首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ADP-glucose pyrophosphorylase (AGPase), a key allosteric enzyme involved in higher plant starch biosynthesis, is composed of pairs of large (LS) and small subunits (SS). Current evidence indicates that the two subunit types play distinct roles in enzyme function. Recently the heterotetrameric structure of potato AGPase has been modeled. In the current study, we have applied the molecular mechanics generalized born surface area (MM-GBSA) method and identified critical amino acids of the potato AGPase LS and SS subunits that interact with each other during the native heterotetrameric structure formation. We have further shown the role of the LS amino acids in subunit-subunit interaction by yeast two-hybrid, bacterial complementation assay and native gel. Comparison of the computational results with the experiments has indicated that the backbone energy contribution (rather than the side chain energies) of the interface residues is more important in identifying critical residues. We have found that lateral interaction of the LS-SS is much stronger than the longitudinal one, and it is mainly mediated by hydrophobic interactions. This study will not only enhance our understanding of the interaction between the SS and the LS of AGPase, but will also enable us to engineer proteins to obtain better assembled variants of AGPase which can be used for the improvement of plant yield.  相似文献   

2.
Hwang SK  Salamone PR  Okita TW 《FEBS letters》2005,579(5):983-990
The higher plant ADP-glucose pyrophosphorylase (AGPase) is a heterotetramer consisting of two regulatory large subunits (LSs) and two catalytic small subunits (SSs). To further characterize the roles of these subunits in determining enzyme function, different combinations of wildtype LS (LWT) and variant forms (LUpReg1, LM345) were co-expressed with wildtype SS (SWT) and variant forms (STG-15 and Sdevo330) and their enzyme properties compared to those measured for the heterotetrameric wildtype enzyme and SS homotetrameric enzymes. Analysis of the allosteric regulatory properties of the various enzymes indicates that although the LS is required for optimal activation by 3-phosphoglyceric acid and resistance to Pi, the overall allosteric regulatory and kinetic properties are specified by both subunits. Our results show that the regulatory and kinetic properties of AGPase are not simply due to the LS modulating the properties of the SS but, instead, are a product of synergistic interaction between the two subunits.  相似文献   

3.
ADP-glucose pyrophosphorylase, a key regulatory enzyme of starch biosynthesis, is composed of a pair of catalytic small subunits (SSs) and a pair of catalytically disabled large subunits (LSs). The N-terminal region of the LS has been known to be essential for the allosteric regulatory properties of the heterotetrameric enzyme. To gain further insight on the role of this region and the LS itself in enzyme function, the six proline residues found in the N-terminal region of the potato tuber AGPase were subjected to scanning mutagenesis. The wildtype and various mutant heterotetramers were expressed using our newly developed host-vector system, purified, and their kinetic parameters assessed. While P(17)L, P(26)L, and P(55)L mutations only moderately affected the kinetic properties, P(52)L and P(66)L gave rise to significant and contrasting changes in allosteric properties: P(66)L enzyme displayed up-regulatory properties toward 3-PGA while the P(52)L enzyme had down-regulatory properties. Unlike the other mutants, however, various mutations at P(44) led to only moderate changes in regulatory properties, but had severely impaired catalytic rates, apparent substrate affinities, and responsiveness to metabolic effectors, indicating Pro-44 or the LS is essential for optimal catalysis and activation of the AGPase heterotetramer. The catalytic importance of the LS is further supported by photoaffinity labeling studies, which revealed that the LS binds ATP at the same efficiency as the SS. These results indicate that the LS, although considered having no catalytic activity, may mimic many of the catalytic events undertaken by the SS and, thereby, influences net catalysis of the heterotetrameric enzyme.  相似文献   

4.
ADP-glucose pyrophosphorylase (AGPase) is a key regulatory enzyme of bacterial glycogen and plant starch synthesis as it controls carbon flux via its allosteric regulatory behavior. Unlike the bacterial enzyme that is composed of a single subunit type, the plant AGPase is a heterotetrameric enzyme (alpha2beta2) with distinct roles for each subunit type. The large subunit (LS) is involved mainly in allosteric regulation through its interaction with the catalytic small subunit (SS). The LS modulates the catalytic activity of the SS by increasing the allosteric regulatory response of the hetero-oligomeric enzyme. To identify regions of the LS involved in binding of effector molecules, a reverse genetics approach was employed. A potato (Solanum tuberosum L.) AGPase LS down-regulatory mutant (E38A) was subjected to random mutagenesis using error-prone polymerase chain reaction and screened for the capacity to form an enzyme capable of restoring glycogen production in glgC(-) Escherichia coli. Dominant mutations were identified by their capacity to restore glycogen production when the LS containing only the second site mutations was co-expressed with the wild-type SS. Sequence analysis showed that most of the mutations were decidedly nonrandom and were clustered at conserved N- and C-terminal regions. Kinetic analysis of the dominant mutant enzymes indicated that the K(m) values for cofactor and substrates were comparable with the wild-type AGPase, whereas the affinities for activator and inhibitor were altered appreciably. These AGPase variants displayed increased resistance to P(i) inhibition and/or greater sensitivity toward 3-phosphoglyceric acid activation. Further studies of Lys-197, Pro-261, and Lys-420, residues conserved in AGPase sequences, by site-directed mutagenesis suggested that the effectors 3-phosphoglyceric acid and P(i) interact at two closely located binding sites.  相似文献   

5.
ADP-glucose pyrophosphorylase, a key allosteric enzyme involved in higher plant starch biosynthesis, is composed of pairs of large (LS) and small subunits (SS). Current evidence indicates that the two subunit types play distinct roles in enzyme function. The LS is involved in mainly allosteric regulation through its interaction with the catalytic SS. Recently the crystal structure of the SS homotetramer has been solved, but no crystal structure of the native heterotetrameric enzyme is currently available. In this study, we first modeled the three-dimensional structure of the LS to construct the heterotetrameric enzyme. Because the enzyme has a 2-fold symmetry, six different dimeric (either up-down or side-by-side) interactions were possible. Molecular dynamics simulations were carried out for each of these possible dimers. Trajectories obtained from molecular dynamics simulations of each dimer were then analyzed by the molecular mechanics/Poisson-Boltzmann surface area method to identify the most favorable dimers, one for up-down and the other for side-by-side. Computational results combined with site directed mutagenesis and yeast two hybrid experiments suggested that the most favorable heterotetramer is formed by LS-SS (side-by-side), and LS-SS (up-down). We further determined the order of assembly during the heterotetrameric structure formation. First, side-by-side LS-SS dimers form followed by the up-down tetramerization based on the relative binding free energies.  相似文献   

6.
The higher plant ADP-glucose pyrophosphorylase is a heterotetramer consisting of two subunit types, which have evolved at different rates from a common ancestral gene. The potato tuber small subunit (SS) displays both catalytic and regulatory properties, whereas the exact role of the large subunit (LS), which contains substrate and effector binding sites, remains unresolved. We identified a mutation, S302N, which increased the solubility of the recombinant potato tuber LS and, in turn, enabling it to form a homotetrameric structure. The LS302N homotetramer possesses very little enzyme activity at a level 100-fold less than that seen for the unactivated SS homotetramer. Unlike the SS enzyme, however, the LS302N homotetramer enzyme is neither activated by the effector 3-phosphoglycerate nor inhibited by P(i). When combined with the catalytically silenced SS, S D143N, however, the LS302N-containing enzyme shows significantly enhanced catalytic activity and restored 3-PGA activation. This unmasking of catalytic and regulatory potential of the LS is conspicuously evident when the activities of the resurrected L(K41R.T51K.S302N) homotetramer are compared with its heterotetrameric form assembled with S D143N. Overall, these results indicate that the LS possesses catalytic and regulatory properties only when assembled with SS and that the net properties of the heterotetrameric enzyme is a product of subunit synergy.  相似文献   

7.
Kavakli IH  Kato C  Choi SB  Kim KH  Salamone PR  Ito H  Okita TW 《Planta》2002,215(3):430-439
ADP-glucose pyrophosphorylase (AGPase), a key enzyme in starch biosynthesis of higher plants, consists of a pair of regulatory large (LS) and catalytically small (SS) subunits. In plants, these subunits are coded by multiple genes resulting in the formation of tissue-specific enzyme forms, which are differentially regulated during plant growth and development. Some AGPase isoforms differ in catalytic and regulatory properties as well as intracellular location. In an effort to gain a better understanding of the role of the leaf AGPase in carbon partitioning and its effect on plant productivity, the Arabidopsis leaf AGPase containing the mature forms of the SS and LS was expressed in a heterologous expression system and characterized enzymatically. The Arabidopsis recombinant AGPase had kinetic values for 3-phosphoglyceric acid, glucose-1-phosphate and Mg(2+) similar to those of the native enzyme. As the N-terminus of the LS has been suggested to be involved in enzyme function, the length of the N-terminal region was extended or shortened. Of the five modified LSs analyzed, only the T5 form lacking six residues of the mature N-terminus was able to form detectable levels of enzyme activity, indicating that the N-terminal region is critical for enzyme function. Two up-regulatory LS mutations that allosterically activate the potato enzyme, a stem isoform, were introduced into the corresponding Arabidopsis LS sequences and co-expressed with wild-type SS. Both modified enzymes showed up-regulatory properties, indicating that these specific residue changes were also operational in the leaf isoform.  相似文献   

8.
In an attempt to obtain facile methods to purify the heterotetrameric ADP-glucose pyrophosphorylase (AGPase), polyhistidine tags were attached to either the large (LS) or small (SS) subunits of this oligomeric enzyme. The addition of polyhistidine tag to the N-terminus of the LS or SS and co-expression with its unmodified counterpart subunit resulted in substantial induction of enzyme activity. In contrast, attachment of a polyhistidine-containing peptide through the use of a commercially available pET vector or addition of polyhistidine tags to the C-terminal ends of either subunit resulted in poor expression and/or production of enzyme activity. Preliminary experiment showed that these polyhistidine N-terminal-tagged enzymes interacted with Ni-NTA-agarose, indicating that immobilized metal affinity chromatography (IMAC) would be useful for efficient purification of the heterotetrameric AGPases. When ion-exchange chromatography step was employed prior to the IMAC, the polyhistidine-tagged AGPases were purified to near homogeneity. Comparison of kinetic parameters between AGPases with and without the polyhistidine tags revealed that attachment of the polyhistidine did not alter the allosteric and catalytic properties of the enzymes. These results indicate that polyhistidine tags will be useful for the rapid purification of preparative amounts of AGPases for biochemical and physical studies.  相似文献   

9.
ADP-glucose pyrophosphorylase (AGPase), a key enzyme involved in higher plant starch biosynthesis, is composed of pairs of large (LS) and small subunits (SS). Ample evidence has shown that the AGPase catalyzes the rate limiting step in starch biosynthesis in higher plants. In this study, we compiled detailed comparative information about ADP glucose pyrophosphorylase in selected plants by analyzing their structural features e.g. amino acid content, physico-chemical properties, secondary structural features and phylogenetic classification. Functional analysis of these proteins includes identification of important 10 to 20 amino acids long motifs arise because specific residues and regions proved to be important for the biological function of a group of proteins, which are conserved in both structure and sequence during evolution. Phylogenetic analysis depicts two main clusters. Cluster I encompasses large subunits (LS) while cluster II contains small subunits (SS).  相似文献   

10.
Xie B  Mazloum N  Liu L  Rahmeh A  Li H  Lee MY 《Biochemistry》2002,41(44):13133-13142
Mammalian DNA polymerase delta was originally characterized as a tightly associated heterodimer consisting of the catalytic subunit, p125, and the p50 subunit. Recently, two additional subunits, the third (p68) and fourth subunits (p12), have been identified. The heterotetrameric human pol delta complex was reconstituted by overexpression of the four subunits in Sf9 cells, followed by purification to near-homogeneity using FPLC chromatography. The properties of the four-subunit enzyme were shown to be functionally indistinguishable from those of pol delta isolated from calf thymus. The physicochemical properties of both the reconstituted heterotetramer and the heterodimer of the p125 and p50 subunits were examined by gel filtration and glycerol gradient ultracentrifugation. These studies show quite clearly that the heterodimer and heterotetramer complexes do not behave in solution as dimeric structures. This issue is of significance because several studies of the yeast pol delta complexes have indicated that the third subunit is able to bring about the dimerization of the pol delta complex. The heterodimer is only weakly stimulated by PCNA, whereas the heterotetramer is strongly stimulated to a level with a specific activity comparable to that of the calf thymus enzyme. These results resolve earlier, conflicting reports on the response of the heterodimer to PCNA. Nevertheless, the heterodimer does have some ability to interact functionally with PCNA, consistent with evidence that the p125 subunit itself has an ability to interact with PCNA. The functional interaction of PCNA with the pol delta complex may likely involve multiple contacts.  相似文献   

11.
12.
ADP-glucose pyrophosphorylase (AGPase), a key regulatory enzyme in higher plant starch biosynthesis, is composed of a pair of large and small subunits (alpha(2)beta(2)). Current evidence suggests that the large subunit has primarily a regulatory function, while the small subunit has both regulatory and catalytic roles. To define the structure-function relationship of the large subunit (LS), the LS of potato AGPase was subjected to chemical mutagenesis and coexpressed with the wild-type (WT) small subunit (SS) cDNA in an AGPase defective Escherichia coli strain. An LS mutant (M143) was isolated, which accumulated very low levels of glycogen compared to the WT recombinant AGPase, but maintained normal catalytic activity when assayed under saturating conditions. Sequence analysis revealed that M143 has a single amino acid change, V463I, which lies adjacent to the C-terminus. This single mutation had no effect on the Km for ATP and Mg(2+), which were similar to the WT enzyme. The K(m) for glucose 1-P, however, was sixfold higher than the WT enzyme. These results suggest that the LS plays a role in binding glucose 1-P through its interaction with the SS.  相似文献   

13.
Gómez-Casati DF  Iglesias AA 《Planta》2002,214(3):428-434
ADP-glucose pyrophosphorylase (AGPase; EC 2.7.7.27) was purified and characterized from two wheat (Triticum aestivum L.) tissues: leaf and endosperm. The leaf enzyme, purified over 1,300-fold, was found to be a heterotetramer composed of subunits of 51 and 54 kDa and possessing regulatory properties typical of AGPases from photosynthetic tissues, being mainly regulated by 3-phosphoglycerate (activator; A0.5=0.01 mM) and orthophosphate (inhibitor; I0.5=0.2 mM). Conversely, the enzyme from wheat endosperm was insensitive to activation by 3-phosphoglycerate and other metabolites. It was, however, inhibited by orthophosphate (I0.5=0.7 mM), ADP (I0.5=3.2 mM) and fructose-1,6-bisphosphate (0.5 = 1.5 mM). All of these inhibitory actions were reversed by 3-phosphoglycerate and fructose-6-phosphate. The endosperm enzyme was found to be a heterotetramer composed of subunits of 52 and 53 kDa, which were recognized by antiserum raised to spinach leaf AGPase. The results suggest that wheat endosperm AGPase possesses distinctive regulatory properties that are relevant in vivo.  相似文献   

14.
ADP ?C glucose pyrophosphorylase (AGPase) is a key enzyme for starch synthesis in plants. Heterotetrameric plant AGPase is encoded by two genes, Shrunken-2 (Sh2) and Brittle-2 (Bt2). The Sh2 gene encodes regulatory larger subunit and the Bt2 gene encodes smaller subunit having catalytic properties. A specific mutation in Sh2 gene involving insertion of six nucleotides, without changing the reading frame, resulted in the insertion of two additional amino acid residues serine and tyrosine at specific position at carboxyl end and also in an increase in seed weight up to 11?C17%. No increase in seed weight with the same insertion in larger subunit of AGPase enzyme in rice was observed even though the rice and maize subunits have 93% of sequence similarity. In this study, the predicted 3D-structures of larger subunit of normal as well as mutated AGPase in maize and rice, were analyzed and superposed. The segment of six amino acid residues long secondary structure just before the site of insertion of additional amino acids (serine and tyrosine) got reduced in case of mutated maize but not in mutated rice. Therefore, the six residue sequence and corresponding subtle secondary structural difference might be the key factors for functional disparity of engineered larger subunits in the two crops.  相似文献   

15.
Rhodobacter capsulatus xanthine dehydrogenase (XDH) is a molybdo-flavoprotein that is highly homologous to the homodimeric mammalian xanthine oxidoreductase. However, the bacterial enzyme has an (alphabeta)(2) heterotetrameric structure, and the cofactors were identified to be located on two different polypeptides. We have analyzed the mechanism of cofactor insertion and subunit assembly of R. capsulatus XDH, using engineered subunits with appropriate substitutions in the interfaces. In an (alphabeta) heterodimeric XDH containing the XdhA and XdhB subunits, the molybdenum cofactor (Moco) was shown to be absent, indicating that dimerization of the (alphabeta) subunits has to precede Moco insertion. In an (alphabeta)(2) XDH heterotetramer variant, including only one active Moco-center, the active (alphabeta) site of the chimeric enzyme was shown to be fully active, revealing that the two subunits act independent without cooperativity. Amino acid substitutions at two cysteine residues coordinating FeSI of the two [2Fe-2S] clusters of the enzyme demonstrate that an incomplete assembly of FeSI impairs the formation of the XDH (alphabeta)(2) heterotetramer and, thus, insertion of Moco into the enzyme. The results reveal that the insertion of the different redox centers into R. capsulatus XDH takes place sequentially. Dimerization of two (alphabeta) dimers is necessary for insertion of sulfurated Moco into apo-XDH, the last step of XDH maturation.  相似文献   

16.
Adenosine diphosphate glucose pyrophosphorylase (AGPase; EC 2.7.7.27) synthesizes the starch precursor, ADP-glucose. It is a rate-limiting enzyme in starch biosynthesis and its activation by 3-phosphoglyceric acid (3PGA) and/or inhibition by inorganic phosphate (Pi) are believed to be physiologically important. Leaf, tuber and cereal embryo AGPases are highly sensitive to these effectors, whereas endosperm AGPases are much less responsive. Two hypotheses can explain the 3PGA activation differences. Compared to leaf AGPases, endosperm AGPases (i) lack the marked ability to be activated by 3PGA or (ii) they are less dependent on 3PGA for activity. The absence of purified preparations has heretofore negated answering this question. To resolve this issue, heterotetrameric maize ( Zea mays L.) endosperm and potato ( Solanum tuberosum L.) tuber AGPases expressed in Escherichia coli were isolated and the relative amounts of enzyme protein were measured by reaction to antibodies against a motif resident in both small subunits. Resulting reaction rates of both AGPases are comparable in the presence but not in the absence of 3PGA when expressed on an active-protein basis. We also placed the potato tuber UpReg1 mutation into the maize AGPase. This mutation greatly enhances 3PGA sensitivity of the potato AGPase but it has little effect on the maize AGPase. Thirdly, lysines known to bind 3PGA in potato tuber AGPase, but missing from the maize endosperm AGPase, were introduced into the maize enzyme. These had minimal effect on maize endosperm activity. In conclusion, the maize endosperm AGPase is not nearly as dependent on 3PGA for activity as is the potato tuber AGPase.  相似文献   

17.
Heteromeric amino acid transporters are composed of a catalytic light subunit and a heavy subunit linked by a disulfide bridge. We analyzed the structural and functional units of systems b0,+ and xC-, formed by the heterodimers b0,+ AT-rBAT and xCT-4F2hc, respectively. Blue Native gel electrophoresis, cross-linking, and fluorescence resonance energy transfer in vivo indicate that system b0,+ is a heterotetramer [b0,+ AT-rBAT]2, whereas xCT-4F2hc seems not to stably or efficiently oligomerize. However, substitution of the heavy subunit 4F2hc for rBAT was sufficient to form a heterotetrameric [xCT-rBAT]2 structure. The functional expression of concatamers of two light subunits (which differ only in their sensitivity to inactivation by a sulfhydryl reagent) suggests that a single heterodimer is the functional unit of systems b0,+ and xC-.  相似文献   

18.
马铃薯AGPase大小亚基功能研究   总被引:2,自引:1,他引:1  
马铃薯 1,6 二磷酸腺苷葡萄糖焦磷酸化酶 (AGPase)是淀粉合成的限速酶 ,该酶有大、小两个亚基形成异源四聚体。总结了迄今为止已克隆的马铃薯AGPase大、小亚基编码基因、小亚基和底物结合位点的识别、以及大亚基异构调控因子结合位点识别的研究结果 ,提出了大小亚基非自然重组是深入研究AGPase的途径 ,建立体内条件下高效可靠代谢调控研究手段是AGPase研究所必需的。  相似文献   

19.
Paenibacillus polymyxa β-glucosidase B (BglB), belongs to a GH family 1, is a monomeric enzyme that acts as an exo-β-glucosidase hydrolysing cellobiose and cellodextrins of higher degree of polymerization using retaining mechanism. A molecular dynamics (MD) simulation was performed at 300 K under periodic boundary condition for 5 ns using the complexes structure obtained from previous docking study, namely BglB-Beta-d-glucose and BglB-Cellobiose. From the root-mean-square deviation analysis, both enzyme complexes were reported to deviate from the initial structure in the early part of the simulation but it was stable afterwards. The root-mean-square fluctuation analysis revealed that the most flexible regions comprised of the residues from 26 to 29, 43 to 53, 272 to 276, 306 to 325 and 364 to 367. The radius of gyration analysis had shown the structure of BglB without substrate became more compact towards the end of the simulation compare to other two complexes. The residues His122 and Trp410 were observed to form stable hydrogen bond with occupancy higher than 10%. In conclusion, the behaviour of BglB enzyme towards the substrate binding was successfully explored via MD simulation approaches.  相似文献   

20.
The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amy- lopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch bio- synthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm de- velopment, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amy- lopectin changed continually during the development of rice grains and varied between two rice culti- vars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号