首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PolytronR and Dounce homogenizers have been evaluated for preparation of homogenates of rat liver prior to isolation of subcellular fractions by differential centrifugation. Marker enzymes used to evaluate the subcellular fractions included cytochrome oxidase, monoamine oxidase, D-amino acid oxidase, acid phosphatase, glucose-6-phosphatase, ethyl morphine demethylase, and lactate dehydrogenase. No significant difference in the distribution of enzymes (percent recovery or specific activity) was observed between the two methods of homogenization. In addition, there were no significant differences in the ultrastructural appearances and respiratory control ratios of the mitochondrial fractions prepared by the two methods of homogenization.  相似文献   

2.
D-Aspartate oxidase and D-amino acid oxidase were found in high activity in the tissues of representative species of terrestrial gastropods. Analytical subcellular fractionation demonstrated that both of these oxidases co-localised with the peroxisome markers, acyl-CoA oxidase and catalase, in the digestive gland homogenate. Electron microscopy of peak peroxisome fractions showed particles of uniform size with generally well preserved variably electron-dense matrices bounded by an apparently single limiting membrane. Many of the particles exhibited a core region of enhanced electron density. Catalase cytochemistry of peak fractions confirmed the peroxisome identity of the organelles. Peroxisome-enriched subcellular fractions were used to investigate the properties of gastropod D-aspartate oxidase and D-amino acid oxidase activities. The substrate and inhibitor specificities of the two activities demonstrated that two distinct enzymes were present analogous to, but not identical to, the equivalent mammalian peroxisomal enzymes.  相似文献   

3.
The present study was undertaken to separate peroxisomes of the dog kidney cortex by the methods of discontinuous sucrose density gradient and zonal centrifugation. The separation of subcellular particles was evaluated by measuring the activities of reference enzymes, beta-glycerophosphatase for lysosomes, succinate dehydrogenase for mitochondria, glucose-6-phosphatase for microsomes, and catalase and D-amino acid oxidase for peroxisomes. The activities of D-amino acid oxidase and catalase were mainly observed in fractions 1 and 2 (1.6 and 1.7 M sucrose) obtained by discontinuous sucrose density-gradient centrifugation. Small amounts of acid phosphatase and succinate dehydrogenase contaminated these fractions. Considerably higher activity of catalase was determined in the supernatant, while D-amino acid oxidase showed a lower activity. By the method of zonal centrifugation, the highest specific activities of catalase and D-amino acid oxidase were found in fraction 50 (1.73 M sucrose) with no succinate dehydrogenase, acid phosphatase or glucose-6-phosphatase activity. These results suggested that peroxisomes of dog kidney cortex were clearly separated in 1.73 M sucrose from mitochondria, lysosomes and microsomes by zonal centrifugation.  相似文献   

4.
A method for subcellular fractionation of Hymenolepis diminuta using whole worm homogenization and differential centrifugation is presented. Different fractions obtained in this study were screened for the presence of enzymes that serve as markers for plasma membrane, brush border, mitochondria, Golgi complex, endoplasmic reticulum, peroxisomes, lysosomes and cytosol. The purity of fractions was also monitored by transmission electron microscopy. The purity of fractions, particularly the brush border membranes, are compared to those obtained by previous methods for H. diminuta or other tissues.  相似文献   

5.
Summary Carp liver was fractionated by differential and density gradient centrifugation and assayed for enzymes of purine catabolism. While urate oxidase is an excusively peroxisomal enzyme, only a very small percentage of the enzymes xanthine oxidase, allantoinase and allantoicase is associated with subcellular or ganelle fractions. There is no general purine catabolizing subcellular compartment.There is some but not yet conclusive evidence for the assumption that urate oxidase is a membrane bound enzyme.  相似文献   

6.
An improved method for the homogenization and the subsequent subcellular fractionation of hepatocytes isolated from adult rat liver is described.The homogenization procedure developed in the present study allows the preservation of the integrity of subcellular structures, as demonstrated by measurement of the activities of representative enzymes as well as by determination of their latency.The activities of representative marker enzymes, as calculated on subcellular fractions obtained by differential centrifugation of the homogenate, are identical whether the homogenate arises from isolated hepatocytes or from the whole liver.Moreover, there is a close similitude between the kinetic parameters (Km and V) of two microsomal cytochrome P450-dependent mixed-function oxidases, namely aniline hydroxylase and aminopyrine demethylase determined on microsomal preparations obtained either from isolated cells or from the whole liver.  相似文献   

7.
D-Aspartate oxidase (EC 1.4.3.1) was assayed in subcellular fractions and in highly purified peroxisomes from rat, bovine and sheep kidney cortex as well as from rat liver. During all steps of subcellular-fractionation procedures, D-aspartate oxidase co-fractionated with peroxisomal marker enzymes. In highly purified preparations of peroxisomes, the enrichment of D-aspartate oxidase activity over the homogenate is about 32-fold, being comparable with that of the peroxisomal marker enzymes catalase and D-amino acid oxidase. Disruption of the peroxisomes by freezing and thawing released more than 90% of the enzyme activity, which is typical for soluble peroxisomal-matrix proteins. Our findings provide strong evidence that in these tissues D-aspartate oxidase is a peroxisomal-matrix protein and should be added as an additional flavoprotein oxidase to the known set of peroxisomal oxidases.  相似文献   

8.
1. Submandibular glands from four species of mammal have been shown to contain a hyaluronidase active at acid pH; glands from dog and cat had a much higher content of this enzyme than has been found in other sources. 2. Product formation from hyaluronate after 24hr. incubation was almost the same as with testicular hyaluronidase, indicating that the enzyme is an endo-poly-β-hexosaminidase. 3. When submandibular-gland homogenates were fractionated by the scheme developed for liver by de Duve, Pressman, Gianetto, Wattiaux & Appelmans (1955), all the enzymes assayed, except cytochrome c oxidase, were found to occur partly in the soluble fraction and partly in the particulate fractions. Among the particular fractions, the highest specific activity was found in the heavy-mitochondrial fraction for cytochrome c oxidase, in the microsomal fraction for alkaline phosphatase and in the light-mitochondrial fraction for acid phosphatase, β-N-acetylhexosaminidase and acid-active hyaluronidase. 4. Release of the enzyme activity from the sedimentable fractions occurred in 0·1% Triton X-100 or after high-speed homogenization. 5. Stimulation of dogs by pilocarpine was found to decrease the hyaluronidase content of the submandibular gland by 5% and to cause the occurrence of a corresponding amount of acid-active hyaluronidase in the submandibular saliva. 6. The results are discussed in relation to the subcellular localization of hyaluronidase.  相似文献   

9.
After Wistar male rats had been fed on a diet containing 0.25% of ethyl p-chlorophenoxyisobutyrate (CPIB) for 28 days, changes in the enzyme activities and centrifugal behavior of rat liver peroxisomes were investigated. (1) Compared with control rats fed on the basal diet, the catalase [EC 1.11.1.6] activity of rat livers after the administration of CPIB increased about 2.5-fold, while urate oxidase [EC 1.7.3.3] activity did not change significantly. Though D-amino acid oxidase [EC 1.4.3.3] activity markedly decreased to approximately one-sixth of the control, the activity of L-alpha-hydroxy acid oxidase [EC 1.1.3.15], a flavin enzyme like D-amino acid oxidase, was not affected significnatly after the administration of CPIB. (2) When the hepatic cells of CPIB-treated rats were fractionated by differential centrifugation, most of the increase of catalase activity appeared in the supernatant fraction. A decrease in the hepatic D-amino acid oxidase activity of CPIB-treated rats was observed in all the fractions. As for the subcellular distribution of the particle-bound enzymes, the specific activities of both catalase and urate oxidase of CPIB-treated rat livers were higher in the light mitochondrial fraction than in other fractions. (3) Sedimentation patterns in a sucrose density gradient did not show any difference between normal peroxisomers, and CPIB-treated ones. (4) In the case of CPIB-treated rats, studies of their sedimentation patterns by Ficoll density gradient centrifugation showed two main particulate peaks containing both catalase and urate oxidase, although only a single peak was observed in the case of control rats.  相似文献   

10.
Phospholipase C-treated polymorphonuclear leucocytes were used to study the properties of NADPH oxidase activity of stimulated polymorphonuclear leucocytes.A comparison of the effects of phospholipase C treatment of whole leucocytes on the NADPH oxidase activity with other granule enzymes showed that the activities of β-glucuronidase and acid phosphatase were un-affected, whereas the NADPH oxidase activity was stimulated 4-fold and myeloperoxidase was inhibited about 30%.The distribution of NADPH oxidase activity among subcellular fractions of polymorphonuclear leucocyte homogenates was unaffected by phospholipase C whereas the other enzymes were released into the medium in soluble form; β-glucuronidase > acid phosphatase and myeloperoxidase.A number of solubilizing agents and procedures were tested for their ability to release NADPH oxidase activity from granules of phospholipase C-stimulated polymorphonuclear leucocytes. All procedures used caused appreciable release of granule protein but no release of NADPH oxidase activity. Most of the procedures used strongly inhibited the oxidase activity. These results indicate that the enzyme is tightly bound to granule structures and that the integrity of these structures is required for activity.Some of the solubilizing agents used (KCI, guanidium chloride) were very effective in solubilizing myeloperoxidase.The differential response of myeloperoxidase and NADPH oxidase to treatment with phospholipase C or solubilizing procedures suggests that the two activities are not due to the same enzyme. However, definite conclusion cannot be drawn because of the complex nature of myeloperoxidase.It was found necessary to lyse any erythrocytes present as contaminants of polymorphonuclear leucocytes preparations, since hemoglobin was converted to methemoglobin during the NADPH oxidase assay and methemoglobin exhibits appreciable NADPH oxidase activity.  相似文献   

11.
1. The distribution of 3 beta-hydroxy steroid dehydrogenase was examined in the subcellular fractions of granulosa cells collected from the ovary of the domestic fowl. 2. 3 beta-hydroxy steroid dehydrogenase activity was observed in the mitochondrial (4000g for 20min) and microsomal (105 000g for 120min) fractions. 3. Approximately three times more 3 beta-hydroxy steroid dehydrogenase activity was associated with the cytochrome oxidase activity (a mitochondrial marker enzyme) in anteovulatory-follicle granulosa cells than with that of the postovulatory follicle. 4. Comparison of the latent properties of mitochondrial 3 beta-hydroxy steroid dehydrogenase with those of cytochrome oxidase and isocitrate dehydrogenase indicated that 3 beta-hydroxy steroid dehydrogenase is located extramitochondrially. 5. This apparent distribution of 3 beta-hydroxy steroid dehydrogenase is explained on the basis that the mitochondrial activity is either an artefact caused by a redistribution in the subcellular location of the enzyme, occurring during homogenization, or by the existence of a functionally heterogeneous endoplasmic reticulum that yields particles of widely differing sedimentation properties.  相似文献   

12.
Prostaglandins E1 and E2 are specifically bound by particulate fractions from bovine adrenal medulla. The subcellular localization of these binding sites has been investigated by comparing their distribution in subcellular fractions obtained by differential and gradient centrifugation to those of marker enzymes for various organelles. Prostaglandin E2 binding sites were purified about 16-fold with respect to the homogenate in a fraction which was highly enriched in plasma membranes on the basis of the activities of the marker enzymes acetylcholinesterase and calcium-dependent ATPase, which were both purified by about 12-fold in this fraction. The plasma membrane fraction contained relatively low activities of marker enzymes for mitochondria (monoamine oxidase), lysosomes (acid phosphatase), endoplasmic reticulum (glucose-6-phosphatase), Golgi (galactosyl transferase) and chromaffin granule membranes (dopamine β-hydroxylase). The only other fractions enriched in prostaglandin E2 binding sites were those for the endoplasmic reticulum and the Golgi, in which the binding sites were purified about 4-fold and 7-fold, respectively. This is probably due mainly to contamination with plasma membranes, since calcium-dependent ATPase and acetylcholinesterase were each purified to a similar extent in these two fractions. These data suggest that the high-affinity prostaglandin E2 binding sites of the adrenal medulla are localized primarily on the plasma membranes of the medullary cells.  相似文献   

13.
The presence of acyl-CoA synthetase (EC 6.2.1.3) in peroxisomes and the subcellular distribution of beta-oxidation enzymes in human liver were investigated by using a single-step fractionation method of whole liver homogenates in metrizamide continuous density gradients and a novel procedure of computer analysis of results. Peroxisomes were found to contain 16% of the liver palmitoyl-CoA synthetase activity, and 21% and 60% of the enzyme activity was localized in mitochondria and microsomal fractions respectively. Fatty acyl-CoA oxidase was localized exclusively in peroxisomes, confirming previous results. Human liver peroxisomes were found to contribute 13%, 17% and 11% of the liver activities of crotonase, beta-hydroxyacyl-CoA dehydrogenase and thiolase respectively. The absolute activities found in peroxisomes for the enzymes investigated suggest that in human liver fatty acyl-CoA oxidase is the rate-limiting enzyme of the peroxisomal beta-oxidation pathway, when palmitic acid is the substrate.  相似文献   

14.
(1) The distributions of four oxidative enzymes were studied in crude brain fractions. (2) Freeze-thaw cycle treatment and frozen storage of homogenate fractions gave apparent enhancement of cytochrome oxidase and NADH cytochrome c reductase activities. (3) Deoxycholate released cytochrome oxidase and NADH cytochrome c reductase activities from low-speed precipitates. The NADH diaphorase was enhanced to a small degree while NADPH cytochrome c reductase was not affected by deoxycholate. (4) Distilled water coupled with a single homogenization released trapped soluble enzymes and mitochondria and gave nearly maximal cytochrome oxidase activity as judged by deoxycholate treatment. The total distilled water activity of NADH cytochrome c reductase was much less than that of deoxycholate-stimulated fractions. The activities of other enzymes were not markedly affected by distilled water although their distribution was changed.  相似文献   

15.
A new method has been developed for isolating synaptic junctional complexes (SJC) of high structural integrity. The major step in the isolation involves homogenization of a synaptosomal membrane (SM) fraction in a biphasic system consisting of Freon 113 and an aqueous phase containing 0.2% Triton X-100. Well-preserved SJCs, along with membrane vesicles, were recovered in the aqueous phase after low-speed centrifugation of the homogenate. The membranes were subsequently separated from the SJCs by centrifugation on a discontinuous sucrose density gradient. The purity and identity of subcellular fractions were monitored by thin sectioning electron microscopy, using specific and nonspecific staining methods. From the electron microscope studies we conclude that SJCs and their components occupy about 65% of the area covered by structures in this fraction. The assay of enzyme activities indicates that homogenization in Triton-Freon and subsequent steps of the isolation procedure affect the activities of Na, K-ATPase, cytochrome oxidase, and acid phosphatase to different extents, but do not cause total inactivation. Electrophoresis of the SJC-enriched fraction on sodium dodecyl sulfate-polyacrylamide gels has demonstrated that a polypeptide which co-migrates with tubulin is the major component in this fraction, and that a polypeptide co-migrating with actin is also present.  相似文献   

16.
Catalase-positive particles (diameter 0.1–0.3 μm) from Harder's gland of the rat were prepared by differential centrifugation. It was demonstrated that these particles do not contain the oxidases thought to be characteristic of peroxisomal systems (i.e. urate oxidase, d-amino acid oxidase, and α-hydroxy acid oxidase). Cytochemical DAB reaction was employed to demonstrate the organelles in the gland tissue and in subcellular fractions by electron microscopy.  相似文献   

17.
–Mammalian brain contains 2 N-acylamino acid amidohydrolases resembling the respective kidney enzymes. The anatomical and subcellular distribution of the enzymes; the substrate specificities and interspecies activities of the partially purified amidohydrolases have been studied. A considerable proportion of the amidohydrolase activity of subcellular fractions was found to be associated with the paniculate matter. The increased activities of the particulate enzymes in the presence of Triton X-100 and chloroacetyl amino acid substrates suggest that significant amounts of the enzymes are in the bound or latent form.  相似文献   

18.
Synthesis of phosphatidylglycerol from CDPdiacylglycerol and glycerol 3-phosphate by membranous subcellular fractions of rat lung and liver was optimal when assayed in the presence of bovine serum albumin and Triton X-100. Specific activities of glycerolphosphate phosphatidyltransferase in all membranous subcellular fractions of lung were several times higher than the corresponding fractions from liver. Distribution of this enzyme in subcellular fractions of lung or liver closely parallel the activity of the mitochondrial enzymes monoamine oxidase and succinate cytochrome c reductase. The phosphatidylglycerol-synthesizing activity in microsomes of both lung and liver was a minor fraction of total tissue activity and could be interpreted as due either to contamination with outer mitochondrial membrane or to a small amount of activity innate to microsomes. These results suggest that phosphatidylglycerol, which is believed to be a component of pulmonary surfactant, is synthesized by lung at a rapid rate relative to liver and that the subcellular distribution of its synthesis is similar in both tissues, with mitochondria as the major site.  相似文献   

19.
Kidney post-nuclear supernatants from genetically lean and obese mice were subjected to subcellular fractionation by dual centrifugation through sucrose gradients in B XIV zonal rotors. Considerable purification of peroxisomes was achieved which allowed the demonstration of acyl-CoA beta-oxidation enzymes and carnitine acyltransferases in these organelles. Comparison of kidney peroxisome-enriched fractions from obese and lean mice indicated a likely relative depression in beta-oxidation enzymes in the obese animal. Measurement of catalase, acyl-CoA oxidase and carnitine octanoyltransferase in whole homogenate of liver and kidney of obese and lean mice revealed significantly reduced levels (to approximately 2/3) of these peroxisomal enzymes in the kidney of ob/ob mice. In contrast the specific activity of catalase and acyl-CoA oxidase was significantly raised in the liver of obese mice.  相似文献   

20.
Glutathione-insulin transhydrogenase (glutathione:protein disulfide oxidoreductase, EC 1.8.4.2) inactivates insulin by cleaving its disulfide bonds. The distribution of GSH-insulin transhydrogenase in subcellular fractions of rat liver homogenates has been studied. From the distribution of insulin-degrading activity and marker enzymes (glucose-6-phosphatase and succinate-INT reductase) (INT, 2-p-iodophenyl-3-p-nitrophenyl-5-phenyl tetrazolium chloride) after cell fractionation by differential centrifugation, the immunological analysis of the isolated subcellular fractions with antibody to purified rat liver GSH-insulin transhydrogenase, and chromatographic analysis (on a column of Sephadex G-75 in 50% acetic acid) of the products formed from 125I-labelled insulin after incubation with the isolated subcellular fractions, it is concluded that GSH-insulin transhydrogenase is located primarily in the microsomal fraction of rat liver homogenate. An enzyme(s) that further degrades insulin by proteolysis is located mainly in the soluble fraction; a significant amount of the protease(s) activity is also present in the mitochondrial fraction. The possibility has been discussed that the protease(s) acts upon the intermediate product of insulin degradation, A and B chains of insulin, rather than upon the intact insulin molecule itself.The GSH-insulin transhydrogenase in intact microsomes occurs in a latent state; it is readily released from the microsomal membrane and its activity is greatly increased by treatments which affect the lipoprotein membrane structure of microsomal vesicles. There include homogenization with a Polytron homogenizer, sonication, freezing and thawing, alkaline pH, the nonionic detergent Triton X-100, and phospholipases A and C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号