首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
The mechanisms of targeting, insertion and assembly of the chloroplast-encoded thylakoid membrane proteins are unknown. In this study, we investigated these mechanisms for the chloroplast-encoded polytopic D1 thylakoid membrane protein, using a homologous translation system isolated from tobacco chloroplasts. Truncated forms of the psbA gene were translated and stable ribosome nascent chain complexes were purified. To probe the interactions with the soluble components of the targeting machinery, we used UV-activatable cross-linkers incorporated at specific positions in the nascent chains, as well as conventional sulfhydryl cross-linkers. With both cross-linking approaches, the D1 ribosome nascent chain was photocross-linked to cpSRP54. cpSRP54 was shown to interact only when the D1 nascent chain was still attached to the ribosome. The interaction was strongly dependent on the length of the nascent chain that emerged from the ribosome, as well as the cross-link position. No interactions with soluble SecA or cpSRP43 were found. These results imply a role for cpSRP54 in D1 biogenesis.  相似文献   

3.
A SecY homologue is involved in chloroplast-encoded D1 protein biogenesis   总被引:12,自引:0,他引:12  
We have used the photosystem II reaction center D1 protein as a model to study the mechanisms of targeting and insertion of chloroplast-encoded thylakoid membrane proteins. The unusually high turnover rate and distinct pausing intermediates during translation make the D1 protein biogenesis particularly suitable for these purposes. Here we show that cpSecY, a chloroplast homologue of bacterial essential translocon component SecY, interacts tightly with thylakoid membrane-bound ribosomes, suggesting its involvement in protein translocation and insertion. Co-immunoprecipitation and cross-linking experiments indicated that cpSecY resides in the vicinity of D1 elongation intermediates and provided evidence for a transient interaction of cpSecY with D1 elongation intermediates during the biogenesis of D1. After termination of translation, such interactions no longer existed. Our results indicate that, in addition to a well characterized role of cpSecY in posttranslational translocation of nuclear-encoded proteins, it seems to be also involved in cotranslational membrane protein translocation and insertion in chloroplasts.  相似文献   

4.
Mechanisms of protein import into thylakoids of chloroplasts   总被引:1,自引:0,他引:1  
The thylakoid membrane of chloroplasts contains the major photosynthetic complexes, which consist of several either nuclear or chloroplast encoded subunits. The biogenesis of these thylakoid membrane complexes requires coordinated transport and subsequent assembly of the subunits into functional complexes. Nuclear-encoded thylakoid proteins are first imported into the chloroplast and then directed to the thylakoid using different sorting mechanisms. The cpSec pathway and the cpTat pathway are mainly involved in the transport of lumenal proteins, whereas the spontaneous pathway and the cpSRP pathway are used for the insertion of integral membrane proteins into the thylakoid membrane. While cpSec-, cpTat- and cpSRP-mediated targeting can be classified as 'assisted' mechanisms involving numerous components, 'unassisted' spontaneous insertion does not require additional targeting factors. However, even the assisted pathways differ fundamentally with respect to stromal targeting factors, the composition of the translocase and energy requirements.  相似文献   

5.
The signal recognition particle (SRP) and its receptor (FtsY in prokaryotes) are essential for cotranslational protein targeting to the endoplasmic reticulum in eukaryotes and the cytoplasmic membrane in prokaryotes. An SRP/FtsY-like protein targeting/integration pathway in chloroplasts mediates the posttranslational integration of the light-harvesting chlorophyll a/b-binding protein (LHCP) into thylakoid membranes. GTP, chloroplast SRP (cpSRP), and chloroplast FtsY (cpFtsY) are required for LHCP integration into thylakoid membranes. Here, we report the reconstitution of the LHCP integration reaction with purified recombinant proteins and salt-washed thylakoids. Our data demonstrate that cpSRP and cpFtsY are the only soluble protein components required for LHCP integration. In addition, our studies reveal that ATP, though not absolutely required, remarkably stimulates LHCP integration into salt-washed thylakoids. ATP stimulates LHCP integration by a mechanism independent of the thylakoidal pH gradient (DeltapH) and exerts no detectable effect on the formation of the soluble LHCP-cpSRP-targeting complex. Taken together, our results indicate the participation of a thylakoid ATP-binding protein in LHCP integration.  相似文献   

6.
Sequences of 66 genes encoding bacterial or yeast membrane proteins have been examined for the respective positioning of putative transmembrane domains and translational pauses. The latter were operationally defined as clusters of at least 17 non-preferred codons along the mRNA. The putative transmembrane domains were defined as stretches of at least 17 hydrophobic amino acids in the encoded protein. For yeast non-mitochon drial membrane proteins, it was observed that clusters of non-preferred codons occur more frequently about 56 to 75 codons after a hydrophobic stretch in the encoded protein. About 40 amino acid residues are required to span the large ribosomal subunit. Such clusters were thus predicted to cause a severe slow-down in peptide elongation, just when the hydrophobic stretch fully protrudes from the ribosome. This transient slow-down of the ribosome pace has consequently been named the “+70 pause”. This pause was not observed for mitochondrial or bacterial membrane proteins, which are thought to insert post-translationally in their respective membranes. Because insertion of yeast proteins in the endoplasmic reticulum membrane is generally cotranslational instead, it is possible that the “+70 pause” reflects the coupling of translation, targeting, insertion and folding in this case. The pause may, for instance, give time for productive interaction of the newly synthesized hydrophobic domain with the proper targeting/insertion machineries. Thus, it would favor entrance of the stalled protein domain into the proper pathway.  相似文献   

7.
Cyanobacteria are unique eubacteria with an organized subcellular compartmentalization of highly differentiated internal thylakoid membranes (TM), in addition to the outer and plasma membranes (PM). This leads to a complicated system for transport and sorting of proteins into the different membranes and compartments. By shotgun and gel-based proteomics of plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803, a large number of membrane proteins were identified. Proteins localized uniquely in each membrane were used as a platform describing a model for cellular membrane organization and protein intermembrane sorting and were analyzed by multivariate sequence analyses to trace potential differences in sequence properties important for insertion and sorting to the correct membrane. Sequence traits in the C-terminal region, but not in the N-terminal nor in any individual transmembrane segments, were discriminatory between the TM and PM classes. The results are consistent with a contact zone between plasma and thylakoid membranes, which may contain short-lived "hemifusion" protein traffic connection assemblies. Insertion of both integral and peripheral membrane proteins is suggested to occur through common translocons in these subdomains, followed by a potential translation arrest and structure-based sorting into the correct membrane compartment.  相似文献   

8.
9.
The genome of mitochondria encodes a small number of very hydrophobic polypeptides that are inserted into the inner membrane in a cotranslational reaction. The molecular process by which mitochondrial ribosomes are recruited to the membrane is poorly understood. Here, we show that the inner membrane protein Mba1 binds to the large subunit of mitochondrial ribosomes. It thereby cooperates with the C-terminal ribosome-binding domain of Oxa1, which is a central component of the insertion machinery of the inner membrane. In the absence of both Mba1 and the C-terminus of Oxa1, mitochondrial translation products fail to be properly inserted into the inner membrane and serve as substrates of the matrix chaperone Hsp70. We propose that Mba1 functions as a ribosome receptor that cooperates with Oxa1 in the positioning of the ribosome exit site to the insertion machinery of the inner membrane.  相似文献   

10.
Protein export systems derived from prokaryotes are used to transport proteins into or across the endoplasmic reticulum, the mitochondrial inner membrane, and the chloroplast thylakoid membrane. Signal recognition particle (SRP) and its receptor are essential components used exclusively for cotranslational export of endomembrane and secretory proteins to the endoplasmic reticulum in eukaryotes and export of polytopic membrane proteins to the cytoplasmic membrane in prokaryotes. An organellar SRP in chloroplasts (cpSRP) participates in cotranslational targeting of chloroplast synthesized integral thylakoid proteins. Remarkably, cpSRP is also used to posttranslationally localize a subset of nuclear encoded thylakoid proteins. Recent work has begun to reveal the basis for cpSRP's unique ability to function in co- and posttranslational protein localization, yet much is left to question. This review will attempt to highlight these advances and will also focus on the role of other soluble and membrane components that are part of this novel organellar SRP targeting pathway.  相似文献   

11.
Madueno F  Napier JA  Gray JC 《The Plant cell》1993,5(12):1865-1876
The precursor of the Rieske FeS protein, a thylakoid membrane protein, was imported by isolated pea chloroplasts, and the mature protein was shown to be integrated into the cytochrome bf complex of the thylakoid membranes. Insertion into the thylakoid membrane was sensitive to the ionophores nigericin and valinomycin, suggesting a requirement for a proton motive force. A considerable proportion of the imported Rieske protein was detected in the stromal fraction of the chloroplasts, and this increased when membrane insertion was blocked with ionophores. Electrophoresis of the stromal fraction under nondenaturing conditions resolved two distinct complexes containing the Rieske protein. One of these complexes was identified as an association of the Rieske protein with the chaperonin Cpn60 complex by its electrophoretic mobility, Mg-ATP-dependent dissociation, and immunoprecipitation with anti-Cpn60 antibodies. Coimmunoprecipitation of imported Rieske protein with anti-heat shock protein 70 (Hsp70) antibodies indicated that the Rieske protein was also associated, in an ATP-dissociable form, with a chloroplast Hsp70 homolog. Immunoprecipitation analysis of an import time course detected the highest amounts of the Cpn60-Rieske protein complex early in the time course, whereas highest amounts of the Hsp70-Rieske protein complex were formed much later. The disappearance of the Cpn60-Rieske protein complex correlated with increased amounts of the Rieske protein in the thylakoid fraction.  相似文献   

12.
The cytoplasmic surface of Sec61p is the binding site for the ribosome and has been proposed to interact with the signal recognition particle receptor during targeting of the ribosome nascent chain complex to the translocation channel. Point mutations in cytoplasmic loops six (L6) and eight (L8) of yeast Sec61p cause reductions in growth rates and defects in the translocation of nascent polypeptides that use the cotranslational translocation pathway. Sec61 heterotrimers isolated from the L8 sec61 mutants have a greatly reduced affinity for 80S ribosomes. Cytoplasmic accumulation of protein precursors demonstrates that the initial contact between the large ribosomal subunit and the Sec61 complex is important for efficient insertion of a nascent polypeptide into the translocation pore. In contrast, point mutations in L6 of Sec61p inhibit cotranslational translocation without significantly reducing the ribosome-binding activity, indicating that the L6 and L8 sec61 mutants affect different steps in the cotranslational translocation pathway.  相似文献   

13.
The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. PSI consists of a monomeric core complex with single copies of four different LHCI proteins and has binding sites for additional LHCI and/or LHCII complexes. PSII supercomplexes are dimeric and contain usually two to four copies of trimeric LHCII complexes. These supercomplexes have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. Together with the specific lipid composition, the structural features of the main protein complexes of the thylakoid membranes form the main trigger for the segregation of PSII and LHCII from PSI and ATPase into stacked grana membranes. We suggest that the margins, the strongly folded regions of the membranes that connect the grana, are essentially protein-free, and that protein-protein interactions in the lumen also determine the shape of the grana. We also discuss which mechanisms determine the stacking of the thylakoid membranes and how the supramolecular organization of the pigment-protein complexes in the thylakoid membrane and their flexibility may play roles in various regulatory mechanisms of green plant photosynthesis.  相似文献   

14.
The synthesis of secretory or integral membrane proteins can be directly coupled to their translocation across or insertion into membranes. In co-translational targeting, the translation machine, the ribosome, is transferred to the respective membrane by the signal recognition particle (SRP) and its receptor (SR) as soon as a signal sequence emerges. Protein synthesis can continue at the membrane, with the nascent peptide chain directly inserting into the ribosome-bound protein-conducting channel, the Sec61 complex. During the past two years, several structures have been solved by crystallography and cryo-electron microscopy that represent distinct functional states of the SRP cycle. On this basis, the first structure-based models can be suggested that explain important aspects of protein targeting, such as the SRP-ribosome and SRP-SR interactions.  相似文献   

15.
The targeting, insertion, and topology of membrane proteins have been extensively studied in both prokaryotes and eukaryotes. However, the mechanisms used by viral membrane proteins to generate the correct topology within cellular membranes are less well understood. Here, the effect of flanking charges and the hydrophobicity of the N-terminal hydrophobic segment on viral membrane protein topogenesis are examined systematically. Experimental data reveal that the classical topological determinants have only a minor effect on the overall topology of p9, a plant viral movement protein. Since only a few individual sequence alterations cause an inversion of p9 topology, its topological stability is robust. This result further indicates that the protein has multiple, and perhaps redundant, structural features that ensure that it always adopts the same topology. These critical topogenic sequences appear to be recognized and acted upon from the initial stages of protein biosynthesis, even before the ribosome ends protein translation.  相似文献   

16.
The photosystem I subunit PsaK spans the thylakoid membrane twice, with the N and C termini both located in the lumen. The insertion mechanism of a thylakoid membrane protein adopting this type of topology has not been studied before, and we have used in vitro assays to determine the requirements for PsaK insertion into thylakoids. PsaK inserts with high efficiency and we show that one transmembrane span (the C-terminal region) can insert independently of the other, indicating that a "hairpin"-type mechanism is not essential. Insertion of PsaK does not require stromal extract, indicating that signal recognition particle (SRP) is not involved. Removal of nucleoside triphosphates inhibits insertion only slightly, both in the presence and absence of stroma, suggesting a mild stimulatory effect of a factor in the translation system and again ruling out an involvement of SRP or its partner protein, FtsY. We, furthermore, find no evidence for the involvement of known membrane-bound translocation apparatus; proteolysis of thylakoids destroys the Sec and Tat translocons but does not block PsaK insertion, and antibodies against the Oxa1/YidC homolog, Alb3, block the SRP-dependent insertion of Lhcb1 but again have no effect on PsaK insertion. Because YidC is required for the efficient insertion of every membrane protein tested in Escherichia coli (whether SRP-dependent or -independent), PsaK is the first protein identified as being independent of YidC/Alb3-type factors in either thylakoids or bacteria. The data raise the possibility of a wholly spontaneous insertion pathway.  相似文献   

17.
Insertion and folding of polytopic membrane proteins is an important unsolved biological problem. To study this issue, lactose permease, a membrane transport protein from Escherichia coli, is transcribed, translated, and inserted into inside-out membrane vesicles in vitro. The protein is in a native conformation as judged by sensitivity to protease, binding of a monoclonal antibody directed against a conformational epitope, and importantly, by functional assays. By exploiting this system it is possible to express the N-terminal six helices of the permease (N(6)) and probe changes in conformation during insertion into the membrane. Specifically, when N(6) remains attached to the ribosome it is readily extracted from the membrane with urea, whereas after release from the ribosome or translation of additional helices, those polypeptides are not urea extractable. Furthermore, the accessibility of an engineered Factor Xa site to Xa protease is reduced significantly when N(6) is released from the ribosome or more helices are translated. Finally, spontaneous disulfide formation between Cys residues at positions 126 (Helix IV) and 144 (Helix V) is observed when N(6) is released from the ribosome and inserted into the membrane. Moreover, in contrast to full-length permease, N(6) is degraded by FtsH protease in vivo, and N(6) with a single Cys residue at position 148 does not react with N-ethylmaleimide. Taken together, the findings indicate that N(6) remains in a hydrophilic environment until it is released from the ribosome or additional helices are translated and continues to fold into a quasi-native conformation after insertion into the bilayer. Furthermore, there is synergism between N(6) and the C-terminal half of permease during assembly, as opposed to assembly of the two halves as independent domains.  相似文献   

18.
Targeting and assembly of the Escherichia coli inner membrane protein leader peptidase (Lep) was studied using a homologous in vitro targeting/translocation assay. Assembly of full-length Lep was efficient in the co-translational presence of membrane vesicles and hardly occurred when membranes were added post-translationally. This is consistent with the signal recognition particle-dependent targeting of Lep. Crosslinking experiments showed that the hydrophilic region P1 of nascent membrane-inserted Lep 100-mer was in the vicinity of SecA and SecY, whereas the first transmembrane domain H1 was in the vicinity of YidC. These results suggested that YidC, together with the Sec translocase, functions in the assembly of Lep. YidC might be a more generic component in the assembly of inner membrane proteins.  相似文献   

19.
How folding of proteins is coupled to their synthesis remains poorly understood. Here, we apply single-molecule fluorescence imaging to full protein synthesis in vitro. Ribosomes were specifically immobilized onto glass surfaces and synthesis of green fluorescent protein (GFP) was achieved using modified commercial Protein Synthesis using Recombinant Elements that lacked ribosomes but contained purified factors and enzyme that are required for translation in Escherichia coli. Translation was monitored using a GFP mutant (F64L/S65T/F99S/M153T/V163A) that has a high fluorophore maturation rate and that contained the Secretion Monitor arrest sequence to prevent dissociation from the ribosome. Immobilized ribosomal subunits were labeled with Cy3 and GFP synthesis was measured by colocalization of GFP fluorescence with the ribosome position. The rate of appearance of colocalized ribosome GFP was equivalent to the rates of fluorescence appearance coupled with translation measured in bulk, and the ribosome-polypeptide complexes were stable for hours. The methods presented here are applicable to single-molecule investigation of translational initiation, elongation and cotranslational folding.  相似文献   

20.
The light reactions of oxygenic photosynthesis almost invariably take place in the thylakoid membranes, a highly specialized internal membrane system located in the stroma of chloroplasts and the cytoplasm of cyanobacteria. The only known exception is the primordial cyanobacterium Gloeobacter violaceus, which evolved before the appearance of thylakoids and harbors the photosynthetic complexes in the plasma membrane. Thus, studies on G. violaceus not only shed light on the evolutionary origin and the functional advantages of thylakoid membranes but also might include insights regarding thylakoid formation during chloroplast differentiation. Based on biochemical isolation and direct in vivo characterization, we report here structural and functional domains in the cytoplasmic membrane of a cyanobacterium. Although G. violaceus has no internal membranes, it does have localized domains with apparently specialized functions in its plasma membrane, in which both the photosynthetic and the respiratory complexes are concentrated. These bioenergetic domains can be visualized by confocal microscopy, and they can be isolated by a simple procedure. Proteomic analysis of these domains indicates their physiological function and suggests a protein sorting mechanism via interaction with membrane-intrinsic terpenoids. Based on these results, we propose specialized domains in the plasma membrane as evolutionary precursors of thylakoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号