首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siddiq  Zafar  Zhang  Yong-Jiang 《Plant Ecology》2022,223(2):171-183

Trees on the northern boundary of Asian tropics experience hot-humid and cool-dry seasons, but little is known about their seasonal dynamics in canopy physiology. We used a canopy crane to reach the canopy of nine tropical tree species and measured canopy leaf gas exchange, water status, and trunk sap flux during the hot-humid and cool-dry seasons in Xishuangbanna, China. We found that most tree species exhibited significant reductions in maximum photosynthetic rate (Amax), stomatal conductance (gsmax), predawn and midday leaf water potentials, and maximum sap flux density in the cool-dry season. Compared to the hot-humid season, Amax declined by 19–60%, and maximum water flux declined by ?14% (an increase) to 42%. The cool-dry season decline in Amax of four species can be partly explained by an increased stomatal limitation (decreased gsmax and intercellular CO2 concentrations). Therefore, a predicted increase in drought in this region may decrease the carbon sequestration and productivity of these forests. We did not find a tradeoff between performance (Amax in the hot-humid season) and persistence through the cool-dry season; species with higher Amax in the hot-humid season did not show higher percent seasonal declines in the cool-dry season. Amax was significantly and positively associated with the trunk sap flux for both seasons, but the association was weaker in the cool-dry season. Thus, our results suggest that some tradeoffs and trait associations are environment dependent. Our results are important for understanding carbon and water fluxes of seasonal tropical forests and their responses to environmental changes.

  相似文献   

2.
The objective of the present study was to examine the functional coordination among hydraulic traits, xylem characteristics and gas exchange rates across three deciduous Euphorbiaceae tree species (Hevea brasiliensis, Macaranga denticulata and Bischofia javanica) and three evergreen Euphorbiaceae tree species (Drypetes indica, Aleurites moluccana and Codiaeum variegatum) from a seasonally tropical forest in south-western China. The deciduous tree species were more vulnerable to water stress-induced embolism than the evergreen tree species. However, the deciduous tree species generally had higher maximal rates of sapwood and leaf-specific hydraulic conductivity (K S and K L), respectively. Compared with the evergreen tree species, the deciduous tree species, however, possessed a lower density of sapwood and a wider diameter of xylem vessels. Regardless of leaf phenology, the hydraulic vulnerability and conductivity were significantly correlated with sapwood density and mean vessel diameter. Furthermore, the hydraulic vulnerability was positively correlated with water transport efficiency. In addition, the deciduous tree species exhibited higher maximal photosynthetic rates (A max) and stomatal conductance (g max), but lower water use efficiency (WUE). Interestingly, the A max, g max and WUE were strongly correlated with K S and K L across the deciduous and evergreen tree species. These results suggest that xylem structure, rather than leaf phenology, accounts for the difference in hydraulic traits between the deciduous tree species and the evergreen tree species. Meanwhile, our results show that there is a significant trade-off between hydraulic efficiency and safety, and a strong functional correlation between the hydraulic capacity and gas exchange rates across the deciduous and evergreen tree species.  相似文献   

3.
The plant functional group approach has the potential to clarify ecological patterns and is of particular importance in simplifying the application of ecological models in high biodiversity ecosystems. Six functional groups (pasture grass, pasture sapling, top-canopy tree, top-canopy liana, mid canopy tree, and understory tree) were established a priori based on ecosystem inhabited, life form, and position within the forest canopy profile on eastern Amazonian region. Ecophysiological traits related to photosynthetic gas exchange were then used to characterize such groups. The ecophysiological traits evaluated showed considerable variations among groups. The pasture grass functional group (a C4 photosynthetic pathway species) showed high instantaneous water use efficiency (A max/g s@A max), high photosynthetic nitrogen use efficiency (A max/N area), and high ratio of A max to dark respiration (A max/R d). Among the species with the C3 photosynthetic pathway, the top-canopy liana group showed the highest mean of A max/g s@A max, statistically distinct from the lowest average presented by the understory tree group. Furthermore, the pasture sapling group showed the lowest average of A max/R d, statistically distinct from the high average observed for the understory tree group. Welch-ANOVAs followed by Games–Howell post hoc tests applied to ecophysiological traits produced reasonable distinctions among functional groups, although no significant distinction was detected between the groups top-canopy tree and pasture sapling. Species distribution within the functional groups was accurately reproduced by discriminant analyses based on species averages of ecophysiological traits. The present work convincingly shows that the functional groups identified have distinct ecophysiological characteristics, with the potential to respond differently to environmental factors. Such information is of great importance in modeling efforts that evaluate the effects of dynamic changes in tropical plant communities over ecosystem primary productivity.  相似文献   

4.
Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-massN mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass, R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits. Received: 23 May 1997 / Accepted: 16 December 1997  相似文献   

5.
Questions: How are leaf attributes and relative growth rate (RGR) of the dominant tree species of tropical deciduous forest (TDF) affected by seasonal changes in soil moisture content (SMC)? What is the relationship of functional attributes with each other? Can leaf attributes singly or in combination predict the growth rate of tree species of TDF? Location: Sonebhadra district of Uttar Pradesh, India. Methods: Eight leaf attributes, specific leaf area (SLA); leaf carbon concentration (LCC); leaf nitrogen concentration (LNC); leaf phosphorus concentration (LPC); chlorophyll concentration (Chl), mass‐based stomatal conductance (Gsmass); mass based photosynthetic rate (Amass); intrinsic water use efficiency (WUEi); and relative growth rate (RGR), of six dominant tree species of a dry tropical forest on four sites were analysed for species, site and season effects over a 2‐year period. Step‐wise multiple regression was performed for predicting RGR from mean values of SMC and leaf attributes. Path analysis was used to determine which leaf attributes influence RGR directly and which indirectly. Results: Species differed significantly in terms of all leaf attributes and RGR. The response of species varied across sites and seasons. The attributes were positively interrelated, except for WUEi, which was negatively related to all other attributes. The positive correlation was strongest between Gsmass and Amass and the negative correlation was strongest between Gsmass and WUEi. Differences in RGR due to site were not significant when soil moisture was controlled, but differences due to season remained significant. The attributes showed plasticity across moisture gradients, which differed among attributes and species. Gsmass was the most plastic attribute. Among the six species, Terminalia tomentosa exhibited the greatest plasticity in six functional attributes. In the step‐wise multiple regression, Amass, SLA and Chl among leaf attributes and SMC among environmental factors influenced the RGR of tree species. Path analysis indicated the importance of SLA, LNC, Chl and Amass in determining RGR. Conclusion: A mass, SMC, SLA and Chl in combination can be used to predict RGR but could explain only three‐quarters of the variability in RGR, indicating that other traits/factors, not studied here, are also important in modulating growth of tropical trees. RGR of tree species in the dry tropical environment is determined by soil moisture, whereas the response of mature trees of different species is modulated by alterations in key functional attributes such as SLA, LNC and Chl.  相似文献   

6.
We compared variation in sun-canopy leaf anatomy, morphology and photosynthetic rates of coexisting woody species (trees and lianas) in an 8-year-old secondary forest (SF) and mature forest (MF) in the wet season in Xishuangbanna, SW China. Variability of leaf traits of 66 species within growth-form groups in each forest was quantified using coefficients of variation (CV). For the mean values, the woody species in the SF had significantly higher leaf thickness and stomatal density, but lower nonmesophyll/mesophyll ratios than those in the MF. The average leaf area and leaf mass area (LMA) in the studied woody species did not change greatly during the successional process, but differed significantly between the growth forms, with trees having higher values than lianas. The light-saturated photosynthetic rate per unit leaf area (A a) of the woody species in the SF ranged from 11.2 to 34.5 μmol m−2 s−1, similarly to pioneer tree species from literature data in southeast Asia. The A a and photosynthetic nitrogen-use efficiency (PNUE) were significantly higher than those in the MF; whereas A a in the MF ranged between 9 to 21 μmol m−2 s−1, with similar values between lianas and trees. For all woody species in both SF and MF, there were no significant differences in the average values of the CV of all measured variables for both lianas and trees. However, considerable variation in leaf anatomy, morphology, and photosynthetic rates within both growth forms and forests existed, as well as substantial variation in leaf size and stomatal density. We concluded that the tropical woody species formed a heterogeneous functional group in terms of leaf morphology and physiology in both secondary and mature forests.  相似文献   

7.

Key message

The relative shade tolerance of T. cordata , F. sylvatica , and C. betulus in mature stands is based on different species-specific carbon and nitrogen allocation patterns.

Abstract

The leaf morphology and photosynthetic capacity of trees are remarkably plastic in response to intra-canopy light gradients. While most studies examined seedlings, it is not well understood how plasticity differs in mature trees among species with contrasting shade tolerance. We studied light-saturated net photosynthesis (A max), maximum carboxylation rate (V cmax), electron transport capacity (J max) and leaf dark respiration (R d) along natural light gradients in the canopies of 26 adult trees of five broad-leaved tree species in a mixed temperate old-growth forest (Fraxinus excelsior, Acer pseudoplatanus, Carpinus betulus, Tilia cordata and Fagus sylvatica), representing a sequence from moderately light-demanding to highly shade-tolerant species. We searched for species differences in the dependence of photosynthetic capacity on relative irradiance (RI), specific leaf area (SLA) and nitrogen per leaf area (N a ). The three shade-tolerant species (C. betulus, T. cordata, F. sylvatica) differed from the two more light-demanding species by the formation of shade leaves with particularly high SLA but relatively low N a and consequently lower area-based A max, and a generally higher leaf morphological and functional plasticity across the canopy. Sun leaf morphology and physiology were more similar among the two groups. The three shade-tolerant species differed in their shade acclimation strategies which are primarily determined by the species’ plasticity in SLA. Under low light, T. cordata and F. sylvatica increased SLA, mass-based foliar N and leaf size, while C. betulus increased solely SLA exhibiting only low intra-crown plasticity in leaf morphology and N allocation patterns. This study with mature trees adds to our understanding of tree species differences in shade acclimation strategies under the natural conditions of a mixed old-growth forest.  相似文献   

8.
  • Relative growth rate (RGR) plays an important role in plant adaptation to the light environment through the growth potential/survival trade‐off. RGR is a complex trait with physiological and biomass allocation components. It has been argued that herbivory may influence the evolution of plant strategies to cope with the light environment, but little is known about the relation between susceptibility to herbivores and growth‐related functional traits.
  • Here, we examined in 11 evergreen tree species from a temperate rainforest the association between growth‐related functional traits and (i) species’ shade‐tolerance, and (ii) herbivory rate in the field. We aimed at elucidating the differential linkage of shade and herbivory with RGR via growth‐related functional traits.
  • We found that RGR was associated negatively with shade‐tolerance and positively with herbivory rate. However, herbivory rate and shade‐tolerance were not significantly related. RGR was determined mainly by photosynthetic rate (Amax) and specific leaf area (SLA). Results suggest that shade tolerance and herbivore resistance do not covary with the same functional traits. Whereas shade‐tolerance was strongly related to Amax and to a lesser extent to leaf mass ratio (LMR) and dark respiration (Rd), herbivory rate was closely related to allocation traits (SLA and LMR) and slightly associated with protein content.
  • The effects of low light on RGR would be mediated by Amax, while the effects of herbivory on RGR would be mediated by SLA. Our findings suggest that shade and herbivores may differentially contribute to shape RGR of tree species through their effects on different resource‐uptake functional traits.
  相似文献   

9.
桉树-乡土树种混交林在提高林分生产力和生态系统功能等方面具有较大潜力。该研究以南亚热带4种桉树-乡土树种混交林(桉树与乡土树种混交比例分别为5:5、6:4、7:3、8:2)和桉树纯林为研究对象,研究了3种优势乡土树种华润楠(Machilus chinensis)、阴香(Cinnamomum burmannii)、灰木莲(Manglietia glauca)和速生树种尾叶桉(Eucalyptus urophylla)的叶片生理、结构和化学性状在不同比例混交林中的差异。结果表明,4优势造林树种的叶片性状存在明显的种间差异,其中灰木莲的比叶面积(SLA)、光合磷利用效率(PPUE)、单位质量叶片最大光合速率(Amass)和蒸腾速率(Tmass)以及叶片养分含量最高,说明灰木莲采取资源获取型的生态策略;尾叶桉的SLA、Amass、Tmass及叶片养分含量最低,但具有最高的PPUE,说明尾叶桉兼顾了资源获取型和保守型的物种特征。灰木莲与尾叶桉在SLA、Amass、Tmass  相似文献   

10.
  • Climate models predict a further drying of the Mediterranean summer. One way for plant species to persist during such climate changes is through acclimation. Here, we determine the extent to which trait plasticity in response to drought differs between species and between sites, and address the question whether there is a trade‐off between drought survival and phenotypic plasticity.
  • Throughout the summer we measured physiological traits (photosynthesis – Amax, stomatal conductance – gs, transpiration – E, leaf water potential – ψl) and structural traits (specific leaf area – SLA, leaf density – LD, leaf dry matter content – LDMC, leaf relative water content – LRWC) of leaves of eight woody species in two sites with slightly different microclimate (north‐ versus south‐facing slopes) in southern Spain. Plant recovery and survival was estimated after the summer drought period.
  • We found high trait variability between species. In most variables, phenotypic plasticity was lower in the drier site. Phenotypic plasticity of SLA and LDMC correlated negatively with drought survival, which suggests a trade‐off between them. On the other hand, high phenotypic plasticity of SLA and LDMC was positively related to traits associated with rapid recovery and growth after the drought period.
  • Although phenotypic plasticity is generally seen as favourable during stress conditions, here it seemed beneficial for favourable conditions. We propose that in environments with fluctuating drought periods there can be a trade‐off between drought survival and growth during favourable conditions. When climate become drier, species with high drought survival but low phenotypic plasticity might be selected for.
  相似文献   

11.
Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.  相似文献   

12.
Intraspecific leaf trait variations are becoming a topic of interest for many ecologists because individual-based traits are essentially the drivers of variations at the community level. Six coexisting major tree species in an old-growth temperate forest, Northeast China (i.e., Abies nephrolepis, Pinus koraiensis, Acer mono, Fraxinus mandshurica, Tilia amurensis, and Ulmus laciniata) were sampled, and three habitat types (i.e., Hab I: high soil organic carbon with a moderate slope; Hab II: low soil organic carbon with a gentle slope; and Hab III: low soil organic carbon with a strong slope) were used in the plot. We performed a two-way ANOVA to compare the specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), and leaf carbon content (LCC) between saplings (1 < DBH ≤ 5 cm) and adults (DBH ≥ 10 cm) and between habitat types within species. We simultaneously evaluated the effects of life stage, plant functional type, and habitat type on the six leaf traits. Our results showed that life stage and habitat type had varied influences on the leaf traits of the six species. Life stage was an important determinant for all leaf traits. Plant functional type was included in the best models for SLA, LNC, and LCC. Habitat type had a greater influence on LDMC than SLA. Meanwhile, habitat type had a greater influence on LNC and LPC than LCC. The correlation between leaf traits with local environmental factors varied across different plant functional types and life stages. We suggest conducting individual-based analyses of leaf trait variations according to plant functional type and life stage to understand the plant life strategies along an environmental gradient may improve understanding of the forest dynamics in an old-growth temperate forest.  相似文献   

13.
Photosynthesis-nitrogen relations in Amazonian tree species   总被引:18,自引:0,他引:18  
The relationships between leaf nitrogen (N), specific leaf area (SLA) (an inverse index of leaf thickness or density), and photosynthetic capacity (Amax) were studied in 23 Amazonian tree species to characterize scaling in these properties among natural populations of leaves of different ages and light microenvironments, and to examine how variation within species in N and SLA can influence the expression of the Amax-to-N relationship on mass versus area bases. The slope of the Amax-N relationship, change in A per change in N (mol CO2 gN-1 s-1), was consistently greater, by as much as 300%, when both measures were expressed on mass rather than area bases. The x-intercept of this relationship (N-compensation point) was generally positive on a mass but not an area basis. In this paper we address the causes and implications of such differences. Significant linear relationships (p<0.05) between mass-based leaf N (Nmass) and SLA were observed in 12 species and all 23 regressions had positive slopes. In 13 species, mass-based Amax (Amass) was positively related (p<0.05) with SLA. These patterns reflect the concurrent decline in Nmass and SLA with increasing leaf age. Significant (p<0.05) relationships between area-based leaf N (Narea) and SLA were observed in 18 species. In this case, all relationships had negative slopes. Taken collectively, and consistent in all species, as SLA decreased (leaves become thicker) across increasing leaf age and light gradients, Nmass also decreased, but proportionally more slowly, such that Narea increased. Due to the linear dependence of Amass on Nmass and a negative 4-intercept, thicker leaves (low SLA) therefore tend, on average, to have lower Nmass and Amass but higher Narea than thinner leaves. This tendency towards decreasing Amass with increasing Narea, resulting in a lower slope of the Amax-N relationship on an area than mass basis in 16 of 17 species where both were significant. For the sole species exception (higher area than mass-based slope) variation in Narea was related to variation in Nmass and not in SLA, and thus, these data are also consistent with this explanation. The relations between N, SLA and Amax explain how the rate of change in Amax per change in N can vary three-fold depending on whether a mass or area mode of expression is used.  相似文献   

14.
Shoots of the tropical latex-producing tree Hevea brasiliensis (rubber tree) grow according to a periodic pattern, producing four to five whorls of leaves per year. All leaves in the same whorl were considered to be in the same leaf-age class, in order to assess the evolution of photosynthesis with leaf age in three clones of rubber trees, in a plantation in eastern Thailand. Light-saturated CO2 assimilation rate (A max) decreased more with leaf age than did photosynthetic capacity (maximal rate of carboxylation, V cmax , and maximum rate of electron transport, J max), which was estimated by fitting a biochemical photosynthesis model to the CO2-response curves. Nitrogen-use efficiency (A max/Na, Na is nitrogen content per leaf area) decreased also with leaf age, whereas J max and V cmax did not correlate with N a. Although measurements were performed during the rainy season, the leaf gas exchange parameter that showed the best correlation with A max was stomatal conductance (g s). An asymptotic function was fitted to the A max-g s relationship, with R 2 = 0.85. A max, V cmax, J max and g s varied more among different whorls in the same clone than among different clones in the same whorl. We concluded that leaf whorl was an appropriate parameter to characterize leaves for the purpose of modelling canopy photosynthesis in field-grown rubber trees, and that stomatal conductance was the most important variable explaining changes in A max with leaf age in rubber trees.  相似文献   

15.
田俊霞  魏丽萍  何念鹏  徐丽  陈智  侯继华 《生态学报》2018,38(23):8383-8391
自然界中,森林植物叶片的生长随树冠高度呈现明显的垂直分布现象;然而,有关叶片性状随着树冠垂直高度增加的变化规律仍不清楚。为了更好地揭示植物叶片对光环境变化的适应策略以及对资源的利用能力,有必要深入探讨叶片性状与冠层高度的定量关系及其内在调控机制。以中国广泛分布的温带针阔混交林为对象,选取8种主要树种为研究对象(白桦、蒙古栎、水曲柳、大青杨、色木槭、千金榆、核桃楸和红松),通过测定这些物种9个冠层高度的叶片比叶面积(SLA)、叶片干物质含量(LDMC)、叶片氮含量(N)、叶片磷含量(P)、氮磷比(N∶P)和叶绿素含量(Chl)等属性,探讨了针阔混交林叶片性状的差异以及各性状之间的相关关系,进而揭示叶片性状随树冠垂直高度的变化规律。实验结果表明:1)温带针阔混交林内优势树种的部分叶片性状在不同冠层高度之间差异显著。2)随着树冠垂直高度的增加,SLA、LDMC、N、P、N∶P和Chl呈现不同的变化趋势。其中,阔叶树种SLA随着树冠垂直高度的增加而减小;所有树种的LDMC随着树冠垂直高度的增加而增加;不同树种的N、P、N∶P和Chl随着树冠垂直高度的变化规律存在差异。3)对于温带针阔混交林冠层中,SLA与N、P、N∶P均存在显著的正相关关系,高SLA伴随着高的N、P、N∶P,表明植物通过SLA与N、P等性状的协同来提高叶片的光合作用(或对光热资源的利用效率)。本研究通过定量分析探讨温带针阔混交林叶片性状随冠层高度的变化规律,一定程度地揭示了树木对光、热和水资源竞争的适应机制,以及植物叶片的资源利用和分配策略,不仅拓展了传统性状研究的范畴,其相关研究结论也有助于树木生长模型的构建和优化。  相似文献   

16.
Abstract Litter decomposition plays an important role in secondary forest recovery in the tropics. In this study we assessed the decomposition rates of tree litter in species from different secondary forest types and with different shade tolerances. The three secondary forest types analysed are related to the effects of different previous land use intensities. The typical forest type (TYP) is related to low land use intensity, Alnus acuminata‐dominated forest (ALN) type is related to medium land‐use intensity and Amomyrtella güili‐dominated forest type (AMO) is related to high land use intensity. The effect of shade tolerance was assessed using maximum height of each species as an indicator of its light requirements. Associations with leaf functional traits such as specific leaf area (SLA), and tensile strength (LTS) were also assessed. We found that leaves of species from the TYP forest type decompose faster than those of the ALN and AMO forest types. These changes were consistent with differences in the SLA of the species, which was higher in the TYP forest type than in the ALN and AMO forest types. SLA, LTS and decomposition were not significantly correlated with tree maximum height. Our results show that the secondary forest types, which are related to land use intensities prior to abandonment have an important influence on litter decomposition. This implies potential long‐term effects on soil properties and species composition.  相似文献   

17.
The hydraulic coordination along the water transport pathway helps trees provide adequate water supply to the canopy, ensuring that water deficits are minimized and that stomata remain open for CO2 uptake. We evaluated the stem and leaf hydraulic coordination and the linkages between hydraulic traits and the timing of diurnal depression of photosynthesis across seven evergreen tree species in the southern Andes. There was a positive correlation between stem hydraulic conductivity (ks) and leaf hydraulic conductance (KLeaf) across species. All species had similar maximum photosynthetic rates (Amax). The species with higher ks and KLeaf attained Amax in the morning, whereas the species with lower ks and KLeaf exhibited their Amax in the early afternoon concurrently with turgor loss. These latter species had very negative leaf water potentials, but far from the pressure at which the 88% of leaf hydraulic conductance is lost. Our results suggest that diurnal gas exchange dynamics may be determined by leaf hydraulic vulnerability such that a species more vulnerable to drought restrict water loss and carbon assimilation earlier than species less vulnerable. However, under stronger drought, species with earlier CO2 uptake depression may increase the risk of hydraulic failure, as their safety margins are relatively narrow.  相似文献   

18.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

19.
ABSTRACT

Structural traits of the vegetation types and plantations occurring in a protected area within the caldera of Vico Lake (Italy) were analysed. There were significant correlations among structural traits, at leaf and stand level. Leaf area index (LAI) and specific leaf area (SLA) were the most significantly correlated traits. LAI rose according to stand plant density, tree size and SLA; the highest LAI value monitored in the Fagus sylvatica L. forest was justified by the largest tree size (28.9±2.8 m height and 53±15 cm diameter) and the highest SLA (212±23 cm2 g-1). The main traits determining the variations in leaf structure among species were analysed by Principal Component Analysis (PCA). The LAI values were used to realise a map allowing us to delimit high LAI values (4.1–5.0), corresponding to the F. sylvatica forest and to the F. sylvatica forest with the sporadic presence of Quercus cerris L. and Castanea sativa Miller, mean LAI values (classes 3.1–4.0) corresponding to Corylus avellana L. plantations and to the Phragmites australis (Cav.) Trin. vegetation type, low LAI values (classes 2.6–3.0) corresponding to Q. cerris forests and C. sativa plantations.  相似文献   

20.
The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest–savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号