首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 167 毫秒
1.
Biofilm formation was studied in 54 strains of Burkholderia cepacia complex isolated in 7 Moscow hospitals. 80% of strains (biofilm groups I and II) had the capacity to biofilm formation and only 16.7% of strains (group III) were not capable to biofilm formation. Molecular genetic methods allowed to identify one of the epidemic markers (CBL, IS hybrid sequence, Burkholderia Cepacia Epidemic Strain Marker - BCESM) in 46.7, 23.3, and 33.3% of strains from group I, II, and III respectively. Gene cepR from the Quorum Sensing system was identified in three biofilm groups in nearly equal frequency (92.3, 96.2 and 100% for group I, II, and III respectively), whereas cepl gene was found more often in group I (76.9%) and II (65.4%). Strains from all three groups had protease and lipase activity and 13.3% of group I strains had chitinolytic activity. B. cepacia strains from group I produced hemolysin in 33.3% of cases, from group II--in 26.6%, and from group III--in 11.1% of cases. The majority of Moscow hospital strains of B. cepacia complex were identified as B. cenocepacia (genomovar III, group A). RAPD-PCR method enabled to differentiate isolated strains into several genotypic variants. 13.3% of strains from group I were susceptible to imipenem/ciprofloxacin, as well as 33.3% of isolates from group II and 44.4% of isolates from group III.  相似文献   

2.
Described in the paper are characteristics of B. cepacia clinical strains isolated from patients at Moscow hospitals. The strains were investigated for the presence of proteolytic, chitinolytic, hemolytic and lipase activities as well as for presence of components of the "Quorum sensing" gene activity regulatory system by using biological test-systems and in the polymerase chain reaction with primers to genes cepI and cepR.  相似文献   

3.
4.
In cystic fibrosis (CF), infection with Burkholderia cepacia complex (Bcc) strains may cause long-term asymptomatic airway colonization, or severe lung infection leading to rapid pulmonary decline. To assess the virulence of Bcc strains, we established a lung infection model in mice with a null allele of the gene involved in X-linked chronic granulomatous disease (CGD). CGD mice, challenged intratracheally with 10(3) cells of the epidemic Burkholderia cenocepacia strain J2315, died within 3 days from sepsis after bacteria had multiplied to 3.3 x 10(8) cells. Infected mice developed neutrophil-dominated lung abscesses. Other B. cenocepacia strains and a B. cepacia strain were less virulent and one B. multivorans and one B. vietnamensis CF isolate were both avirulent. Bcc mutants, defective in exopolysaccharide synthesis or quorum sensing revealed diminished or no abscess formation and mortality. Immunofluorescence staining of Bcc-infected murine and CF lung tissues revealed colocalization of Bcc and neutrophils, suggesting Bcc persistence within neutrophils in CGD and CF. In vitro, Bcc cells were rapidly killed during aerobic neutrophil phagocytosis; however, the pathogens survived in neutrophils with blocked nicotinamide adenine dinucleotide phosphate oxidase activity and under anaerobic conditions. We conclude that the Bcc infection model in CGD mice is well suited for the assessment of Bcc virulence.  相似文献   

5.
Described in the paper are the results of a study of differential expression of pathogenicity of B. cepacia and P. aeruginosa in subinhibiting concentrations (SIC) of cyprofloxacyne. While identifying genes expressing differentially in the antibiotic SIC, genes cepR B. cepacia and P. aeruginosa expressing without cyprofloxacyne in the cultivation medium and not expressing in the antibiotic SIC were detected. Finally, involvement of cepR B. cepacia in regulating the pathogenicity expression factors according to "quorum sensing" is under discussion.  相似文献   

6.
Modern data, related with the identification and typing of the complex B. cepacia bacteria, are analyzed in the article by using the poly-phase taxonomic approach. An optimal scheme for identifying and typing the complex B. cepacia bacteria, involving the microbiological and molecular-biological methods of laboratory diagnostics, is presented. The key and assumed factors of pathogenicity of the discussed bacteria are described. The possible phylogenetic relations of the complex B. cepacia bacteria with phytopathgens as well as with pathogenic bacteria of species Burkholderia, Pseudomonas, Escherichia, B. mallei, B. pdeudomallei, P. seruginosa and E. coli are described. A possible role of genome alterations and mutations in the genome of the complex B. cepacia bacteria (with the latter genome having unusual properties, i.e. a big size, and a considerable quantity of insertion sequences) in creating the conditions for the "pulsing" evolution "jerks", i.e. for a rapid change-over from saprophytism in the soil to a pathogenic causative agent of a viral-and-bacteriological infection. Such mechanism can be regarded as a rapid and radical adaptation of a microorganism under the conditions of changing ecological niches.  相似文献   

7.
洋葱伯克霍尔德菌脂肪酶是一类具有重要工业应用价值的优良脂肪酶之一。根据已公布的洋葱伯克霍尔德菌基因组信息, 在传统的洋葱伯克霍尔德菌选择性培养基中添加适量的氨苄青霉素和卡那霉素, 从植物根际的土壤中筛选洋葱伯克霍尔德菌。对获得的单菌落再用含罗丹明B指示剂的产脂肪酶定性检测平板检测, 从4个根际土壤中筛选到35株产脂肪酶的洋葱伯克霍尔德菌, 阳性率达到65%。其中15株对体积浓度为10%的苯、己烷和正庚烷同时具有耐受性。用recA基因分子鉴定上述15株菌种, 全部属于洋葱伯克霍尔德菌菌群。  相似文献   

8.
9.
Taxonomic studies of the past few years have shown that the Burkholderia cepacia complex, a heterogeneous group of B. cepacia-like organisms, consists of at least nine species. B. cepacia complex strains are ubiquitously distributed in nature and have been used for biocontrol, bioremediation, and plant growth promotion purposes. At the same time, B. cepacia complex strains have emerged as important opportunistic pathogens of humans, particularly those with cystic fibrosis. All B. cepacia complex species investigated thus far use quorum-sensing (QS) systems that rely on N-acylhomoserine lactone (AHL) signal molecules to express certain functions, including the production of extracellular proteases, swarming motility, biofilm formation, and pathogenicity, in a population-density-dependent manner. In this study we constructed a broad-host-range plasmid that allowed the heterologous expression of the Bacillus sp. strain 240B1 AiiA lactonase, which hydrolyzes the lactone ring of various AHL signal molecules, in all described B. cepacia complex species. We show that expression of AiiA abolished or greatly reduced the accumulation of AHL molecules in the culture supernatants of all tested B. cepacia complex strains. Phenotypic characterization of wild-type and transgenic strains revealed that protease production, swarming motility, biofilm formation, and Caenorhabditis elegans killing efficiency was regulated by AHL in the large majority of strains investigated.  相似文献   

10.
Interaction with plants around their roots and foliage forms the natural habitat for a wide range of gram-negative bacteria such as Burkholderia, Pseudomonas and Ralstonia. During these interactions many of these bacteria facilitate highly beneficial processes such as the breakdown of pollutants or enhancement of crop growth. All these bacterial species are also capable of causing opportunistic infections in vulnerable individuals, especially people with cystic fibrosis (CF). Here we will review the current understanding of the Burkholderia cepacia complex (Bcc) as a group of model opportunistic pathogens, contrasting their clinical epidemiology with their ecological importance. Currently, the B. cepacia complex is composed of nine formally named species groups which are all difficult to identify using phenotypic methods. Genetic methods such as 16S rRNA and recA gene sequence analysis have proven useful for Bcc species identification. Multilocus sequence typing (MLST) is also emerging as a very useful tool for both Bcc strain and species identification. Historically, Burkholderia cenocepacia was the most dominant Bcc pathogen in CF, however, probably as a result of strict infection control practices introduced to control the spread of this species, its prevalence has been reduced. Burkholderia multivorans is the now the most dominant Bcc infection encountered in the UK CF population, a changing epidemiology that also appears to be occurring in the US CF population. The distribution of Bcc species residing in the natural environment may vary considerably with the type of environment examined. Clonally identical Bcc strains have been found to occur in the natural environment and cause infection. The contamination of medical devices, disinfectants and pharmaceutical formulations has also been directly linked to several outbreaks of infection. In the last 10 years considerable progress has been made in understanding the natural biology and clinical infections caused by this fascinating group of bacteria.  相似文献   

11.
Seventy strains of the Burkholderia cepacia complex, which currently comprises six genomic species, were tested for their ability to produce N-acylhomoserine lactone (AHL) signal molecules. Using thin layer chromatography in conjunction with a range of AHL biosensors, we show that most strains primarily produce two AHLs, namely N-octanoylhomoserine lactone (C8-HSL) and N-hexanoylhomoserine lactone (C6-HSL). Furthermore, some strains belonging to B. vietnamiensis (genomovar V) produce additional long chain AHL molecules with acyl chains ranging from C10 to C14. For B. vietnamiensis R-921 the structure of the most abundant long chain AHL was confirmed as N-decanoylhomoserine lactone (C10-HSL) by liquid chromatography-mass spectrometry (LC-MS) in combination with total chemical synthesis. Interestingly, a number of strains, most notably all representatives of B. multivorans (genomovar II), did not produce AHLs at least under the growth conditions used in this study. All strains were also screened for the production of extracellular lipase, chitinase, protease, and siderophores. However, no correlation between the AHL production and the synthesis of these exoproducts was apparent. Southern blot analysis showed that all the B. cepacia complex strains investigated, including the AHL-negative strains, possess genes homologous to the C8-HSL synthase cepI and to cepR, which encodes the cognate receptor protein. The nucleotide sequence of the cepI and cepR genes from one representative strain from each of the six genomovars was determined. Furthermore, the cepI genes from the different genomovars were expressed in Escherichia coli and it is demonstrated that all genes encode functional proteins that direct the synthesis of C8-HSL and C6-HSL. Given that cepI from the B. multivorans strain encodes a functional AHL synthase, yet detectable levels of AHLs were not produced by the wild-type, this suggests that additional regulatory functions may be present in members of this genomovar that negatively affect expression of cepI.  相似文献   

12.
AIM: Evaluation of the diagnostic value of pheno- and genotypic characteristics of B. cepacia strains collection. MATERIALS AND METHODS: Phenotypic and genetic methods of identification and differentiation of 25 strains of the B. cepacia complex. RESULTS: Polyphasic taxonomic approach utilizing multiple diagnostic tests was used for accurate identification of Burkholderia species. Algorithm for identification of microorganisms from the B. cepacia complex was developed. CONCLUSION: Combined use of phenotypic and molecular genetic tests, such as recA gene PCR, is recommended for differentiation of the B. cepacia complex genomovars.  相似文献   

13.
Burkholderia cepacia is a 'complex' in which seven genomic species or genomovars have so far been identified. It appears that all seven B. cepacia genomovars are capable of causing infections in vulnerable persons; in particular, the importance of Burkholderia multivorans (genomovar II) and B. cepacia genomovar III among cystic fibrosis isolates, especially epidemic ones, has been emphasized. In order to acquire a better comprehension of the genomovar composition of environmental populations of B. cepacia, 120 strains were isolated from the rhizosphere of maize plants cultivated in fields located in northern, central and southern Italy. The identification of the different genomovars was accomplished by a combination of molecular polymerase chain reaction (PCR)-based techniques, such as restriction fragment length polymorphism (RFLP) analysis of 16S rDNA (ARDRA), genomovar-specific PCR tests and RFLP analyses based on polymorphisms in the recA gene whole-cell protein electrophoresis. ARDRA analysis allowed us to distinguish between all B. cepacia genomovars except B. cepacia genomovar I, B. cepacia genomovar III and Burkholderia ambifaria (genomovar VII). The latter genomovars were differentiated by means of recA PCR tests and RFLP analyses. Among the rhizospheric isolates of B. cepacia, we found only B. cepacia genomovar I, B. cepacia genomovar III, Burkholderia vietnamiensis (genomovar V) and B. ambifaria. B. cepacia genomovars I and III and B. ambifaria were recovered from all three fields, whereas B. vietnamiensis was detected only in the population isolated from the field located in central Italy. Among strains isolated from northern and southern Italy, the most abundant genomovars were B. ambifaria and B. cepacia genomovar III respectively; in contrast, the population isolated in central Italy showed an even distribution of strains among genomovars. These results indicate that it is not possible to differentiate clinical and environmental strains, or pathogenic and non-pathogenic strains, of the B. cepacia complex simply on the basis of genomovar status, and that the environment may serve as a reservoir for B. cepacia genomovar III infections in vulnerable humans.  相似文献   

14.
15.
Using probes constructed from Ralstonia solanacearum and Burkholderia pseudomallei, putative type III secretion (TTS) genes were identified in Burkholderia cepacia J2315 (genomovar III). A cosmid clone containing DNA with homology to five TTS genes was sub-cloned and regions were sequenced in order to design oligonucleotides for polymerase chain reaction assays. These indicated that two putative TTS genes (bcscQ and bcscV) were present in all members of the B. cepacia complex with the exception of strains from genomovar I. Southern blot assays confirmed this observation, suggesting that the lack of a TTS gene cluster may define a major difference between B. cepacia genomovar I and other members of the B. cepacia complex, including genomovar III. In contrast to TTS gene clusters in other bacteria, a putative gene homologous to the virB1 gene of Brucella suis was located directly downstream of bcscQR.  相似文献   

16.
Previous studies have identified specific Burkholderia cepacia complex strains that are common to multiple persons with cystic fibrosis (CF). Such so-called epidemic strains have an apparent enhanced capacity for inter-patient spread and reside primarily in Burkholderia cenocepacia (formerly B. cepacia complex genomovar III). We sought to identify strains from B. cepacia complex species other than B. cenocepacia that are similarly shared by multiple CF patients. We performed genotype analysis of 360 recent sputum culture isolates from 360 persons residing in 29 cities by using repetitive extragenic palendromic polymerase chain reaction (rep-PCR) and pulsed field gel electrophoresis. The results indicate that sharing of a common Burkholderia multivorans strain occurs relatively infrequently; however, several small clusters of patients infected with the same strain were identified. A cluster of seven patients infected with the same B. cepacia (genomovar I) strain was found. We also identified a large group of 28 patients receiving care in the same treatment center and infected with the same Burkholderia dolosa strain. These observations suggest that B. cepacia complex strains in species other than B. cenocepacia may be spread among CF patients.  相似文献   

17.
AIMS: To study the genotypic identification and characterization of the 119 Burkholderia cepacia complex (Bcc) strains recovered from clinical and environmental sources in Japan and Thailand. METHODS AND RESULTS: Based on the results of analysis by 16S rDNA RFLP generated after digestion with DdeI, the Bcc strains were differentiated into two patterns: pattern 1 (including Burkholderia vietnamiensis) and pattern 2 (including B. cepacia genomovar I, Burkholderia cenocepacia and Burkholderia stabilis). All strains belonged to pattern 2 except for one strain. In the RFLP analysis of the recA gene using HaeIII, strains were separated into eight patterns designated as A, D, E, G, H, I, J and K, of which pattern K was new. Burkholderia cepacia epidemic strain marker (BCESM) encoded by esmR [corrected] and the pyrrolnitrin biosynthetic locus encoded by prnC were present in 22 strains (18%) and 88 strains (74%) from all sources, respectively. All esmR-positive [corrected] strains belonged to B. cenocepacia, whereas most prnC-positive strains belonged to B. cepacia genomovar I. CONCLUSIONS: Strains derived from clinical sources were assigned to B. cepacia genomovar I, B. cenocepacia, B. stabilis and B. vietnamiensis. The majority of Bcc strains from environmental sources (77 of a total 95 strains) belonged to B. cepacia genomovar I, whereas the rest belonged to B. cenocepacia. On the basis of genomovar-specific PCR and prnC RFLP analysis, strains belonging to recA pattern K were identified as B. cepacia genomovar I. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides the genotypic identification of a collection of the Bcc strains from Japan and Thailand. RFLP analysis of the prnC gene promises to be a useful method for differentiating Burkholderia pyrrocinia from B. cepacia genomovar I strains.  相似文献   

18.
In experiments on animals study of pathogenicity of 9 clinical strains of Burkholderia cepacia isolated from patients with chronic lung diseases was performed. Preliminary identification of studied strains by means of biochemical and genetic methods allowed to establish their belonging to B. cepacia species. It was determined that 6 of 9 strains are epidemiologically significant. Experiments showed that bacteria of studied strains are not able to cause infectious process in white mice and hamadryas baboons. Conclusion about appropriateness of development and use of other biological models was made.  相似文献   

19.
The evidence has been obtained that various species, as well as individual strains having pathogenicity factors, produced different effect on the functional activity of immunocompetent B and T lymphocytes of mice infected intraperitoneally. The injection of live P. aerruginosa PA 103 and B. cepacia 8240 cells resulted in imunosuppression of antibody-forming cells, synthesizing antibodies to heterologous antigens. On the contrary, in the animals infected with B. cepacia 8236 the functional activity of B lymphocytes increased. An increase in the proliferative activity of spleen cells was noted in the presence of T and B mitogens after the infection of mice with P. aeruginosa PA 103 in comparison with B. cepacia 8236 and B. cepacia 8240 which produced a faintly pronounced modulating effect. The pathogenesis mechanisms of infections induced by these microorganisms as well as the development of chronic, persisting forms of the infectious process are discussed.  相似文献   

20.
Pseudomonas aeruginosa and members of the Burkholderia cepacia complex often coexist in both the soil and the lungs of cystic fibrosis patients. To gain an understanding of how these different species affect each other's physiology when coexisting, we performed a screen to identify P. aeruginosa genes that are induced in the presence of Burkholderia: A random gene fusion library was constructed in P. aeruginosa PA14 by using a transposon containing a promoterless lacZ gene. Fusion strains were screened for their ability to be induced in the presence of Burkholderia strains in a cross-streak assay. Three fusion strains were induced specifically by Burkholderia species; all three had transposon insertions in genes known to be iron regulated. One of these fusion strains, containing a transposon insertion in gene PA4467, was used to characterize the inducing activity from Burkholderia: Biochemical and genetic evidence demonstrate that ornibactin, a siderophore produced by nearly all B. cepacia strains, can induce P. aeruginosa PA4467. Significantly, PA4467 is induced early in coculture with an ornibactin-producing but not an ornibactin-deficient B. cepacia strain, indicating that ornibactin can be produced by B. cepacia and detected by P. aeruginosa when the two species coexist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号