共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cyclooxygenase (COX) inhibitors were regarded as anticarcinogenic agents for lung cancer at least partly via PGE2; but these were based on cytokin stimulation experiment on A549 cell. In order to clarify whether COX inhibitors directly inhibit A549 cell, three COX inhibitors, NS398 (selective COX-2 inhibitor), SC560 (selective COX-1 inhibitor), and acetyl salicylic acid (ASA, non-selective COX inhibitor), were studied. NS398, and ASA, can inhibit PGE2 generation via COX-2 inhibition. The viability of A549 cell was assayed by MTT. However, without cytokin stimulation, all the three inhibitors (NS398 0.2-20 microM; SC560 1.0-100 nM; ASA 0.01-1.0 mM) were not able to inhibit A549 cell proliferation, in the other way round, NS398 promoted cell growth. And arachidonic acid (AA) and lipopolysaccharide (LPS) did not disturb the property of its growth. These data suggested that without cytokin stimulation, COX and PGE2 may not be the kernel molecules involved in A549 cell proliferation, and COX inhibitors could not inhibit A549 cell growth directly. 相似文献
3.
4.
Piantelli M Rossi C Iezzi M La Sorda R Iacobelli S Alberti S Natali PG 《Journal of cellular physiology》2006,207(1):23-29
Flavonoids comprise a class of low molecular weight compounds displaying a variety of biological activities including inhibition of tumor growth and metastasis. To gain insight into the mechanisms underlying metastasis inhibition, we have employed the B16-BL6 murine melanoma metastasis model. B57BL/6N mice were injected i.v. with tumor cells and Apigenin, Quercetin, or Tamoxifen, each at 50 mg/kg given i.p., and lung tumor cell colonies counted 14-6 days thereafter. Three different injection schedules were used for each drug: (a) daily injection, starting 24 h before injection of the tumor cells; (b) single dose, 24 h preceding tumor challenge; (c) daily injection, starting 24 h after the injection of the tumor cells. All three compounds significantly reduced tumor lung deposits (Apigenin = Quercetin > Tamoxifen). However, when treatment was delayed by 24 h after tumor cells (schedule c), multiple daily doses of Apigenin or Quercetin were less effective that a single dose of the same compound given 24 h before tumor challenge (schedule b). Apigenin and Quercetin, but not Tamoxifen, were found to inhibit VCAM-1 expression in a dose-dependent manner in HUVEC and in murine pulmonary endothelial cells. In ex vivo experiments, the number of tumor cells adhering to lung vessels was significantly diminished in animals treated with a single dose of Apigenin and Quercetin. These findings indicate that the inhibition of tumor cell metastasis by Apigenin or Quercetin may significantly depend on the ability of these compounds to alter the host's microenvironment, further substantiating the role of the intravascular processes in the metastatic cascade. 相似文献
5.
Control of cell proliferation by Myc family genes 总被引:1,自引:0,他引:1
Eilers M 《Molecules and cells》1999,9(1):1-6
6.
The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation 总被引:8,自引:0,他引:8
Adhikary S Marinoni F Hock A Hulleman E Popov N Beier R Bernard S Quarto M Capra M Goettig S Kogel U Scheffner M Helin K Eilers M 《Cell》2005,123(3):409-421
The Myc oncoprotein forms a binary activating complex with its partner protein, Max, and a ternary repressive complex that, in addition to Max, contains the zinc finger protein Miz1. Here we show that the E3 ubiquitin ligase HectH9 ubiquitinates Myc in vivo and in vitro, forming a lysine 63-linked polyubiquitin chain. Miz1 inhibits this ubiquitination. HectH9-mediated ubiquitination of Myc is required for transactivation of multiple target genes, recruitment of the coactivator p300, and induction of cell proliferation by Myc. HectH9 is overexpressed in multiple human tumors and is essential for proliferation of a subset of tumor cells. Our results suggest that site-specific ubiquitination regulates the switch between an activating and a repressive state of the Myc protein, and they suggest a strategy to interfere with Myc function in vivo. 相似文献
7.
8.
Magatti M De Munari S Vertua E Parolini O 《Journal of cellular and molecular medicine》2012,16(9):2208-2218
Cells derived from the amniotic foetal membrane of human term placenta have drawn particular attention mainly for their plasticity and immunological properties, which render them interesting for stem-cell research and cell-based therapeutic applications. In particular, we have previously demonstrated that amniotic mesenchymal tissue cells (AMTC) inhibit lymphocyte proliferation in vitro and suppress the generation and maturation of monocyte-derived dendritic cells. Here, we show that AMTC also significantly reduce the proliferation of cancer cell lines of haematopoietic and non-haematopoietic origin, in both cell-cell contact and transwell co-cultures, therefore suggesting the involvement of yet-unknown inhibitory soluble factor(s) in this 'cell growth restraint'. Importantly, we provide evidence that the anti-proliferative effect of AMTC is associated with induction of cell cycle arrest in G0/G1 phase. Gene expression analyses demonstrate that AMTC can down-regulate cancer cells' mRNA expression of genes associated with cell cycle progression, such as cyclins (cyclin D2, cyclin E1, cyclin H) and cyclin-dependent kinase (CDK4, CDK6 and CDK2), whilst they up-regulate cell cycle negative regulator such as p15 and p21, consistent with a block in G0/G1 phase with no progression to S phase. Taken together, these findings warrant further studies to investigate the applicability of these cells for controlling cancer cell proliferation in vivo. 相似文献
9.
A series of amide derivatives of long-chain fatty acids has been studied for their effects on the proliferation of cancer cells in vitro. Fatty acids ranged from palmitic to higher polyunsaturated types containing 22 carbon atoms. The amino portions of the molecules included ammonia, ethanolamine, various amino acids and dopamine. Several cell lines were used as models and these included HTB-125 (normal human breast cells), HTB-126 (human breast cancer cells), HeLa (cervical cancer cells), WI-38 (human embryonic lung cells), RAW264.7 (mouse macrophage tumor cells) and RBL-2H3 (rat basophilic leukemia cells). The HTB lines were obtained from the same donor, so, could be considered a matched pair, that is, normal control versus cancer cells and thus, provide a model for testing specificity of action for the acylamido analogs. While many compounds were efficacious in inhibiting the proliferation of various cell lines, only two analogs showed a high degree of specificity in the matched HTB cell lines. N-palmitoyl dopamine and N-palmitoyl tyrosine each demonstrated complete specificity of action at a concentration of 10muM and were highly efficacious in both cases. No clear structure-activity pattern could be derived from these studies since the intensity of the inhibitory action seemed to depend on three factors, namely, the fatty acid, the amine group and the cell type. 相似文献
10.
Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation 总被引:63,自引:0,他引:63
Woo EY Yeh H Chu CS Schlienger K Carroll RG Riley JL Kaiser LR June CH 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(9):4272-4276
Active suppression by T regulatory cells plays an important role in the down-regulation of T cell responses to foreign and self-Ags. Thus far, the potential role of CD4(+)CD25(+) T cells in human tumors has not been reported. In this work we show that lung tumors contain large numbers of these cells and that they have constitutive high-level expression of CD152 (CTLA-4). Furthermore, the CD4(+)CD25(+) T cells mediate potent inhibition of autologous T cell proliferation. Finally, regulatory T cells from patient tumors failed to inhibit the proliferation of allogeneic T cells. Together these results suggest that the CD4(+)CD25(+) T cells found in lung tumors selectively inhibit the host immune response and therefore could contribute to the progression of lung cancer. 相似文献
11.
12.
Vasoactive intestinal peptide (VIP) binds to two receptors, VPAC1 and VPAC2. Non-selective VIP antagonists have been shown to inhibit human cancer cell proliferation and reduce tumor growth in mice. Many human cancers over-express VPAC1 but not VPAC2. We show that VPAC1-selective antagonists can inhibit human cancer cell proliferation and identify five positions in the VPAC1-selective antagonist PG 97-269 that may be responsible for VPAC1 selectivity. Position 16 appears to be particularly critical for selectivity, as demonstrated in the replacement of Arg16 of PG 97-269 with the native VIP amino acid; this single change results in greatly reduced VPAC1 binding and selectivity. Finally, we show that site-specific conjugation with a 22kDa polyethylene glycol (PEG) at the C-terminus of VPAC1-selective antagonists further improves VPAC1-selective binding and has minimal effect on antagonistic activity. Our studies have further solidified VPAC1 as a cancer target and offer the possibility of generating highly potent VPAC1-selective antagonists with minimal number of mutations to reduce the risk of immunogenicity and potentially prolonged duration of action to allow more efficient treatment regimen. 相似文献
13.
Kiyoshi Takahara Masaaki Ii Teruo Inamoto Kazumasa Komura Naokazu Ibuki Koichiro Minami Hirofumi Uehara Hajime Hirano Hayahito Nomi Satoshi Kiyama Michio Asahi Haruhito Azuma 《Biochemical and biophysical research communications》2014
Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa. 相似文献
14.
Mohan R Banerjee M Ray A Manna T Wilson L Owa T Bhattacharyya B Panda D 《Biochemistry》2006,45(17):5440-5449
Several sulfonamides have antitumor activities and are currently undergoing clinical evaluation for the treatment of cancer. In this study, we have elucidated the antiproliferative mechanism of action of five indole sulfonamides. The indole sulfonamides inhibited the polymerization of microtubule protein into microtubules in vitro. In addition, three representative derivatives, ER-68378 (2), ER-68384 (4) and ER-68394 (5), suppressed the dynamic instability behavior at the plus ends of individual steady-state microtubules in vitro. The analogues inhibited HeLa cell proliferation with half-maximal inhibitory concentrations in the range of 6-17 microM. The compounds blocked cell cycle progression at mitosis. At their lowest effective antimitotic concentrations, they depolymerized the spindle microtubules and disorganized the chromosomes but did not affect the microtubules in interphase cells. However, at relatively high concentrations, interphase microtubules were also depolymerized by these sulfonamides. Furthermore, all five compounds were found to induce apoptosis in the cells in association with the phosphorylation of bcl-2. The results suggest that the indole sulfonamides inhibit cell proliferation at mitosis by perturbing the assembly dynamics of spindle microtubules and that they can kill cancer cells by inducing apoptosis through the bcl-2-dependent pathway. 相似文献
15.
《Bioorganic & medicinal chemistry》2016,24(2):277-285
Cyclooxygenase (COX) inhibitor Indomethacin analogs exhibited more potent cancer cell growth inhibition and apoptosis inducing activities than the parental compound. The anti-proliferative mechanism investigation of the analogs revealed that they inhibited tubulin polymerization at high concentrations whereas enhanced polymerization at low concentrations. The two opposite activities might antagonize each other and impaired the anti-proliferative activity of the derivatives eventually. In this study, we further performed lead optimization based on the structure activity relationship (SAR) generated. One of the new Indomethacin derivatives compound 11 {2-(4-(benzyloxy)phenyl)-N-(1-(4-bromobenzoyl)-3-(2-((2-(dimethylamino)ethyl)amino)-2-oxoethyl)-2-methyl-1H-indol-5-yl)acetamide} inhibited the proliferation of a panel of cancer cell lines with IC50s at the sub-micromole levels. Further study revealed that the compound only enhanced tubulin polymerization and was a tubulin stabilizer. 相似文献
16.
Camptothecin-somatostatin conjugates inhibit the growth of small cell lung cancer cells 总被引:1,自引:0,他引:1
The effects of camptothecin-somatostatin (CPT-SS) conjugates were investigated on small cell lung cancer (SCLC) cells. CPT was coupled to a SS agonist (SSA), c(Cys-Phe-DTrp-Lys-Thr-Cys)Thr-NH2 using the built in nucleophile assisted-releasing group (L1) N-methyl-aminoethyl-Gly-Dser-Nle-Dtyr-Dser or (L2) aminoethyl-Gly-Dser-Nle-Dtyr-Dser. The resulting CPT-L1-SSA and CPT-L2-SSA inhibited the specific binding of [125I-Tyr11]SS to NCI-H69 cell membranes with IC50 values of 0.2 and 2.1 nM, respectively. [125I]CPT-L1-SSA was internalized by SCLC cells at 37 degrees C but not at 4 degrees C. CPT-L1-SSA and CPT-L2-SSA inhibited in a dose-dependent manner the increase in adenylylcyclase activity caused by 25 microM forskolin. In vitro, 0.3 microM CPT-L1-SSA half-maximally inhibited the clonal growth of SCLC cells and 1 microM CPT-L1-SSA strongly inhibited 3H-thymidine incorporation into DNA and trypan-blue exclusion. These results suggest that CPT conjugated peptides such as CPT-L1-SSA may prove useful for exploring the efficacy of receptor-directed cytotoxicity to inhibit the proliferation of SCLC cells. 相似文献
17.
The effects of sigma ligands on small cell lung cancer (SCLC) cells were investigated. 125I-N-(2-(piperidino)ethyl)-2-iodobenazmide (2-IBP) bound with high affinity to SCLC cell line NCI-H209 and NCI-N417. Specific 125I-2-IBP binding was inhibited with high affinity by ifendipine, haloperidol, (2-piperidinyl-aminoethyl)-4-iodobenzamide (IPAB) and 1,3-ditolylguanidine (DTG) with IC50 values of 3, 10, 15 and 90 nM respectively. In vitro, 10 microM 2-IBP, haloperidol or IPAB inhibited NCI-N417 proliferation using a MTT or clonogenic assay. In vivo, 4 mg/kg IPAB or 2-IBP inhibited NCI-N417 xenograft proliferation. 125I-2-IBP localized to the SCLC tumors after subcutaneous injection. These results suggest that sigma ligands may be utilized to localize and inhibit the proliferation of SCLC tumors. 相似文献
18.
MiR‐376a suppresses the proliferation and invasion of non‐small‐cell lung cancer by targeting c‐Myc 下载免费PDF全文
Youyu Wang Wei Cong Gang Wu Xueming Ju Zhixi Li Xin Duan Xueli Wang Hong Gao 《Cell biology international》2018,42(1):25-33
It has been reported that miR‐376a is involved in the formation and progression of several types of cancer. However, the expression and function of miR‐376a is still unknown in non‐small cell lung carcinomas (NSCLC). In this study, the expression of miR‐376a in NSCLC tissues and cell lines were examined by real‐time PCR, the effects of miR‐376a on cell proliferation, apoptosis and invasion were evaluated in vitro. Luciferase reporter assay was performed to identify the targets of miR‐376a. The results showed that miR‐376a was significantly downregulated in NSCLC tissues and cell lines. Restoration of miR‐376a in NSCLC cell line A549 significantly inhibited cell proliferation, increased cell apoptosis and suppressed cell invasion, compared with control‐transfected A549 cells. Luciferase reporter assay showed that c‐Myc, an oncogene that regulating cell survival, angiogenesis and metastasis, was a direct target of miR‐376a. Over‐expression of miR‐376a decreased the mRNA and protein levels of c‐Myc in A549 cells. In addition, upregulation of c‐Myc inhibited miR‐376a‐induced inhibition of cell proliferation and invasion in A549 cells. Therefore, our results indicate a tumor suppressor role of miR‐376a in NSCLC by targeting c‐Myc. miR‐376a may be a promising therapeutic target for NSCLC. 相似文献
19.
20.
Chai G Li L Zhou W Wu L Zhao Y Wang D Lu S Yu Y Wang H McNutt MA Hu YG Chen Y Yang Y Wu X Otterson GA Zhu WG 《PloS one》2008,3(6):e2445
5-Aza-2'-deoxycytidine (5-aza-CdR) is used extensively as a demethylating agent and acts in concert with histone deacetylase inhibitors (HDACI) to induce apoptosis or inhibition of cell proliferation in human cancer cells. Whether the action of 5-aza-CdR in this synergistic effect results from demethylation by this agent is not yet clear. In this study we found that inhibition of cell proliferation was not observed when cells with knockdown of DNA methyltransferase 1 (DNMT1), or double knock down of DNMT1-DNMT3A or DNMT1-DNMT3B were treated with HDACI, implying that the demethylating function of 5-aza-CdR may be not involved in this synergistic effect. Further study showed that there was a causal relationship between 5-aza-CdR induced DNA damage and the amount of [(3)H]-5-aza-CdR incorporated in DNA. However, incorporated [(3)H]-5-aza-CdR gradually decreased when cells were incubated in [(3)H]-5-aza-CdR free medium, indicating that 5-aza-CdR, which is an abnormal base, may be excluded by the cell repair system. It was of interest that HDACI significantly postponed the removal of the incorporated [(3)H]-5-aza-CdR from DNA. Moreover, HDAC inhibitor showed selective synergy with nucleoside analog-induced DNA damage to inhibit cell proliferation, but showed no such effect with other DNA damage stresses such as gamma-ray and UV, etoposide or cisplatin. This study demonstrates that HDACI synergistically inhibits cell proliferation with nucleoside analogs by suppressing removal of incorporated harmful nucleotide analogs from DNA. 相似文献