low leaf miner populations and that ants provide important ecosystem services in coffee agroecosystems.  相似文献   

13.
14.
The occurrence, intensity, and composition of mutualisms are dependent not only on the co-occurrence of mutualists, but also the broader biotic context in which they are embedded. Here, the influence of the specific nest tree identity of the ant Azteca instabilis (F. Smith) on the density of the green coffee scale (Coccus viridis Green) was studied in a coffee agroecosystem in southern Mexico. The hypothesis that an indirect competitive interaction for ant attendance occurs between a scale species (Octolecanium sp. Kondo) in the canopy of the shade tree Inga micheliana Harms and C. viridis, which inhabits coffee bushes (Coffea arabica) beneath the shade trees was tested. Coffee bushes beneath a different shade tree species (Alchornea latifolia Swartz) were used as an indication of C. viridis density in a noncompetitive environment. Results indicate that C. viridis occurs in significantly lower density adjacent to nests in Inga, supporting the hypothesis of indirect competition. Additional experimentation suggests that there is a mutualism between Azteca and Octolecanium and that this interaction may be mediated by a hierarchy in ant attendance of scale insects. Our results show the importance of considering the biotic context of ant-hemipteran mutualisms. In coffee agroecosystems, consideration of shade tree diversity and species composition may be directly applicable to the biological control of insect pests.  相似文献   

15.
Forest structure and species composition were described in abandonedshade and sun coffee plantations and abandoned pastures in Puerto Rico. Foreststructural characteristics were similar to older forest sites afterapproximately 30 yr of recovery. The historical presence of shadecoffee plantations as the dominant agricultural activity in the region hasresulted in the homogenization of secondary forest composition. The continuousdominance of Coffea arabica and species used for shade inabandoned shade coffee contributed to a slower rate of species compositionchange in comparison to abandoned pastures. Abandoned pastures were initiallycolonized by a group of light demanding and/or wind dispersed species and thenby shade tolerant species characteristic of abandoned shade coffee plantations,suggesting that the secondary forests of abandoned shade coffee plantation arethe major source of species in this landscape. The presence of a few isolatedbig trees in sun coffee plantations appeared to facilitate colonization ofwoodyspecies similar in composition to abandoned shade coffee plantations. In amultivariate analysis, time since abandonment and elevation were the variablesthat explained the majority of variability in species composition among sites.However, a few native species (e.g. Guarea guidonia,Casearia sylvestris, Ocotealeucoxylon) were common regardless of land use history or elevation.In contrast, important old forest species (e.g. Sloaneaberteriana, Dacryodes excelsa,Manilkara bidentata) were rare or absent from most of thesecondary forest stands suggesting the need to reintroduce these species. Landmanagement and conservation efforts can be improved by incorporating theeffectsof land use history on secondary forest dynamics.  相似文献   

16.
Rustic coffee plantations are characterised by the use of numerous wild and cultivated tree species for providing shade to the coffee shrubs. This paper analyses the role of these plantations in wild tree conservation through the examination of their patterns of floristic variation in southern Mexico. The studied plantations included a total of 45 plant species, most of which were wild tree species, including both mature forest and pioneer taxa. An extrapolation of the species accumulation curve among stands indicated that the whole system, composed of more than 100 coffee plantations, may harbour as many as 34 species of wild trees. The floristic structure of rustic coffee plantations was highly variable. This variation is a result of a combination of factors such as human management, original stand cover and the asynchrony in development stage of different plantations. This promotes a large -diversity in the system. Thus, although a single plantation may have a limited potential to preserve wild tree species, it is the whole ensemble of floristically heterogeneous plantations which renders this agroforestry system valuable for plant diversity conservation, particularly in a region where native forest vegetation has almost disappeared.  相似文献   

17.
Agroecology and conservation must overlap to protect biodiversity and farmer livelihoods. Coffee agroecosystems with complex shade canopies protect biodiversity. Yet, few have examined biodiversity in coffee agroecosystems in Asia relative to the Americas and many question whether coffee agroecosystems can play a similar role for conservation. We examined vegetation, ant and bird diversity, coffee yields and revenues, and harvest of alternative products in coffee farms and forests in SW Sumatra, Indonesia near Bukit Barisan Selatan National Park (BBS). BBS is among the last habitats for large mammals in Sumatra and >15,000 families illegally cultivate coffee inside of BBS. As a basis for informing management recommendations, we compared the conservation potential and economic outputs from farms inside and outside of BBS. Forests had higher canopy cover, canopy depth, tree height, epiphyte loads, and more emergent trees than coffee farms. Coffee farms inside BBS had more epiphytes and trees and fewer coffee plants than farms outside BBS. Tree, ant, and bird richness was significantly greater in forests than in coffee farms, and richness did not differ in coffee farms inside and outside of BBS. Species similarity of forest and coffee trees, ants, and birds was generally low (<50%). Surprisingly, farms inside the park were significantly older, but farm size, coffee yields, and revenues from coffee did not depend on farm location. Farmers outside BBS received higher prices for their coffee and also more often produced other crops in their coffee fields such that incentives could be created to draw illegal farmers out of the park. We also discuss these results with reference to similar work in Chiapas, Mexico to compare the relative contribution of coffee fields to conservation in the two continents, and discuss implications for working with farmers in Sumatra towards conservation plans incorporating sustainable coffee production.  相似文献   

18.
Cloud forests (CF) are disappearing due to anthropogenic causes such as cultivation. A characteristic feature of the CF is that a high proportion of its biomass occurs in the form of epiphytes, which are vital microhabitats to canopy dwelling arthropods. Coffee plantations overlap with CF and replace them. Epiphytes are abundant in shade coffee (SC) plantations and therefore these plants are an appropriate background for comparing the diversity between these systems. Spiders are understudied in canopies, and since they are major predators and their communities are highly sensitive to environmental changes, they can be used to test the similarity between habitats. We conducted a diversity assay of spiders living in epiphytes in cloud forest fragments and SC plantations, to test the hypothesis that SC plantations function as refugia. We manually sampled epiphytes within the canopy of two coffee plantations and two fragments of cloud forest in central Veracruz, Mexico. Our results show that SC plantations account for higher spider abundance and species richness than cloud forest fragments, there is little overlap between the species found in both systems, and the range of distribution and the guild structure of the spider assemblages between both systems is similar. As there were no significant differences between cloud forest fragments and SC plantations in terms of spider species assemblages, species distribution and guild structure the epiphytes from the SC plantations can be consider a refuge for the spider fauna from the surrounding cloud forest fragments. Epiphyte load and tree height are important factors driving the differentiation at community level, between sites and habitats. Bromeliads harbored more spiders than the other types of epiphytes, and since these plants are frequently removed by farmers or extracted for commercial and religious purposes, we suggest that preserving epiphytes in coffee plantations and cloud forest fragments could aid in the conservation of spiders.  相似文献   

19.
This paper analyzes the diversity of dung and carrion beetles (Scarabaeinae and Silphidae) in four human-induced habitats of a disturbed tropical montane cloud forest: polyspecific shade coffee plantations, monospecific shade coffee plantations, tropical montane cloud forest fragments, and clear cuts. The four habitats had similar richness, species composition, and assemblage structure of dung and carrion beetles. Differences were found in abundance and biomass levels for the four dominant species in the landscape. Dung beetles were more abundant than carrion beetles, but the biomass was higher for the latter. Carrion beetles were seasonal, while dung beetles were clearly not. When forest fragments and shade coffee plantations were compared to other similar habitats in the region, the same general pattern was observed. However, forests with high disturbance and monospecific shade coffee plantations had lower species richness than forests with low and medium disturbance and polyspecific shade coffee plantations. Thus shade coffee plantations maintain connectivity between patches of cloud forest in a landscape that is strongly affected by human activities. Protecting landscape diversity appears to ensure high species richness.  相似文献   

20.
We compare species richness of birds, fruit-feeding butterflies and ground-foraging ants along a coffee intensification gradient represented by a reduction in the number of species of shade trees and percentage of shade cover in coffee plantations. We sampled the three taxa in the same plots within the same period of time. Two sites were selected in the Soconusco region of the state of Chiapas, Mexico. Within each site four habitat types were selected and within each habitat type four points were randomly selected. The habitat types were forest, rustic coffee, diverse shade coffee, and intensive coffee (low density of shade). We found different responses of the three taxa along the intensification gradient. While ants and butterflies generally decrease in species richness with the decrease of shade cover, birds declined in one site but increased in the other. Ant species richness appears to be more resistant to habitat modification, while butterfly species richness appears to be more sensitive. Bird species richness was correlated with distance from forest fragments but not with habitat type, suggesting that scale and landscape structure may be important for more mobile taxa. For each of these taxa, the rustic plantation was the one that maintained species richness most similar to the forest. We found no correlation between the three taxa, suggesting that none of these taxa are good candidates as surrogates for each other. We discuss the implications of these results for the conservation of biodiversity in coffee plantations, in particular, the importance of distinguishing between different levels of shade, and the possibility that different taxa might be responding to habitat changes at different spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号