共查询到20条相似文献,搜索用时 0 毫秒
1.
The cytoskeletal lattice of muscle cells. 总被引:15,自引:0,他引:15
2.
Phenotypes of cells with cytoskeletal mutations. 总被引:2,自引:0,他引:2
Analysis of the cytoskeleton has relied heavily on the identification of phenotypic alterations associated with mutations in cytoskeletal components. This approach has led to important findings for specific proteins. The last year has also strengthened the view that certain functions of the cytoskeleton are safeguarded by the presence of multiple protein forms. 相似文献
3.
Paired cisternae in human tumor cells 总被引:3,自引:0,他引:3
4.
Occluding junctions and cytoskeletal components in a cultured transporting epithelium 总被引:6,自引:27,他引:6
下载免费PDF全文

I Meza G Ibarra M Sabanero A Martinez-Palomo M Cereijido 《The Journal of cell biology》1980,87(3):746-754
To study the size and structure of the Na,K-pump molecule, the ultrastructure of phospholipid vesicles was examined after incorporation of purified Na,K-ATPase which catalyzes active coupled transport of Na+ and K+ in a ratio close to 3Na/2K. The vesicles were analyzed by thin sectioning and freeze-fracture electron microscopy after reconstitution with different ratios of Na,K-ATPase protein to lipid, and the ultrastructural observations were correlated to the cation transport capacity. The purified Na,K-ATPase reconstituted with phospholipids to form a very uniform population of vesicles. Thin sections of preparations fixed with glutaraldehyde and osmium tetroxide showed vesicles limited by a single membrane which in samples stained with tannic acid appeared triple-layered with a thickness of 70 A. Also, freeze-fracture electron microscopy demonstrated uniform vesicles with diameters in the range of 700-1,100 A and an average value close to 900 A. The vesicle diameter was independent of the amount of protein used for reconstitution. Intramembrane particles appeared only in the vesicle membrane after introduction of Na,K-ATPase and the frequency of intramembrane particles was proportional to the amount of Na,K-ATPase protein used in the reconstitution. The particles were evenly distributed on the inner and the outer leaflet of the vesicle membrane. The diameter of the particles was 90 A and similar to our previous values for the diameter of intramembrane particles in the purified Na,K-ATPase. The capacity for active cation transport in the reconstituted vesicles was proportional to the frequency of intramembrane particles over a range of 0.2-16 particles per vesicle. The data therefore show that active coupled Na,K transport can be carried out by units of Na,K-ATPase which appear as single intramembrane particles with diameters close fo 90 A in the freeze-fracture micrographs. 相似文献
5.
Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells 总被引:6,自引:0,他引:6
下载免费PDF全文

A central aspect of cellular mechanochemical signaling is a change of cytoskeletal tension upon the imposition of exogenous forces. Here we report measurements of the spatiotemporal distribution of mechanical strain in the intermediate filament cytoskeleton of endothelial cells computed from the relative displacement of endogenous green fluorescent protein (GFP)-vimentin before and after onset of shear stress. Quantitative image analysis permitted computation of the principal values and orientations of Lagrangian strain from 3-D high-resolution fluorescence intensity distributions that described intermediate filament positions. Spatially localized peaks in intermediate filament strain were repositioned after onset of shear stress. The orientation of principal strain indicated that mechanical stretching was induced across cell boundaries. This novel approach for intracellular strain mapping using an endogenous reporter demonstrates force transfer from the lumenal surface throughout the cell. 相似文献
6.
Lateral line neuromasts of the bullseye Parapriacanthus ransonetti and the cardinal fish Apogon cyanosoma were examined by scanning electron microscopy. Neuromasts showed large numbers of degenerating hair cells and immature hair cells, suggesting a high degree of hair cell turnover. New hair cells were mainly produced in pairs (fewer than 5% appear singly), the two cells of a pair having opposite but parallel orientations of their mechanosensitive axes. It is suggested that each pair results, directly or indirectly, from a single mitosis. The results further suggest that the axis of mitosis is one of the factors which determine the direction of the hair cell axis of mechanosensitivity. 相似文献
7.
Cytokeratins (CKs) are known as the intermediate filament proteins of epithelial origin. Their distribution in human epithelia is different according to the type of epithelium, state of growth and differentiation. We used monoclonal mouse antibodies against cytokeratins to study CK expression in the following human tissues: cholesteatoma, middle ear mucosa, glandular epithelium, and meatal ear canal epithelium. Immunohistochemical processing was performed using the labeled steptavidin peroxidase method to demonstrate the presence of CKs in cells of human epidermis. Positive reaction was obtained for CK4, CK34betaE12, CK10, CK14 in skin and cholesteatoma epithelium. However, a more extensive positive reaction with those CKs was observed in cholesteatoma epithelium. Positive immunoreactivity was seen with anti- CK19 in the glandular epithelium. Middle ear mucosa specimens revealed positive immunoreactivity with the antibodies against CK4. The expression of CK4 was definitely positive within the basal layers of the epidermis. The glandular epithelium showed no positive reaction with anti- CK4, anti- CK34betaE12, anti- CK14 and anti-CK10. Immunohistochemistry for CK18 showed no reaction in all examined tissues. Cholesteatoma is known as a proliferative disease in the middle ear which pathogenesis is not completely understood. Keratinocytes express hyperproliferation- associated CKs and after reaching the suprabasal layers they finally undergo apoptosis creating keratinous debris. Cytokeratin expression observed in the epithelium explains proliferative behavior of cholesteatoma which is associated with increased keratinocyte migration. Cytokeratins can be used as potential proliferative markers. It can also allow for searching the usefulness of inhibiting regulators in the treatment of hyperproliferative diseases. 相似文献
8.
The stationary states of systems with many molecular motors are studied theoretically for uniaxial and centered (asterlike) arrangements of cytoskeletal filaments using Monte Carlo simulations and a two-state model. Mutual exclusion of motors from binding sites of the filaments is taken into account. For small overall motor concentration, the density profiles are exponential and algebraic in uniaxial and centered filament systems, respectively. For uniaxial systems, exclusion leads to the coexistence of regions of high and low densities of bound motors corresponding to motor traffic jams, which grow upon increasing the overall motor concentration. These jams are insensitive to the motor behavior at the end of the filament. In centered systems, traffic jams remain small and an increase in the motor concentration leads to a flattening of the profile if the motors move inwards, and to the buildup of a concentration maximum in the center of the aster if motors move outwards. In addition to motor density patterns, we also determine the corresponding patterns of the motor current. 相似文献
9.
Isolation of cDNA clones for mouse cytoskeletal gamma-actin and differential expression of cytoskeletal actin mRNAs in mouse cells. 总被引:3,自引:2,他引:3
下载免费PDF全文

K Tokunaga K Takeda K Kamiyama H Kageyama K Takenaga S Sakiyama 《Molecular and cellular biology》1988,8(9):3929-3933
We described the structures of mouse cytoskeletal gamma-actin cDNA clones and showed that there is strong conservation of the untranslated regions with human gamma-actin cDNA. In addition, we found that the expression levels of beta- and gamma-actin mRNAs are differentially controlled in various mouse tissues and cell types but are coordinately increased in the cellular growing state. These results suggest that there are multiple regulatory mechanisms of cytoskeletal actin genes and are consistent with the argument that beta- and gamma-actins might have functional diversity in mammalian cells. 相似文献
10.
《The Journal of cell biology》1984,99(3):1083-1091
Antibodies against different cytoskeletal proteins were used to study the cytoskeletal organization of human spermatozoa. A positive staining with actin antibodies was seen in both the acrosomal cap region and the principal piece region of the tail. However, no staining was obtained with nitrobenzoxadiazol-phallacidin, suggesting that most of the actin was in the nonpolymerized form. Most of the myosin immunoreactivity was confirmed to a narrow band in the neck region of spermatozoa. Tubulin was located to the entire tail, whereas vimentin was only seen in a discrete band-like structure encircling the sperm head, apparently coinciding with the equatorial segment region. Surface staining of the spermatozoa with fluorochrome-coupled Helix pomatia agglutinin revealed a similar band-like structure that co-distributed with the vimentin- specific staining. Instead, other lectin conjugates used labeled either the acrosomal cap region (peanut and soybean agglutinins), both the acrosomal cap and the postacrosomal region of the head (concanavalin A), or the whole sperm cell surface membrane (wheat germ and lens culinaris agglutinins and ricinus communis agglutinin l). In lectin blotting experiments, the Helix pomatia agglutinin-binding was assigned to a 80,000-mol-wt polypeptide which, together with vimentin, also resisted treatment with Triton X-100. Only the acrosomal cap and the principal piece of the tail were decorated with rabbit and hydridoma antibodies against an immunoanalogue of erythrocyte alpha-spectrin (p230). p230 appeared to be the major calmodulin-binding polypeptide in spermatozoa, as shown by a direct overlay assay of electrophoretic blots of spermatozoa with 125I-calmodulin. The results indicate that spermatozoa have a highly specialized cytoskeletal organization and that the distribution of actin, spectrin, and vimentin can be correlated with distinct surface specializations of the sperm cells. This suggest that cytoskeleton may regulate the maintenance of these surface assemblies and, hence, affect the spermatozoan function. 相似文献
11.
Specific developmental changes in smooth muscle were studied in gizzards obtained from 6-, 8-, 10-, 12-, 14-, 16-, 18-, and 20-day chick embryos and from 1- and 7-day posthatch chicks. Myoblasts were actively replicating in tissue from 6-day embryos. Cytoplasmic dense bodies (CDBs) first appeared at Embryonic Day 8 (E8) and were recognized as patches of increased electron density that consisted of actin filaments (AFs), intermediate filaments (IFs), and cross-connecting filaments (CCFs). Although the assembly of CDBs was not synchronized within a cell, the number, size, and electron density of CDBs increased as age increased. Membrane-associated dense bodies (MADBs) also could be recognized at E8. The number and size of MADBs increased as age increased, especially after E16. Filaments with the diameter of thick filaments first appeared at E12. Smooth muscle cells were able to divide as late as E20. The axial intermediate filament bundle (IFB) could first be identified in 1-day posthatch cells and became larger and more prominent in 7-day posthatch cells. Immunogold labeling of 1- and 7-day posthatch cells with anti-desmin showed that the IFB contained desmin IFs. The developmental events during this 23-day period were classified into seven stages, based primarily on the appearance and the growth of contractile and cytoskeletal elements. These stages are myoblast proliferation, dense body appearance, thick filament appearance, dense body growth, muscle cell replication, IFB appearance, and appearance of adult type cells. Smooth muscle cells in each stage express similar developmental characteristics. The mechanism of assembly of myofilaments and cytoskeletal elements in smooth muscle in vivo indicates that myofilaments (AFs and thick filaments) and filament attachment sites (CDBs and MADBs) are assembled before the axial IFB, a major cytoskeletal element. 相似文献
12.
The nucleoli in epidermal cells of fifth instar Calpodes and Manduca larvae undergo three cycles of unravelling into necklaces with condensation back to a dense particle or particles. Mitosis occurs before the first cycle and at the beginning of the third cycle. In spite of the formation and condensation of these nucleolar necklaces the nucleoli in the intercycle condition all have paired patterns. Adjacent pairs of nuclei have nucleoli that resemble one another in the number of their component particles, the shape and size of the particles and sometimes in their arrangement as mirror images. The paired patterns begin at mitosis and reform after necklace elongation and condensation. The patterns are presumed to reflect a nuclear skeleton that is paired from mitosis and conserved until the next mitosis. The nuclear pairing is related to the retention of mid bodies by sibling cells so that the epidermis is a collection of minimal two-cell syncytia. 相似文献
13.
T M Svitkina 《Tsitologiia》1989,31(12):1435-1440
Cytoskeleton organization of cultured normal epithelial cells (epithelium of newborn mouse kidney, mouse and rat hepatocytes) was studied using electron microscopy of platinum replicas. These cells in culture were firmly connected with each other and formed multicellular islands. Pseudopodial activity was observed only at the free edges of marginal cells of the islands. Cytoskeleton in the vicinity of such active edges included several structurally different zones. The most peripheral zone contained dense actin meshwork. More inner "sparse" zone contained loose actin filament network. Next zone in the same direction was the lamella proper. It contained individual microfilaments and their bundles or meshwork patches. Microtubules and intermediate filaments were also present in the lamella proper. The characteristic feature of the central (endoplasmic) region of the marginal cells of the islands was the presence of the submembranous microfilament sheath. Microfilaments in the sheath were densely packed. Individual fibers were visible along a significant distance. The inner cells in the epithelial islands had no zonal organization of the cytoskeleton. The endoplasmic microfilament sheath occupied the whole dorsal cell surface in these cells. Different epithelia studied here had some variations in the relative width of cytoskeletal zones. The organization of cytoskeleton in the epithelial cells has many features in common with that in fibroblasts. Possible mechanisms of establishment of the zonal cytoskeletal organization in both the cell types are discussed. 相似文献
14.
Kirsi H Pietil?inen Aila Rissanen Maria Laamanen Anna-Kaisa Lindholm Harri Markkula Hannele Yki-J?rvinen Jaakko Kaprio 《Twin research》2004,7(5):421-429
Weight discordance is very rare in monozygotic (MZ) twin pairs; when found, however, such pairs are advantageous in the search for either environmental or epigenetic causes and consequences of obesity. We analyzed the growth patterns of young adult MZ pairs discordant and concordant for obesity. Screening 5 consecutive birth cohorts (1975-1979) of 22- to 27-year-old Finnish twins (the FinnTwin16 study), we found 14 obesity discordant (Body Mass Index [BMI] difference > or = 4 kg/m2) MZ pairs out of 658. Ten pairs participated in clinical studies. Nine concordant pairs (BMI difference < or = 2 kg/m2) were examined as controls. Lifetime measured heights and weights recorded in hospitals and health centers were traced manually. Height development was similar in all the co-twins of both groups. The weight differences between the co-twins of the discordant pairs began to emerge at 18 years leading to an average discordance of 16.4 kg, 5.6 kg/m2 (p for both = .005) at 25.7 years. The heavier co-twin weighed 221 g (p = .066), 1.0 kg/m2 (p = .01) more already at birth than the leaner, but the differences waned by 6 months of age and reappeared only after adolescence. Both the leaner and the heavier co-twins of the discordant pairs weighed more than expected by the singleton reference values (Cole et al., 1998) after 8 years. The concordant co-twins, on the other hand, grew similarly and after 6 months, their mean growth was not distinguishable from the singleton patterns. Young adulthood represents a critical period of gaining weight irrespective of genetic background in this twin sample. 相似文献
15.
Aberrant DNA methylation patterns have been reported in inflamed tissues and may play a role in disease. We studied DNA methylation and gene expression profiles of purified intestinal epithelial cells from ulcerative colitis patients, comparing inflamed and non-inflamed areas of the colon. We identified 577 differentially methylated sites (false discovery rate <0.2) mapping to 210 genes. From gene expression data from the same epithelial cells, we identified 62 differentially expressed genes with increased expression in the presence of inflammation at prostate cancer susceptibility genes PRAC1 and PRAC2. Four genes showed inverse correlation between methylation and gene expression; ROR1, GXYLT2, FOXA2, and, notably, RARB, a gene previously identified as a tumor suppressor in colorectal adenocarcinoma as well as breast, lung and prostate cancer. We highlight targeted and specific patterns of DNA methylation and gene expression in epithelial cells from inflamed colon, while challenging the importance of epithelial cells in the pathogenesis of chronic inflammation. 相似文献
16.
The scanning acoustic microscope (SAM) allows one to measure mechanical parameters of living cells with high lateral resolution. By analyzing single acoustic images' sound attenuation and sound velocity, the latter corresponding to stiffness (elasticity) of the cortical cytoplasm can be determined. In this study, measurements of stiffness distribution in XTH-2 cells were compared with the organization of F-actin and microtubules. Single XTH-2 cells exhibit relatively high stiffness at the free margins; toward the cell center this value decreases and reaches a sudden minimum where the slope of the surface topography enlargens at the margin of the dome-shaped cell center. The steepness of the increase in slope is linearly related to the decrease in sound velocity at this site. Thus, a significant determinant of cell shape is paralleled by an alteration of stiffness. In the most central parts, no interferences could be distinguished, therefore, this region had to be excluded from the calculations. Stiffness distribution roughly coincided with the distribution of F-actin, but no correlation to microtubule arrangement was found. Following the treatment of XTH-2 cells with ionomycin in the presence of calcium (in the culture medium), the cell cortex first contracted as indicated by shape changes and by a marked increase in stiffness (deduced from sound velocity). This contraction phase was followed by a phase of microtubule and F-actin disassembly. Concomittantly, sound velocity decreased considerably, indicating the loss of elasticity in the cell cortex. No structural equivalent to sound attenuation has been identified. 相似文献
17.
Adherent cells sense their mechanical environment, which, in turn, regulates their functions. During the past decade, a growing
body of evidence has indicated that a deformable, solid-state intracellular structure known as the cytoskeleton (CSK) plays
a major role in transmitting and distributing mechanical stresses within the cell as well as in their conversion into a chemical
response. Therefore in order to understand mechanical regulation and control of cellular functions, one needs to understand
mechanisms that determine how the CSK changes its shape and mechanics in response to stress. In this survey, we examined commonly
used structurally based models of the CSK. In particular, we focused on two classes of these models: open-cell foam networks
and stress-supported structures. We identified the underlying mechanisms that determine deformability of those models and
compare model predictions with data previously obtained from mechanical tests on cultured living adherent cells at steady
state. We concluded that stress-supported structures appear more suitable for describing cell deformability because this class
of structures can explain the central role that the cytoskeletal contractile prestress plays in cellular mechanics.
Received: 2 January 2002 / Accepted: 27 February 2002 相似文献
18.
Scatter factor affects major changes in the cytoskeletal organization of epithelial cells. 总被引:3,自引:0,他引:3
The effects of scatter factor on the cytoskeleton of MDCK and PtK2 cells are described. During the first 6 h after the addition of scatter factor, MDCK cells were found to increase their projected areas twofold, as well as the number and size of their F-actin stress fibers. In contrast PtK2 cells showed no change in their projected areas or in their stress fiber content. However, when both MDCK and PtK2 cells began to separate and scatter after approximately 6 h, the size and number of stress fibers was found to decrease considerably. Unscattered PtK2 cells and cells treated with scatter factor which had yet to scatter showed focal contacts present over the whole ventral surface, as judged by staining for both vinculin and talin. After treated cells separated, both vinculin and talin staining were mainly present in focal contacts on the ventral surfaces of the cell bodies and the distal ends of the processes. However, the cell processes showed few focal contacts along their lengths. The distribution of microtubules and vimentin and keratin intermediate filaments also did not change significantly until scattering had occurred. After cell separation, the processes were always packed with microtubules which were often, but not always, rich in detyrosinated alpha-tubulin and often, but not always, packed with intermediate filaments. All these changes in cytoskeletal organization are consistent with the adoption of a much more motile phenotype. The changes found are compared with those brought about by transformation. 相似文献
19.
H Kondo G D Pappas J J Wolosewick 《Biology of the cell / under the auspices of the European Cell Biology Organization》1983,49(2):99-107
The cytoskeleton of rat neurohypophysial cells as seen in resinless sections is an irregular three-dimensional lattice of short strands of cytoplasmic matrix (the microtrabeculae) that interconnect parallel arrays of neurotubules, neurofilaments, abundant neurosecretory granules, and other membrane-bound organelles including the plasma membrane. This morphological finding suggests that the cytoplasmic ground substance constitutes a cytoskeletal continuum that may be the ultrastructural expression of a motile apparatus responsible for neurosecretory granule movement and hormone release in the neurohypophysis. 相似文献
20.
Studies of mechanotransduction mediated by stress-sensitive ion channels generally focus on the site of force application to the cell. Here we show that global, cell-wide changes in cytoskeletal structure and mechanics can regulate mechanotransduction previously shown to be triggered by activation of the mechanosensitive calcium channel, polycystin-2, in the apical primary cilium of renal epithelial cells [S.M. Nauli, F.J. Alenghat, Y. Luo, E. Williams, P. Vassilev, X. Li, A.E. Elia, W. Lu, E.M. Brown, S.J. Quinn, D.E. Ingber, J. Zhou, Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33 (2003) 129-37]. Disrupting cytoplasmic microfilaments or microtubules in these cells eliminated fluid shear stress-induced increase of intracellular calcium. Altering the cytoskeletal force balance by inhibiting actomyosin-based tension generation (using 2,3-butanedione monoxime), interfering with microtubule polymerization (using nocodazole, cochicine, or taxol), or disrupting basal integrin-dependent extracellular matrix adhesions (using soluble GRGDSP peptide or anti-beta1 integrin antibody), also inhibited the calcium spike in response to fluid stress. These data indicate that although fluid stress-induced displacement of the primary cilium may be transduced into a calcium spike through activation of polycystin-2 and associated calcium-induced calcium release from intracellular stores, this mechanotransduction response is governed by global mechanical cues, including isometric tension (prestress) within the entire cytoskeleton and intact adhesions to extracellular matrix. 相似文献