首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the potential influence of spindle checkpoint function in response to arsenic trioxide (ATO)-induced apoptosis observed in cancer cell lines, we examined the correlation between activation of the spindle checkpoint and susceptibility to ATO-induced apoptosis in 10 cancer cell lines lacking functional p53. The ability to functionally activate the spindle checkpoint in each cancer cell line was assessed by the induction of mitotic arrest after Taxol treatment. Bromodeoxyuridine (BrdU) pulse-chase analysis of Taxol-treated cell lines with low mitotic arrest showed that they were not arrested at mitosis but divided abnormally, confirming that spindle checkpoint activation was impaired in these cell lines. Our results demonstrate that apoptosis was significantly induced by ATO in cancer cell lines with functional activation of the spindle checkpoint and substantial induction of mitotic arrest. Cell lines with negligible mitotic arrest exhibited little ATO-induced apoptosis. However, no such correlation was observed following treatment of cells with camptothecin, a topoisomerase I inhibitor. Furthermore, attenuation of the spindle checkpoint function by small interfering RNA-mediated silencing of BubR1 and Mad2 in cancer cells that were susceptible to ATO-induced mitotic arrest and apoptosis greatly reduced the induction of mitotic arrest and apoptosis by ATO and increased the formation of micronuclei or multinuclei in survived cells. The marked correlation between ATO-induced mitotic arrest and apoptosis indicates that the induction of apoptosis by ATO was highly dependent on the functional activation of the spindle checkpoint in cancer cells lacking normal p53 function.  相似文献   

2.
DNA damage causes cell cycle arrest in G(1), S, or G(2) to prevent replication on damaged DNA or to prevent aberrant mitosis. The G(1) arrest requires the p53 tumor suppressor, yet the topoisomerase I inhibitor SN38 induces p53 after the G(1) checkpoint such that the cells only arrest in S or G(2). Hence, SN38 facilitates comparison of p53 wild-type and mutant cells with regard to the efficacy of drugs such as 7-hydroxystaurosporine (UCN-01) that abrogate S and G(2) arrest. UCN-01 abrogated S and G(2) arrest in the p53 mutant breast tumor cell line MDA-MB-231 but not in the p53 wild-type breast line, MCF10a. This resistance to UCN-01 in the p53 wild-type cells correlated with suppression of cyclins A and B. In the p53 mutant cells, low concentrations of UCN-01 caused S phase cells to progress to G(2) before undergoing mitosis and death, whereas high concentrations caused rapid premature mitosis and death of S phase cells. UCN-01 inhibits Chk1/2, which should activate the mitosis-inducing phosphatase Cdc25C, yet this phosphatase remained inactive during S phase progression induced by low concentrations of UCN-01, probably because Cdc25C is also inhibited by the constitutive kinase, C-TAK1. High concentrations of UCN-01 caused rapid activation of Cdc25C, which is attributed to inhibition of C-TAK1, as well as Chk1/2. Hence, UCN-01 has multiple effects depending on concentration and cell phenotype that must be considered when investigating mechanisms of checkpoint regulation.  相似文献   

3.
The G(2) DNA damage checkpoint is activated by genotoxic agents and is particularly important for cancer therapies. Overriding the checkpoint can trigger precocious entry into mitosis, causing cells to undergo mitotic catastrophe. But some checkpoint-abrogated cells can remain viable and progress into G(1) phase, which may contribute to further genome instability. Our previous studies reveal that the effectiveness of the spindle assembly checkpoint and the duration of mitosis are pivotal determinants of mitotic catastrophe after checkpoint abrogation. In this study, we tested the hypothesis whether mitotic catastrophe could be enhanced by combining genotoxic stress, checkpoint abrogation, and the inhibition of the mitotic kinesin protein Eg5. We found that mitotic catastrophe induced by ionizing radiation and a CHK1 inhibitor (UCN-01) was exacerbated after Eg5 was inhibited with either siRNAs or monastrol. The combination of DNA damage, UCN-01, and monastrol sensitized cancer cells that were normally resistant to checkpoint abrogation. Importantly, a relatively low concentration of monastrol, alone not sufficient in causing mitotic arrest, was already effective in promoting mitotic catastrophe. These experiments suggest that it is possible to use sublethal concentrations of Eg5 inhibitors in combination with G(2) DNA damage checkpoint abrogation as an effective therapeutic approach.  相似文献   

4.
Checkpoint kinase 1 (Chk1) is an evolutionarily conserved serine/threonine kinase that plays an important role in G2/M checkpoint signaling. Here, we evaluate the radiosensitizing effects of a novel selective Chk1 inhibitor MK-8776, comparing its efficacy with a first-generation Chk1 inhibitor UCN-01, and attempt to elucidate the mechanism of radiosensitization. In a clonogenic survival assay, MK-8776 demonstrated a more pronounced radiosensitizing effect than UCN-01, with lower cytotoxicity. Importantly, radiosensitization by MK-8776 can be achieved at doses as low as 2.5 Gy, which is a clinically applicable irradiation dose. MK-8776, but not UCN-01, exacerbated mitotic catastrophe (MC) and centrosome abnormalities, without affecting repair kinetics of DNA double strand breaks. Furthermore, live-cell imaging revealed that MK-8776 significantly abrogated the radiation-induced G2/M checkpoint, prolonged the mitotic phase, and enhanced aberrant mitosis. This suggests that Chk1 inhibition by MK-8776 activates a spindle assembly checkpoint and increases mitotic defects in irradiated EMT6 cells. In conclusion, we have shown that, at minimally toxic concentrations, MK-8776 enhances radiation-induced cell death through the enhancement of aberrant mitosis and MC, without affecting DNA damage repair.  相似文献   

5.
Cell cycle checkpoints guard against the inappropriate commitment to critical cell events such as mitosis. The bisdioxopiperazine ICRF-193, a catalytic inhibitor of DNA topoisomerase II, causes a reversible stalling of the exit of cells from G2 at the decatenation checkpoint (DC) and can generate tetraploidy via the compromising of chromosome segregation and mitotic failure. We have addressed an alternative origin – endocycle entry - for the tetraploidisation step in ICRF-193 exposed cells. Here we show that DC-proficient p53-functional tumour cells can undergo a transition to tetraploidy and subsequent aneuploidy via an initial bypass of mitosis and the mitotic spindle checkpoint. DC-deficient SV40-tranformed cells move exclusively through mitosis to tetraploidy. In p53-functional tumour cells, escape through mitosis is enhanced by dominant negative p53 co-expression. The mitotic bypass transition phase (termed G2endo) disconnects cyclin B1 degradation from nuclear envelope breakdown and allows cells to evade the action of Taxol. G2endo constitutes a novel and alternative cell cycle phase - lasting some 8 h - with distinct molecular motifs at its boundaries for G2 exit and subsequent entry into a delayed G1 tetraploid state. The results challenge the paradigm that checkpoint breaching leads directly to abnormal ploidy states via mitosis alone. We further propose that the induction of bypass could: facilitate the covert development of tetraploidy in p53 functional cancers, lead to a misinterpretation of phase allocation during cell cycle arrest and contribute to tumour cell drug resistance.  相似文献   

6.
We here report the influence of the cell cycle abrogator UCN-01 on RKO human colon carcinoma cells differing in p53 status following exposure to two DNA damaging agents, the topoisomerase inhibitors etoposide and camptothecin. Cells were treated with the two drugs at the IC90 concentration for 24 h followed by post-incubation in drug-free medium. RKO cells expressing wild-type, functional p53 arrested the cell cycle progression in both the G1 and G2 phases of the cell cycle whereas the RKO/E6 cells, which lack functional p53, only arrested in the G2 phase. Growth-arrested cells did not resume proliferation even after prolonged incubation in drug-free medium (up to 96 h). To evaluate the importance of the cell cycle arrest on cellular survival, a non-toxic dose of UCN-01 (100 nM) was added to the growth-arrested cells. The addition of UCN-01 was accompanied by mitotic entry as revealed by the appearance of condensed chromatin and the MPM-2 phosphoepitope, which is characteristic for mitotic cells. G2 exit and mitotic transit was accompanied by a rapid activation of caspase-3 and apoptotic cell death. The influence of UCN-01 on the long-term cytotoxic effects of the two drugs was also determined. Unexpectedly, abrogation of the G2 arrest had no influence on the overall cytotoxicity of either drug. In contrast, addition of UCN-01 to cisplatin-treated RKO and RKO/E6 cells greatly increased the cytotoxic effects of the alkylating agent. These results strongly suggest that even prolonged cell cycle arrest in the G2 phase of the cell cycle is not necessarily coupled to efficient DNA repair and enhanced cellular survival as generally believed.  相似文献   

7.
During cell division, cells form the microtubule-based mitotic spindle, a highly specialized and dynamic structure that mediates proper chromosome transmission to daughter cells. Cancer cells can show perturbed mitotic spindles and an approach in cancer treatment has been to trigger cell killing by targeting microtubule dynamics or spindle assembly. To identify and characterize proteins necessary for spindle assembly, and potential antimitotic targets, we performed a proteomic and genetic analysis of 592 mitotic microtubule copurifying proteins (MMCPs). Screening for regulators that affect both mitosis and apoptosis, we report the identification and characterization of STARD9, a kinesin-3 family member, which localizes to centrosomes and stabilizes the pericentriolar material (PCM). STARD9-depleted cells have fragmented PCM, form multipolar spindles, activate the spindle assembly checkpoint (SAC), arrest in mitosis, and undergo apoptosis. Interestingly, STARD9-depletion synergizes with the chemotherapeutic agent taxol to increase mitotic death, demonstrating that STARD9 is a mitotic kinesin and a potential antimitotic target.  相似文献   

8.
The mitotic checkpoint is a key cell cycle control mechanism that ensures an accurate segregation of chromosomes during mitosis by delaying the onset of anaphase until all chromosomes are properly attached to a bipolar mitotic spindle. While complete loss of this checkpoint is lethal in vertebrates, a weakened mitotic checkpoint is frequently seen in cancer cells and it may contribute to tumorigenesis. Many antitumor drugs, including spindle assembly inhibitors and DNA damaging agents, can activate the mitotic checkpoint. However, since these drugs influence interphase events besides activating the mitotic checkpoint, the role of the mitotic checkpoint in drug-induced cell death remained unclear. Using a KSP antagonist that specifically acts on mitotic cells, we have recently shown that activation of the mitotic checkpoint followed by mitotic slippage or adaptation, activates Bax and initiates apoptosis. Notably, cells with a weakened mitotic checkpoint incur much less apoptotic death than their checkpoint-proficient counterparts, indicating the requirement of a competent mitotic checkpoint in the induction of apoptosis. In light of these findings and other recent reports, the potential influence of the mitotic checkpoint in response to chemotherapies, and the strategy to target the mitotic checkpoint for cancer therapeutics are discussed.  相似文献   

9.
Natural (intrinsic) resistance of many tumor types to DNA damaging agents is closely associated with their capacity to undergo robust cell cycle arrest in G2/M. G2 arrest is regulated by the DNA damage checkpoint and by survival signaling, with a potential role of PI3K/Akt in checkpoint function. In this work, we wanted to clarify if inhibition of multiple checkpoint/survival pathways may confer better efficacy in the potentiation of genotoxic agents compared to inhibition of either pathway alone. We compared the influence of UCN-01, which affects both the DNA damage checkpoint and PI3K/Akt-mediated survival signaling, with the PI3K inhibitors wortmannin and LY294002 in p53-deficient M1 acute myeloid leukemia cells treated with the DNA damaging agent cisplatin. Our results show that direct inhibition of PI3K/Akt in G2-arrested cells by wortmannin or LY294002 strongly enhanced the cytotoxicity of cisplatin without influencing the G2 checkpoint. Unexpectedly, dual inhibition of both survival and checkpoint signaling by UCN-01, also increased the cytotoxicity of cisplatin, but to a lesser degree than wortmannin or LY294002. The differences in cytotoxicity were accompanied by differences in cell death pathways: direct inhibition of PI3K/Akt was accompanied by rapid apoptotic cell death during G2, whereas cells underwent mitotic transit and cell division followed by cell death during G1 when both checkpoint and survival signaling were inhibited. Our results elucidate a novel function for PI3K/Akt as a survival factor during DNA damage-induced G2 arrest and could have important pharmacological consequences for the application of response modulators in p53-deficient tumors with strong survival signaling.  相似文献   

10.
DNA damaging agents, including those used in the clinic, activate cell cycle checkpoints, which blocks entry into mitosis. Given that checkpoint override results in cell death via mitotic catastrophe, inhibitors of the DNA damage checkpoint are actively being pursued as chemosensitization agents. Here we explored the effects of gemcitabine in combination with Chk1 inhibitors in a panel of pancreatic cancer cell lines and found variable abilities to override the S phase checkpoint. In cells that were able to enter mitosis, the chromatin was extensively fragmented, as assessed by metaphase spreads and Comet assay. Notably, electron microscopy and high-resolution light microscopy showed that the kinetochores and centromeres appeared to be detached from the chromatin mass, in a manner reminiscent of mitosis with unreplicated genomes (MUGs). Cell lines that were unable to override the S phase checkpoint were able to override a G2 arrest induced by the alkylator MMS or the topoisomerase II inhibitors doxorubicin or etoposide. Interestingly, checkpoint override from the topoisomerase II inhibitors generated fragmented kinetochores (MUGs) due to unreplicated centromeres. Our studies show that kinetochore and centromere fragmentation is a defining feature of checkpoint override and suggests that loss of cell viability is due in part to acentric genomes. Furthermore, given the greater efficacy of forcing cells into premature mitosis from topoisomerase II-mediated arrest as compared with gemcitabine-mediated arrest, topoisomerase II inhibitors maybe more suitable when used in combination with checkpoint inhibitors.  相似文献   

11.
Hwang HS  Song K 《Genetics》2002,161(2):595-609
During mitosis, genomic integrity is maintained by the proper coordination of mitotic events through the spindle checkpoint. The bifurcated spindle checkpoint blocks cell cycle progression at metaphase by monitoring unattached kinetochores and inhibits mitotic exit in response to the incorrect orientation of the mitotic spindle. Bfa1p is a spindle checkpoint regulator of budding yeast in the Bub2p checkpoint pathway for proper mitotic exit. We have isolated a novel Bfa1p interacting protein named Ibd2p in the budding yeast Saccharomyces cerevisiae. We found that IBD2 (Inhibition of Bud Division 2) is not an essential gene but its deletion mutant proceeded through the cell cycle in the presence of microtubule-destabilizing drugs, thereby inducing a sharp decrease in viability. In addition, overexpression of Mps1p caused partial mitotic arrest in ibd2Delta as well as in bub2Delta, suggesting that IBD2 encodes a novel component of the spindle checkpoint downstream of MPS1. Overexpression of Ibd2p induced mitotic arrest with increased levels of Clb2p in wild type and mad2Delta, but not in deletion mutants of BUB2 and BFA1. Pds1p was also stabilized by the overexpression of Ibd2p in wild-type cells. The mitotic arrest defects observed in ibd2Delta in the presence of nocodazole were restored by additional copies of BUB2, BFA1, and CDC5, whereas an extra copy of IBD2 could not rescue the mitotic arrest defects of bub2Delta and bfa1Delta. The mitotic arrest defects of ibd2Delta were not recovered by MAD2, or vice versa. Analysis of the double mutant combinations ibd2Deltamad2Delta, ibd2Deltabub2Delta, and ibd2Deltadyn1Delta showed that IBD2 belongs to the BUB2 epistasis group. Taken together, these data demonstrate that IBD2 encodes a novel component of the BUB2-dependent spindle checkpoint pathway that functions upstream of BUB2 and BFA1.  相似文献   

12.
Thoracic ionizing radiation is a standard component of combined-modality therapy for locally advanced non-small cell lung cancer. To improve low 5-year survival rates (5- 15%), new strategies for enhancing the effectiveness of ionizing radiation are needed. The kinase inhibitor UCN-01 has multiple cell cycle effects, including abrogation of DNA damage-induced S- and G(2)-phase arrest, which may limit DNA repair prior to mitosis. To test the hypothesis that therapy-induced cell cycle effects would have an impact on the efficacy of a combination of UCN-01 plus ionizing radiation, the cell cycle responses of the non-small cell lung cancer cell lines Calu1 (TP53-null) and A549 (wild-type TP53) to 2 Gy ionizing radiation were correlated with clonogenic survival after irradiation plus UCN-01. Irradiated cells were exposed to UCN-01 simultaneously and at 3-h increments after irradiation. In Calu1 cells but not A549 cells, sequence-dependent potentiation of radiation by UCN-01 was observed, with maximal interaction occurring when UCN-01 was administered 6 h after irradiation. This coincided with the postirradiation time with the greatest depletion of cells from G(1). Abrogation of G(2) arrest was observed regardless of TP53 status. The role of TP53 was investigated using siRNA to achieve gene silencing. These studies demonstrated that radiation plus UCN-01 was more effective in cells with diminished TP53 activity, associated with a reduced G(1) checkpoint arrest. These studies indicate that simultaneous elimination of multiple DNA damage-induced checkpoints in G(1), S and G(2) may enhance the effects of radiation and that drug scheduling may have an impact on clinical efficacy.  相似文献   

13.
Microtubule inhibitors such as Vinblastine and Paclitaxel are chemotherapy agents that activate the mitotic spindle checkpoint, arresting cells in mitosis and leading to cell death. The pathways that connect mitotic arrest to cell death are not well characterized. We developed a mammalian cell-based cDNA cloning method to isolate proteins and protein fragments whose expression inhibits colony formation in the presence of microtubule inhibitors. Understanding how these proteins impact cellular responses to microtubule drugs will lead to better understanding of the biochemical pathways connecting mitotic arrest and cell death in mammalian cells and may provide novel targets that can enhance microtubule inhibitor-mediated chemotherapy.  相似文献   

14.
Mutations in the p53 tumor suppressor gene locus predispose human cells to chromosomal instability. This is due in part to interference of mutant p53 proteins with the activity of the mitotic spindle and postmitotic cell cycle checkpoints. Recent data demonstrates that wild type p53 is required for postmitotic checkpoint activity, but plays no role at the mitotic spindle checkpoint. Likewise, structural dominant p53 mutants demonstrate gain-of-function properties at the mitotic spindle checkpoint and dominant negative properties at the postmitotic checkpoint. At mitosis, mutant p53 proteins interfere with the control of the metaphase-to-anaphase progression by up-regulating the expression of CKs1, a protein that mediates activatory phosphorylation of the anaphase promoting complex (APC) by Cdc2. Cells that carry mutant p53 proteins overexpress CKs1 and are unable to sustain APC inactivation and mitotic arrest. Thus, mutant p53 gain-of-function at mitosis constitutes a key component to the origin of chromosomal instability in mutant p53 cells.  相似文献   

15.
The spindle assembly checkpoint (SAC) arrests mitosis until bipolar attachment of spindle microtubules to all chromosomes is accomplished. However, when spindle formation is prevented and the SAC cannot be satisfied, mammalian cells can eventually overcome the mitotic arrest while the checkpoint is still activated. We find that Aspergillus nidulans cells, which are unable to satisfy the SAC, inactivate the checkpoint after a defined period of mitotic arrest. Such SAC inactivation allows normal nuclear reassembly and mitotic exit without DNA segregation. We demonstrate that the mechanisms, which govern such SAC inactivation, require protein synthesis and can occur independently of inactivation of the major mitotic regulator Cdk1/Cyclin B or mitotic exit. Moreover, in the continued absence of spindle function cells transit multiple cell cycles in which the SAC is reactivated each mitosis before again being inactivated. Such cyclic activation and inactivation of the SAC suggests that it is subject to cell-cycle regulation that is independent of bipolar spindle function.  相似文献   

16.
The p53 tumor suppressor gene product is known to act as part of a cell cycle checkpoint in G1 following DNA damage. In order to investigate a proposed novel role for p53 as a checkpoint at mitosis following disruption of the mitotic spindle, we have used time-lapse videomicroscopy to show that both p53+/+ and p53−/− murine fibroblasts treated with the spindle drug nocodazole undergo transient arrest at mitosis for the same length of time. Thus, p53 does not participate in checkpoint function at mitosis. However, p53 does play a critical role in nocodazole-treated cells which have exited mitotic arrest without undergoing cytokinesis and have thereby adapted. We have determined that in nocodazole-treated, adapted cells, p53 is required during a specific time window to prevent cells from reentering the cell cycle and initiating another round of DNA synthesis. Despite having 4N DNA content, adapted cells are similar to G1 cells in that they have upregulated cyclin E expression and hypophosphorylated Rb protein. The mechanism of the p53-dependent arrest in nocodazole-treated adapted cells requires the cyclin-dependent kinase inhibitor p21, as p21−/− fibroblasts fail to arrest in response to nocodazole treatment and become polyploid. Moreover, p21 is required to a similar extent to maintain cell cycle arrest after either nocodazole treatment or irradiation. Thus, the p53-dependent checkpoint following spindle disruption functionally overlaps with the p53-dependent checkpoint following DNA damage.  相似文献   

17.
Plk1 is a checkpoint protein whose role spans all of mitosis and includes DNA repair, and is highly conserved in eukaryotes from yeast to man. Consistent with this wide array of functions for Plk1, the cellular consequences of Plk1 disruption are diverse, spanning delays in mitotic entry, mitotic spindle abnormalities, and transient mitotic arrest leading to mitotic slippage and failures in cytokinesis. In this work, we present the in vitro and in vivo consequences of Plk1 inhibition in cancer cells using potent, selective small-molecule Plk1 inhibitors and Plk1 genetic knock-down approaches. We demonstrate for the first time that cellular senescence is the predominant outcome of Plk1 inhibition in some cancer cell lines, whereas in other cancer cell lines the dominant outcome appears to be apoptosis, as has been reported in the literature. We also demonstrate strong induction of DNA double-strand breaks in all six lines examined (as assayed by γH2AX), which occurs either during mitotic arrest or mitotic-exit, and may be linked to the downstream induction of senescence. Taken together, our findings expand the view of Plk1 inhibition, demonstrating the occurrence of a non-apoptotic outcome in some settings. Our findings are also consistent with the possibility that mitotic arrest observed as a result of Plk1 inhibition is at least partially due to the presence of unrepaired double-strand breaks in mitosis. These novel findings may lead to alternative strategies for the development of novel therapeutic agents targeting Plk1, in the selection of biomarkers, patient populations, combination partners and dosing regimens.  相似文献   

18.
Overexpression of TPPII correlates with accelerated growth and the appearance of centrosome and chromosome aberrations, suggesting that the activity of this enzyme may be critical for the induction and/or maintenance of genetic instability in malignant cells. We now find that the length of mitosis and of the entire cell cycle is significantly reduced in TPPII overexpressing HEK293 cells compared to untransfected and control transfected cells. Functional TPPII knockdown by shRNA interference caused a significant slowdown in cell growth and the accumulation of cells that delayed or failed to complete mitosis. TPPII overexpressing cells evade mitotic arrest induced by spindle poisons and display high levels of polyploidy despite the constitutively high expression of major components of the spindle checkpoint. TPPII overexpression correlated with upregulation of IAPs and with resistance to mitochondria dependent apoptosis induced by p53 stabilization. Thus, TPPII appears to promote malignant cell growth by allowing exit from mitosis and the survival of cells with severe mitotic spindle damage.  相似文献   

19.
Mps1 kinase plays an evolutionary conserved role in the mitotic spindle checkpoint. This system precludes anaphase onset until all chromosomes have successfully attached to spindle microtubules via their kinetochores. Mps1 overexpression in budding yeast is sufficient to trigger a mitotic arrest, which is dependent on the other mitotic checkpoint components, Bub1, Bub3, Mad1, Mad2, and Mad3. Therefore, Mps1 might act at the top of the mitotic checkpoint cascade. Moreover, in contrast to the other mitotic checkpoint components, Mps1 is essential for spindle pole body duplication in budding yeast. Centrosome duplication in mammalian cells might also be controlled by Mps1 , but the fission yeast homolog is not required for spindle pole body duplication. Our phenotypic characterizations of Mps1 mutant embryos in Drosophila do not reveal an involvement in centrosome duplication, while the mitotic spindle checkpoint is defective in these mutants. In addition, our analyses reveal novel functions. We demonstrate that Mps1 is also required for the arrest of cell cycle progression in response to hypoxia. Finally, we show that Mps1 and the mitotic spindle checkpoint are responsible for the developmental cell cycle arrest of the three haploid products of female meiosis that are not used as the female pronucleus.  相似文献   

20.
Microtubule-targeting cancer therapies interfere with mitotic spindle dynamics and block cells in mitosis by activating the mitotic checkpoint. Cells arrested in mitosis may remain arrested for extended periods of time or undergo mitotic slippage and enter interphase without having separated their chromosomes. How extended mitotic arrest and mitotic slippage contribute to subsequent cell death or survival is incompletely understood. To address this question, automated fluorescence microscopy assays were designed and used to screen chemical libraries for modulators of mitotic slippage. Chlorpromazine and triflupromazine were identified as drugs that inhibit mitotic slippage and SU6656 and geraldol as chemicals that stimulate mitotic slippage. Using the drugs to extend mitotic arrest imposed by low concentrations of paclitaxel led to increased cell survival and proliferation after drug removal. Cells arrested at mitosis with paclitaxel or vinblastine and chemically induced to undergo mitotic slippage underwent several rounds of DNA replication without cell division and exhibited signs of senescence but eventually all died. By contrast, cells arrested at mitosis with the KSP/Eg5 inhibitor S-trityl-L-cysteine and induced to undergo mitotic slippage were able to successfully divide and continued to proliferate after drug removal. These results show that reinforcing mitotic arrest with drugs that inhibit mitotic slippage can lead to increased cell survival and proliferation, while inducing mitotic slippage in cells treated with microtubule-targeting drugs seems to invariably lead to protracted cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号