首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sock J  Rohringer R  Kang Z 《Plant physiology》1990,94(3):1376-1389
Endo-β-1,3-glucanase activity in intercellular washing fluid (IWF) from leaves of wheat (Triticum aestivum) increased 10-fold 4 days after leaves were infected with the wheat stem rust fungus (Puccinia graminis f.sp. tritici), while exo-β-1,3-glucanase activity remained unchanged at a low level. Heat and ethylene stress had no effect, whereas mercury treatment resulted in a 2-fold increase in endo-β-1,3-glucanase activity. With a new method of activity staining using laminarin-Remazol brilliant blue as substrate in overlay gels, 18 electrophoretic forms of endo-β-1,3-glucanase were detected in IWF from unstressed leaves and up to 24 forms in IWF from stem rust-infected leaves. Most of the increase in β-1,3-glucanase activity and in the number of β-1,3-glucanases after rust infection was due to a nonspecific, stress-related effect on the plant, but two major forms of the enzyme probably originated from the fungus. β-1,3-Glucanase was localized cytochemically with anti-barley-β-1,3-glucanase antibodies. With preembedding labeling, the enzyme was demonstrated on the outside of host and fungal cell walls. Postembedding labeling localized the enzyme in the host plasmalemma and in the domain of host cell walls adjoining the plasmalemma, throughout walls of intercellular hyphal cells and haustoria, in the fungal cytoplasm, and in the extrahaustorial matrix. Cross-reactivity of β-1,3-glucanases from wheat and germinated uredospores of the rust fungus with the anti-barley-β-1,3-glucanase antibodies was confirmed in dot blot assays and on Western blots.  相似文献   

2.
Proteins in intercellular washing fluid (IWF) from noninoculated and stem rust-affected wheat leaves were separated by isoelectric focusing and polyacrylamide gel electrophoresis under nondenaturing conditions, transferred to nitrocellulose membranes, and assayed in situ for peroxidase and glycosidase activity.  相似文献   

3.
In three separate experiments, the upper leaf surface of the fifth formed leaf of wheat cv. Highbury, the fourth and fifth leaves of barley cv. Julia and the third and fourth leaves of oat cv. Mostyn were inoculated in a spore settling tower with wheat brown rust (Puccinia recondita f. sp. tritici), barley brown rust (P. hordei) or oat crown rust (P. coronata f. sp. avenae), respectively. Fewer pustules developed on distal portions of leaves of plants infected with barley yellow dwarf virus (BYDV) than on similar portions of leaves from virus-free plants. There were no significant differences in the number of pustules on proximal leaf portions. In barley and oats, the number of pustules on distal leaf portions was negatively correlated with the amount of yellowing of the leaf areas scored. In wheat, symptoms of BYDV were mild and leaves were little affected by yellowing. The latent period of rust on wheat and oats was not affected by BYDV. In barley, BYDV reduced the latent period of rust on leaf 5, but not on leaf 4, and reduced it on proximal, but not distal, leaf portions. In other experiments, BYDV reduced the yield of wheat and oats by 44% and 66%, respectively, while BYDV-infected barley was almost sterile. The appropriate rust reduced the yield of wheat, barley and oats by 33%, 13% and 86%, respectively. When infected with both BYDV and rust, yield of wheat and oats was reduced by 63% and 91%, respectively. Neither BYDV nor rust affected the percentage crude protein content of wheat grain, nor did rust affect that of barley. In oats, BYDV and rust each significantly increased crude protein of grain, but rust infection of BYDV-infected plants tended to reduce it.  相似文献   

4.
《Experimental mycology》1992,16(4):324-328
Haustoria of the wheat stem rust fungus,Puccinia graminis f.sp.tritici, race 32, were isolated from two different infected wheat cultivars. Yield of haustoria from the highly susceptible wheat cv. “Little Club” was 10 times higher than that of the resistant wheat line “Prelude × Eagle” carrying the Sr26 gene for resistance toP. graminis f.sp.tritici. Tests for the integrity of haustoria using the stain methylene blue showed that up to 91% of the haustoria were undamaged.  相似文献   

5.
Summary Biuret assay, gel electrophoresis and immunochemistry were used to study concentrations, forms and activities of proteins of uredospores of Puccinia graminis Pers. f. sp. tritici, in healthy wheat leaves, wheat leaves that had been inoculated with incompatible races of stem rust and leaves which had become rusted.The soluble proteins of primary leaves increased by 25–117% following infection by compatible races of stem rust. There was a corresponding decrease of proteins in uninfected younger leaves. Infection by an incompatible strain of rust led to a temporary 29% increase in soluble proteins.Immunoelectrophoresis and gel electrophoresis of infected leaves showed the presence in them of the forms of malate dehydrogenase, glucose-6-phosphate dehydrogenase, catalase and -amylase characteristic of the rust fungus. In the infected leaves, the activity of certain bands of host glucose-6-phosphate dehydrogenase and catalase changed with the development of the pathogen; the malate dehydrogenase and -amylase of the host were unaffected. In leaves inoculated with an incompatible race there were no obvious changes of any of these enzymes.  相似文献   

6.
When highly resistant wheat (Triticum aestivum L.) varieties are infected by an avirulent race of the stem rust fungus (Puccinia graminis Pers. f. sp. tritici Erics. and E. Henn.), penetrated host cells undergo rapid necrotization. This hypersensitive cell death is correlated with cellular lignification which efficiently restricts further fungal growth. Three competitive inhibitors of phenylalanine ammonia-lyase, the first enzyme of the general phenylpropanoid pathway and, thus, of lignin biosynthesis, namely α-aminooxyacetate, α-aminooxy-β-phenylpropionic acid, and (1-amino-2-phenylethyl)phosphonic acid, and two highly specific irreversible suicide inhibitors of the lignification-specific enzyme cinnamyl-alcohol dehydrogenase, namely N(O-aminophenyl)sulfinamoyl-tertiobutyl acetate and N(O-hydroxyphenyl)sulfinamoyl-tertiobutyl acetate, were applied to genetically resistant wheat plants prior to inoculation with stem rust. Treatment with any of these inhibitors decreased the frequency of lignified necrotic host cells and concomitantly led to increased fungal growth. The cinnamyl-alcohol dehydrogenase inhibitors were generally more effective than the phenylalanine ammonia-lyase inhibitors, occasionally allowing some sporulation to occur on the resistant wheat leaves. These results clearly point to a causal relationship between the formation of lignin precursors and the resistance of wheat to stem rust.  相似文献   

7.
8.
9.
Puccinia striiformis f. sp. tritici (Pst), the causal fungus of wheat stripe rust, was previously reported to be infected by Lecanicillium lecanii, Microdochium nivale and Typhula idahoensis. Here, we report a novel hyperparasite on Pst. This hyperparasitic fungus was identified as Cladosporium cladosporioides (Fresen.) GA de Vries based on morphological characteristics observed by light and scanning electron microscopy together with molecular data. The hyperparasite reduced the production and viability of urediniospores and, therefore, could potentially be used for biological control of wheat stripe rust.  相似文献   

10.
白鹏飞  杨倩  康振生  郭军 《西北植物学报》2012,32(11):2151-2156
通过电子克隆与RT-PCR相结合的方法,在条锈菌诱导的小麦叶片中克隆获得1个新的LSD1型锌指蛋白基因TaLOL2,并用qRT-PCR技术分析了其转录表达特征。结果显示:(1)小麦锌指蛋白基因TaLOL2的cDNA全长1 095bp,编码179个氨基酸。(2)TaLOL2含有3个典型的zf-LSD1型(CxxCxRxxLMYxxGASxVxCxxC)保守结构域,与水稻、拟南芥、大麦等植物LSD1型锌指蛋白序列具有高度相似性,其中与水稻OsLOL2相似度达86.0%。(3)进化树分析表明,TaLOL2与水稻、拟南芥和大麦中部分含有3个保守zf-LSD1锌指结构的基因亲缘关系较近,而与其它包含不同数目的zf-LSD1锌指结构的基因亲缘关系较远。(4)qRT-PCR定量分析表明,TaLOL2在条锈菌侵染前期呈上调表达,在亲和及非亲和反应中差异表达。研究表明,TaLOL2参与了条锈菌诱导的小麦抗病防卫反应,很可能作为正调控因子参与了小麦-条锈菌非亲和互作中对条锈菌的抗性信号途径。  相似文献   

11.
THE dikaryophase of the wheat stem rust fungus, Puccinia graminis (Pers.) f. sp. tritici(Erikss. and E. Henn.), can now be grown on artificial medium1,2; but cultures of this organism initiated from heavy inocula of urediospores usually sporulate or stale after 2-4 weeks and the growth period cannot be appreciably prolonged by subculture onto fresh medium2,3. Scott and Maclean3, however, referred to the discovery of continuously subculturable isolates of P. graminis tritici. These were obtained by incubating urediospores on liquid nutrient medium, but Scott and Maclean offered no information which might explain the distinctive behaviour of the isolates. We have obtained lines of P. graminis tritici from race 126-Anz 6,7 (culture 70165) which will grow continuously on artificial medium. This communication describes how these lines were obtained and presents evidence that their mycelia are composed of diploid cells.  相似文献   

12.
13.
Five races of Puccinia graminis f. sp. tritici cultured on wheat and barley leaves in two nutrient solutions were studied for teliospore formation by subjecting them to varying treatments of temperature and light. The early appearance as well as a high percentage of teliospore formation occurred in 100 ppm benzimidazole solution on wheat or barley leaves kept at 30°C and 500 footcandles of light. The feasibility of maintaining and multiplying races of Puccinia graminis f. sp. tritici in continuous cultures on detached leaves depends on various factors, the most important being the onset of the teliostage of the fungus. The appearance of the teliospore denotes the culmination of the sporophytic or repeating stage of the wheat rusts. In this paper, some factors that influence the production of teliospores by certain races of Puccinia graminis tritici in detached leaves are discussed.  相似文献   

14.
Leaf rust (Puccinia triticina Eriks.), stripe rust (Puccinia striiformis f. tritici Eriks.) and stem rust (Puccinia graminis f. sp. tritici) cause major production losses in durum wheat (Triticum turgidum L. var. durum). The objective of this research was to identify and map leaf, stripe and stem rust resistance loci from the French cultivar Sachem and Canadian cultivar Strongfield. A doubled haploid population from Sachem/Strongfield and parents were phenotyped for seedling reaction to leaf rust races BBG/BN and BBG/BP and adult plant response was determined in three field rust nurseries near El Batan, Obregon and Toluca, Mexico. Stripe rust response was recorded in 2009 and 2011 nurseries near Toluca and near Njoro, Kenya in 2010. Response to stem rust was recorded in field nurseries near Njoro, Kenya, in 2010 and 2011. Sachem was resistant to leaf, stripe and stem rust. A major leaf rust quantitative trait locus (QTL) was identified on chromosome 7B at Xgwm146 in Sachem. In the same region on 7B, a stripe rust QTL was identified in Strongfield. Leaf and stripe rust QTL around DArT marker wPt3451 were identified on chromosome 1B. On chromosome 2B, a significant leaf rust QTL was detected conferred by Strongfield, and at the same QTL, a Yr gene derived from Sachem conferred resistance. Significant stem rust resistance QTL were detected on chromosome 4B. Consistent interactions among loci for resistance to each rust type across nurseries were detected, especially for leaf rust QTL on 7B. Sachem and Strongfield offer useful sources of rust resistance genes for durum rust breeding.  相似文献   

15.
Samples from 300 – 400 randomly selected winter wheat crops were taken annually at growth stage 73 – 75 from 1976 to 1988 with the exception of 1983 and 1984. The number of samples from each region was proportional to the area of wheat grown in each region. The percentage of the area of the top two leaves affected by diseases, the severity of ear and stem base diseases and, in 6 years, the severity of take-all were recorded. Septoria tritici and Septoria nodorum were, on average, the most severe of the foliar diseases and eyespot (Pseudocercosporella herpotrichoides) was the most severe of the stem base diseases. Regional differences in levels of S. tritici, brown rust, sharp eyespot and nodal fusarium were significant. Cultivar resistance affected disease severity, and previous cropping patterns particularly affected take-all and eyespot. Eyespot and sharp eyespot were less severe in late- than in early-sown crops. The percentage of crops treated with a fungicidal spray increased from 14% in 1976 to over 90% between 1983 and 1985. Use of benzimidazole fungicides applied at growth stage 31 declined, while use of morpholines from flag leaf emergence onwards increased between 1985 and 1988.  相似文献   

16.
Photosynthetic and respiratory activities have been measured in leaves of Hordeum vulgare L. var. Manchuria (barley) after infection with Erysiphe graminis var. hordei (powdery mildew). Two isogenic lines, one resistant to infection and the other highly susceptible, were examined.

These isogenic lines showed very different physiological responses following infection. Photosynthesis and the chlorophyll content of resistant leaves was unaffected by infection. Respiration increased slightly and this was accompanied by small increases in activities of enzymes of glycolysis, the pentose-P pathway and the tricarboxylic acid cycle.

The infection of susceptible leaves resulted in a slight increase in photosynthesis 48 hours after inoculation, but subsequently there was a progressive decrease in the photosynthesis of these leaves compared with that of noninfected leaves. The capacity of infected leaves for partial reactions of photosynthesis such as the Hill reaction and the photoreduction of nicotinamide adenine dinucleotide phosphate (NADP1) decreased during the later stages of infection. The levels of chlorophyll, NADPH-diaphorase and aldolase also declined. There was no detectable difference in the respiration of infected and noninfected leaves until 48 hours after inoculation. After this time, the infected leaves showed a higher respiration, the maximum difference occurring about 144 hours after inoculation. The respiratory increase was not accompanied by significant changes in the levels of enzymes of glycolysis and the tricarboxylic acid cycle with the exception of malate dehydrogenase which was lower in infected leaves. In contrast, the activities of glucose-6-P dehydrogenase and 6-P-gluconate dehydrogenase showed changes similar to that observed for respiration.

The respiration and the activities of glucose-6-P dehydrogenase and 6-P-gluconate dehydrogenase did not increase in infected leaves of etiolated plants, even when excellent growth of the fungus was established by growing the plants in White's basal medium supplemented with sucrose. The respiration of a susceptible mutant barley (the yellow-green virescent mutant of the variety Himalaya) when grown in the light at 11° was not changed by infection although the characteristic respiratory rise occurred in plants grown at 15°. At the lower temperature chloroplasts fail to develop in this mutant, although development is normal at 15°.

It is suggested that the pathogen is not directly responsible for the increase in respiration in green leaves, rather that this is a response in the host cells to a loss of photosynthetic capacity.

  相似文献   

17.
Germination of uredospores of the wheat stem rust fungus (Puccinia graminis f. sp. tritici) on a Millipore membrane and differentiation of sporelings into hyphae and infection structures induced by a heat (30 °C) shock treatment are described. Development of infection structures on an agar medium was generally similar to those formed in vivo although some variations were also observed. Anastomoses among branches of the same hypha and between different hyphae were common. Uredospores germinated on Millipore membranes without the heat shock treatment, produced only undifferentiated long germ tubes; however, differentiation occurred when the spores were germinated on the agar medium by subjecting to the non-differentiating treatment (20 °C/3.5 hr) and incubating at 24 °C.  相似文献   

18.
MeOH and water extracts were obtained from 16 species of infected leaves with rust fungi belonging to 18 species in 6 families: Pucciniaceae, Melampsoraceae, Coleosporiaceae, Pileolariaceae, Phragmidiaceae, and Phakopsoraceae. All the extracts of rust-infected plants with telia showed the teliospore-inducing activity for wheat leaf rust (Puccinia recondita f. sp. tritici).  相似文献   

19.
Hippe-Sanwald  S.  Marticke  K. H.  Kieliszewski  M. J.  Somerville  S. C. 《Protoplasma》1994,178(3-4):138-155
Summary Immunoelectron microscopy was used to determine the subcellular distribution of threonine-hydroxyproline-rich glycoprotein (THRGP) epitopes in host-parasite interactions between obligate, biotrophic fungi and cereals. Infection sites of stem rust (Puccinia graminis f. sp.tritici) and leaf rust (Puccinia recondita) on primary leaves of wheat (Triticum aestivum), as well as of powdery mildew (Erysiphe graminis f. sp.hordei) on coleoptiles of barley (Hordeum vulgare), wete probed with a polyclonal antiserum to maize THRGP. A few immunogold particles were found over the cell walls of wheat mesophyll tissue and barley coleoptile epidermis. Unlike previous examples in dicot plants, no enhanced accumulation of THRGP was observed in cereal cell walls adjacent to sites of pathogen ingress. Instead, the most pronounced accumulation of THRGP-like molecules occurred over the extrahaustorial matrix in both incompatible and compatible plant-pathogen interactions. For powdery mildew of barley, immunogold staining was distinctly increased over the center of the penetration sites; however, no labeling was found over papillae that formed during incompatible and compatible interactions. In addition, no cross-reactivity of the anti-THRGP antiserum with intercellularly growing rust pathogens was observed. The highly localized deposition of THRGP-like molecules in the extrahaustorial matrix suggests that the host plant establishes a modified barrier between itself and the pathogen.Abbreviations C chloroplast - EC plant epidermal cell - EM extrahaustorial membrane - EMA extrahaustorial matrix - GO Golgi body - GRP glycine-rich protein - HP high pressure - HRGP hydroxyprolinerich glycoprotein - Hyp hydroxyproline - LT low temperature - PBS phosphate-buffered saline - PBST PBS with Tween-20 - THRGP threonine-hydroxyproline-rich glycoprotein - VA vesicular arbuscular  相似文献   

20.
In wheat leaves infected with yellow rust (Puccinia striiformis West.) and in barley leaves infected with powdery mildew (Erysiphe graminis DC.) the effect of respiratory inhibitorsin vivo and terminal oxidases activityin vitro were studied. In the experiments the first leaves of seedlings grown in glasshouse were used. The influence of infection was shown by activation of respiration and terminal oxidases (Fe- and Cu-oxidases), first of all cytochrome oxidase and peroxidase. There might be involved also the increased role of ascorbic acid oxidase and phenolase. Peroxidase activation was found to be much higher in susceptible varieties than in resistant ones. Neither in wheat nor in barley the catecholase activity was detected; on the contrary the enzymatic oxidation of floroglucine was found to be also in barley leaves, the intensity of which being dependend on resistance or susceptibility to powdery mildew. Thus, it is not excluded, that in contact establishing between obligate parasite and the host the significant role may be played by specific phenolase and phenolic substances. It suggests itself, that due to the participating in ATP-formation the cytochrome system in terminal oxidation of cereals, infected with obligate parasites, may have centrale position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号