首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Ca2+ transport by sarco/endoplasmic reticulum, tightly coupled with the enzymatic activity of Ca2+-dependent ATPase, controls the cell cycle through the regulation of genes operating in the critical G1 to S checkpoint. Experimental studies demonstrated that acylphosphatase actively hydrolyses the phosphorylated intermediate of sarco/endoplasmic reticulum calcium ATPase (SERCA) and therefore enhances the activity of Ca2+ pump. In this study we found that SH-SY5Y neuroblastoma cell division was blocked by entry into a quiescent G0-like state by thapsigargin, a high specific SERCA inhibitor, highlighting the regulatory role of SERCA in cell cycle progression. Addition of physiological amounts of acylphosphatase to SY5Y membranes resulted in a significant increase in the rate of ATP hydrolysis of SERCA. In synchronized cells a concomitant variation of the level of acylphosphatase isoenzymes opposite to that of intracellular free calcium during the G1 and S phases occurs. Particularly, during G1 phase progression the isoenzymes content declined steadily and hit the lowest level after 6 h from G0 to G1 transition with a concomitant significant increase of calcium levels. No changes in free calcium and acylphosphatase levels upon thapsigargin inhibition were observed. Moreover, a specific binding between acylphosphatase and SERCA was demonstrated. No significant change in SERCA-2 expression was found. These findings suggest that the hydrolytic activity of acylphosphatase increase the turnover of the phosphoenzyme intermediate with the consequences of an enhanced efficiency of calcium transport across endoplasmic reticulum and a subsequent decrease in cytoplasmic calcium levels. A hypothesis about the modulation of SERCA activity by acylphosphatase during cell cycle in SY5Y cells in discussed.  相似文献   

2.
The changes in the expression of glycoconjugates and adhesion molecules were studied by selective lectin binding and immunocytochemical reactions in a human embryonic epithelial cell line (EUE cells), synchronized in the cell cycle phases. The results can be summarized as follows: most of the tested lectins display a more diffuse binding for the cytoplasm in G1 than S and G2 phases; in the S and particularly in G2 phases the cytoplasm glycoconjugates are rearranged around the nucleus; cells in mitosis always show a strong binding towards all tested lectins. Cellular fibronectin and its receptor β1 integrin are well expressed in G1, but the strongest reaction is observed in the S phase. The immunoreactions for laminin and uvomorulin (L-CAM) are poorly positive in all cell cycle phases. The immunocytochemical reaction for heparan sulfate is positive, with a stronger reaction in S and G2 than in G1; on the contrary a diffuse staining with the anti-dermatan sulfate proteoglycan antibody appears unchanged during the cell cycle.  相似文献   

3.
CIRCADIAN RHYTHMS IN MOUSE EPIDERMAL BASAL CELL PROLIFERATION   总被引:2,自引:0,他引:2  
Several kinetic parameters of basal cell proliferation in hairless mouse epidermis were studied, and all parameters clearly showed circadian fluctuations during two successive 24 hr periods. Mitotic indices and the mitotic rate were studied in histological sections; the proportions of cells with S and G2 phase DNA content were measured by flow cytometry of isolated basal cells, and the [3H]TdR labelling indices and grain densities were determined by autoradiography in smears from basal cell suspensions. The influx and efflux of cells from each cell cycle phase were calculated from sinusoidal curves adapted to the cell kinetic findings and the phase durations were determined. A peak of cells in S phase was observed around midnight, and a cohort of partially synchronized cells passed from the S phase to the G2 phase and traversed the G2 phase and mitosis in the early morning. The fluctuations in the influx of cells into the S phase were small compared with the variations in efflux from the S phase and the flux through the subsequent cell cycle phases. The resulting delay in cell cycle traverse through S phase before midnight could well account for the accumulation of cells in S phase and, therefore, also the subsequent partial synchrony of cell cycle traverse through the G2 phase and mitosis. Circadian variations in the duration of the S phase, the G2 phase and mitosis were clearly demonstrated.  相似文献   

4.
We have examined the sensitivity of proliferating lymphoid cells in different phases of the cell cycle to macrophage-mediated cytostatic activity. These studies evaluated the ability of target cells enriched in individual cell cycle phases to pass into the next phase during brief (2–6 hr) periods of coculture with activated or nonactivated peritoneal macrophages. Both normal (concanavalin A-stimulated spleen cells) and neoplastic (Gross virus-induced thymic lymphoma) cells were analyzed. Spleen cells or lymphoma cells were first separated by centrifugal elutriation into populations highly enriched for G1, S, or G2/M phases of the cell cycle and cultured in the presence of nonactivated or activated macrophages for periods of 2, 4, or 6 hr. The cellular DNA content of recovered nonadherent target cells was then analyzed by flow cytometry after staining with propidium iodide. Macrophage contamination of target cell populations was insignificant under these conditions. Nonactivated macrophages did not affect target cell cycle traverse when compared with target cells cultured alone. Activated macrophage mediated cytostatic activity resulted in complete block of the transition of cells in G1 phase into S phase and of the further accumulation of DNA by cells in early S phase. Cells already in mid to late S phase were able to continue DNA replication at rates nearly equivalent to control cells. There was no inhibition of the passage of cells through G2 or mitosis. These effects were seen by as early as 2 hr of macrophage-target cell coculture and both normal and neoplastic cells exhibited identical patterns of cell cycle phase sensitivity.  相似文献   

5.
The phosphorylation of non-histone chromatin proteins in synchronized HeLa S3 cells was studied in 5 phases of the cell cycle: mitosis, G1, early and late S, and G2. The rate of non-histone chromatin protein phosphorylation was found to be maximal during G1 and G2, somewhat decreased during S phase, and almost 90% depressed during mitosis. Analysis of the phosphorylated non-histone chromatin proteins by SDS-acrylamide gel electrophoresis showed a heterogeneous pattern of phosphorylation as measured by labeling with 32P. Significant variations in the labeling pattern were seen during different stages of the cell cycle, and particular unique species appeared to be phosphorylated selectively during certain stages of the cycle.  相似文献   

6.
There are few data available on cell cycle events that occur when proliferation of normal cells in culture is curtailed due to “natural aging” of the culture conditions. Stathmokinetic and cytofluorometry studies were performed on PHA-stimulated human lymphocyte cultures for eight consecutive days. Cell proliferation peaked on day 5 and then gradually decreased. Percent labeled mitosis curves performed each day demonstrated that, for those cells which progressed to mitosis, the cell cycle time remained constant at 18 ± 1 hour throughout the entire period of culture. However when the fate of all cells pulse-labeled with 3H-thymidine (S phase cells) was followed daily, only 64 ± 5% of labeled cells reached mitosis on day 3 and <20% on day 6. When the growth fraction was estimated by standard methods (with the labeling index) and used to predict future cell counts in the culture, proliferation was greatly overestimated; but after correcting the growth fraction for labeled cells not reaching mitosis, proliferation was accurately predicted by a newly derived “dividing fraction.” Flow cytofluorometry confirmed accumulation of cells in S and G2 + M phases, and mitotic indices ruled out accumulation in M phase. Assessment of non-viable cells with cytofluorometry demonstrated that death occurred in all phases of the cell cycle. We conclude that with increasing age of culture, an increased fraction of cycling PHA-stimulated lymphocytes fail to progress all the way to mitosis and are arrested in S or G2 phases. These observations provide evidence against the existence of a specific “restriction point” in G1 or at the G1/S interface in aging proliferating human lymphocyte cultures, but it remains to be determined whether cells arrested in S or G2 phases retain the capacity to complete the cell cycle in more favorable culture environments.  相似文献   

7.
The calmodulin content of synchronized Chinese hamster ovary (CHO-K1) cells was determined at each phase of the cell cycle. The calmodulin content was minimum in the G1 phase, increased after the cells entered S phase and reached the maximum level at the late G2 or early M phase. When 30 μM of W-7 (calmodulin antagonist) was added at the S phase, the cell cycle was blocked at the late G2 or early M phase. The addition of W-7 also prevented the morphological changes caused by cholera toxin. These results suggest that calmodulin plays an important role in the phases through S to M, possibly in the initiation of DNA synthesis and in the mitosis.  相似文献   

8.
The cell cycle (nuclear division cycle) of a multinucleate green alga, Boergesenia forbesii (Harvey) Feldmann was studied using microspectrophotometry and BrdU incorporation techniques. Mitosis was observed frequently 1-4 h after the beginning of the light period, on a 16:8 h LD cycle at 25°C. Mitotic nuclei formed discrete patches. Other nuclei remained in the G1 period. The DNA synthetic phase (S phase) was estimated to last about 12 h from microspectrophotometric study using aphidicolin inhibition just before the S phase and release from it. The G2 period was estimated to be about 2 h, because a labeled prophase nucleus could be detected when the samples were labeled with BrdU continuously over 3 h. The incorporation pattern of BrdU changed through the S phase nucleus. In early S phase, BrdU staining was detected as many dots in the entire nucleus, while in late S phase, it was detected as several discrete regions along the nuclear membrane. Almost all nuclei in B. forbesii were in the G1 stage after nuclear division, and the nuclei in several patches of the cell simultaneously initiated DNA synthesis. Once the nuclei entered into S phase, these nuclei continued into G2 and mitosis. In other words, the cell cycle regulation of entrance into S phase from G1 is an important factor in the growth and morphogenesis in B. forbesii.  相似文献   

9.
Circadian variations in the proliferative activity of squamous epithelia are well known. However, circadian variations in the duration of the various cell cycle phases (S, G2 and mitosis) have been disputed. the percent labelled mitoses method, which is traditionally used to obtain duration of cell cycle phases, is poorly suited for identification of circadian variations. Therefore methods combining changes in compartment size (cell cycle phase) and cellular flux through the compartments have been used. Three different methods using such data are presented. These incorporate various simplifying assumptions that cause methodological errors. Limits for use of the different methods are indicated. the use of all three methods gives comparable and pronounced circadian variations in the duration of S and G2 phase. These results are also compatible with circadian variations in the mitotic duration, but they may also represent artefacts due to sensitivity to model errors.  相似文献   

10.
H. Liß  E. W. Weiler 《Planta》1994,194(2):169-180
Procedures have been developed which allow the preparation of highly pure endoplasmic reticulum and plasma membrane from tendrils ofBryonia dioica. These and further membrane fractions were used to study vanadate-sensitive ATPase activity as well as Mg2+ATP-driven transport of45Ca2+. Calcium-translocating ATPases were detected in the endoplasmic reticulum, the plasma membrane and the mitochondrial fraction and characterized kinetically and with respect to the effects of various inhibitors. The endoplasmic-reticulum Ca2+-translocating ATPase was stimulated by KCl and was calmodulin-dependent. The plasma-membrane enzyme was not affected by these agents. These, as well as the inhibitor data, show that the Ca2+-translocating ATPases of the endoplasmic reticulum and the plasma membrane are distinctly different enzymes. Upon mechanical stimulation, the activities of the vanadate-sensitive K+, Mg2+-ATPase and the Ca2+-translocating ATPase(s) increased rapidly and transiently, indicating that increasing transmembrane proton and calcium fluxes are involved in the early stages of tendril coiling.Abbreviations CAM calmodulin - CCCP carbonylcyanidem-chlorophenylhydrazone - IC50 concentration giving 50% inhibition - PM plasma membrane - rER rough endoplasmic reticulum - sER smooth endoplasmic reticulum - FC fusicoccin - U3+U3 the two PM-rich upper phases obtained after phase partitioning of microsomal membranes The authors wish to thank the Deutsche Forschungsgemeinschaft, Bonn, Germany, and the Fonds der Chemischen Industrie, Frankfurt, Germany (literature provision) for financial support.  相似文献   

11.
The cytological effects of 2 mM hydroxyurea upon Chinese hamster cells at various phases of the cell cycle were examined. Cells in the G1, G2, or M phases of the generation cycle treated with hydroxyurea showed no chromosomal aberrations. Cell treated in S phase became moribund and eventually lysed. Some of these moribund S cells reached mitosis much later and were found to have chromatid aberrations. Cells in the log phase of growth, surviving exposure to 2 mM hydroxyurea for six hours, also showed no aberrations. Thus, viable (colony-forming) cells, resulting from synchrony procedures with hydroxyurea are free of chromosomal aberrations.  相似文献   

12.
Abstract. This study reports on the proliferating cell nuclear antigen (PCNA) and Ki-67 cell cycle related expression and distribution pattern analysed in the same cells. MCF-7 cells were synchronized by mitotic detachment and triple stained for DNA, PCNA and Ki-67. The major cell type was identified on each time sample as a function of the PCNA/Ki-67 pattern, and both antigens as well as DNA were quantified. During G1 phase, the expression of PCNA greatly increased whereas Ki-67 content decreased. During S phase, nuclear Ki-67 content continuously increased especially in the second half of this phase, mainly due to the accumulation of the antigen in the nucleoli. During G2 phase, the antigen significantly passed into the nucleoplasm, its content continued to increase and reached its maximum in mitotic cells. Nuclear PCNA content mostly increased in the first part of S phase and sharply declined in mitotic cells as the antigen shifted to the cytoplasm. Cells showing PCNA positive Ki-67 negative labelling were observed in all time samples from the beginning of the experiment. Their nuclear size, DNA content (of G1 cells), PCNA content (equivalent to the content of some late G, cells) and time occurrence (their percentage increased after the last late G1 cells had disappeared) tend to indicate that these cells have left the cycle by the end of G1 phase to enter a quiescent state. Cells coming out of mitosis split into two groups according to their Ki-67/PCNA content. The biggest fraction was PCNA negative and Ki-67 positive while the smallest showed positive staining for both antibodies. Cells of this second cohort slowly lost their 1–67 while their PCNA content increased as they moved through G1. Concurrently, most of the cells of the first cohort (here called Q2 and Q3 cell types) lost their Ki-67 without increasing their PCNA content; then they joined cells of the second cohort by increasing their PCNA content at the end of G, phase. Some cells of this first cohort can also increase their PCNA and thus reach cells of the first cohort before the end of G1 phase. The existence of these two main cell cohorts suggests that cells after mitosis differ in some way that make them progress dlfferently through G1. Some cells seem to go through early G1 (G1a and late G1 (Glb) while others may come out of mitosis committed to go through the following cycle by directly entering late G1 compartment.  相似文献   

13.
Summary Antisera to 0.35 M NaCl extracts and residues of S phase HeLa nuclei were reacted with electrophoretically separated proteins from the nuclei or nuclear material of HeLa cells synchronized in G1, S, G2 or M phases of the cell cycle. Quantitative evaluation of the peroxidase-antiperoxidase stained nitrocellulose transfers (Western blots) revealed significant changes in the quantities of nuclear non-histone proteins during the cell cycle. Immunochemical staining of electrophoretically separated nuclear antigens permits their selective detection in minute quantities and in the presence of many additional proteins.  相似文献   

14.
Radiation-induction and rejoining of single-strand breaks (SSBs) in the DNA of synchronized HeLa S3 cells were investigated by alkaline sucrose density gradients. We could not find any significant differences in the extent of SSBs induced in cellular DNA and in the extent of their rejoining throughout the cell cycle, including mitosis. The cyclic variation curve of the content of non-protein sylfhydryls (NPSH) during the cell cycle is similar to that of X-ray survivals except in mitosis, although there was no close correlation between the content of apparent total sulfhydryls (APSH) and X-ray survivals.Radiation-induced mutants resistant to 8-azaguanine (8AG) occured in higher frequency in the radio-sensitive G1S boundary phase thanin the radio-resistant G1, S and early G2 phases. Further, the pre-irradiation treatment with 50 mM cysteamine prevented reproductive death and induction of 8AG-resistant mutants by X-rays throughout the cell cycle. These findings seem to indicate that there is a close correlation between the extent of lethal radiation damage to the cells and their mutability, and that sulfhydryls may play an important role as a factor governing cellular radio-sensitivity.  相似文献   

15.
The proliferating cells of mouse epidermis (basal cells) can be separated from the non-proliferating cells (differentiating cells) (Laerum, 1969) and brought into a mono-disperse suspension. This makes it possible to determine the cell cycle distributions (e.g. the relative number of cells in the G^ S and (G2+ M) phases of the cell cycle) of the basal cell population by means of micro-flow fluorometry. To study the regenerative cell proliferation in epidermis in more detail, changes in cell cycle distributions were observed by means of micro-flow fluorometry during the first 48 hr following adhesive tape stripping. 3H-TdR uptake (LI and grain count distribution) and mitotic rate (colcemid method) were also observed. An initial accumulation of G2 cells was observed 2 hr after stripping, followed by a subsequent decrease to less than half the control level. This was followed by an increase of cells entering mitosis from an initial depression to a first peak between 5 and 9 hr which could be satisfactorily explained by the changes in the G2 pool. After an initial depression of the S phase parameters, three peaks with intervals of about 12 hr followed. The cells in these peaks could be followed as cohorts through the G2 phase and mitosis, indicating a partial synchrony of cell cycle passage, with a shortening of the mean generation time of basal cells from 83-3 hr to about 12 hr. The oscillations of the proportion of cells in G2 phase indicated a rapid passage through this cell cycle phase. The S phase duration was within the normal range but showed a moderate decrease and the Gj phase duration was decreased to a minimum. In rapidly proliferating epidermis there was a good correlation between change in the number of labelled cells and cells with S phase DNA content. This shows that micro-flow fluorometry is a rapid method for the study of cell kinetics in a perturbed cell system in vivo.  相似文献   

16.
A single-stranded DNA-dependent ATPase activity, consisting of two subunits of 83 kDa (p90) and 68 kDa (p70), was previously purified from HeLa cells (Vishwanatha, J.K. and Baril, E.F. (1990) Biochem 29, 8753–8759). Homology of the two subunits of single-stranded DNA-dependent ATPase with the human Ku protein (Caoet al. (1994) Biochem 33, 8548–8557) and identity of the Ku protein as the human DNA helicase II (Tutejaet al. (1994) EMBO J. 13, 4991–5001) have been reported recently. Using antisera raised against the subunits of the HDH II, we confirm that the Hela single-stranded DNA-dependent ATPase is the HDH II. Similar to the activity reported for Ku protein, ssDNA-dependent ATPase binds to double-stranded DNA and the DNA-protein complex detected by gel mobility shift assay consists of both the ATPase subunits. The p90 subunit is predominantly nuclear and is easily dissociated from chromatin. The p70 is distributed in cytosol and nucleus, and a fraction of the nuclear p70 protein is found to be associated with the nuclear matrix. Both the p90 and p70 subunits of the ATPase are present in G1 and S phase of the cell cycle and are rapidly degraded in the G2/M phase of the cell cycle.Abbreviations ssDNA single-stranded DNA - dsDNA double-stranded DNA - ATPase adenosine triphosphatase - HDH II human DNA helicase II - PGK 3-phosphoglycerate kinase  相似文献   

17.
Morphological changes in the organellar nucleoids and mitochondria of living Chlamydomonas reinhardtii Dang were examined during the cell cycle under conditions of 12:12 light:dark. The nucleoids were stained with SYBR‐Green I, and the mitochondria were stained with 3,3‐dihexyloxacarbocyanine iodide. An mocG33 mutant, which contains one large chloroplast nucleoid throughout the cell cycle, was used to distinguish between the mitochondrial and chloroplast nucleoids. Changes in the total levels of organellar DNA levels were assessed by real‐time PCR. Each of the G1, S, M, and Smt,cp phases was estimated. At the start of the light period, the new daughter cells were in G1 and contained about 30 mitochondrial and 10 chloroplast nucleoids, which were dispersed and had diameters of 0.1 and 0.2 μm, respectively. During the G1 phase of the light period, and at the start of the S phase, both nucleoids formed short thread‐like or bead‐like structures, probably divided, and increased continuously in number, concomitantly with DNA synthesis. The nucleoids probably became smaller due to the decrease in DNA of each particle and were indistinguishable. The cells in the S and M phases contained extremely high numbers of scattered nucleoids. However, in the G1 phase of the dark period, the nucleoids again formed short thread‐like or bead‐like structures, probably fused, and decreased in number. The mitochondria appeared as tangled sinuous structures that extended throughout the cytoplasm and resembled a single large mitochondrion. During the cell cycle, the numbers of mitochondrial nucleoids and sinuous structures varied relative to one another.  相似文献   

18.
DNA of replication foci attached to the nuclear matrix was isolated from Chinese hamster ovary cells and human HeLa cells synchronized at different stages of the G1 and S phases of the cell cycle. The abundance of sequences from dihydrofolate reductase ori-β and the β-globin replicator was determined in matrix-attached DNA. The results show that matrix-attached DNA isolated from cells in late G1 phase was enriched in origin sequences in comparison with matrix-attached DNA from early G1 phase cells. The concentration of the early firing ori-β in DNA attached to the matrix decreased in early S phase, while the late firing β-globin origin remained attached until late S phase. We conclude that replication origins associate with the nuclear matrix in late G1 phase and dissociate after initiation of DNA replication in S phase.  相似文献   

19.
Summary Ultrastructural localization of ATPase at high pH in the presence of Ca2+ showed that activity in thymocyte precursors was stronger than in mature thymocytes. The activity was localized in the nuclear envelope, rough endoplasmic reticulum, Golgi apparatus and mitochondria. The difference in activity was attributed to a marked decrease in ATPase-containing organelles, mainly the endoplasmic reticulum in the mature thymocytes. This appears to be related to the proliferative activity of the cells rather than to the immunological maturity of the thymocytes. A very strong activity, also localized in the same organelles, was present in the macrophages and interdigitating cells which might have a secretory function and possibly contribute to thymocyte maturation. The Ca2+—ATPase activity in the nuclear envelope—endoplasmic reticulum system suggests that these may be the sites for storage and regulation of cytoplasmic calcium.  相似文献   

20.
The effect of the cytomegalovirus on the cell cycle was studied autoradiographically in an asynchronous culture of human diploid fibroblasts. The analysis of labeled mitosis showed that some cells infected in the S phase ceased to progress through the cell cycle at one of its phases (S, G 2, or M); at the same time, at least part of the infected cells remained capable of entering mitosis. Beginning from day 2 after infection by cytomegalovirus, the accumulation of pathological mitotic cells blocked at metaphase was observed in the culture. Approximately 50% of these cells contained 3H-thymidine label above chromosomes. This suggested the possibility of pathological mitosis in cells that were infected both at the S and other phases of the cell cycle. The detailed morphological analysis of chromosomes at different stages of infection demonstrated that the degree of their morphological changes increases from slight (stronger condensation) to severe pathology (fragmentation). In the aggregate, the results of the study suggested that abnormal chromosome morphology resulted from irreversible cell division arrest under the effect of the cytomegalovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号