首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction.  相似文献   

2.
Acetaminophen, a widely used analgesic and antipyretic drug has ample affinity to bind globular proteins. Here, we have illustrated a substantive study pertaining to the interaction of acetaminophen with human hemoglobin (HHb). Different spectroscopic (absorption, fluorescence, and circular dichroism (CD) spectroscopy), calorimetric, and molecular docking techniques have been employed in this study. Acetaminophen-induced graded alterations in absorbance and fluorescence of HHb confirm their interaction. Analysis of fluorescence quenching at different temperature and data obtained from isothermal titration calorimetry indicate that the interaction is static and the HHb has one binding site for the drug. The negative values of Gibbs energy change (ΔG0) and enthalpy changes (ΔH0) and positive value of entropy change (ΔS0) strongly suggest that it is entropy-driven spontaneous and exothermic reaction. The reaction involves hydrophobic pocket of the protein which is further stabilized by hydrogen bonding as evidenced from ANS and sucrose binding studies. These findings were also supported by molecular docking simulation study using AutoDock 4.2. The interaction influences structural integrity as well as functional properties of HHb as evidenced by CD spectroscopy, increased rate of co-oxidation and decreased esterase activity of HHb. So, from these findings, we may conclude that acetaminophen interacts with HHb through hydrophobic and hydrogen bonding, and the interaction perturbs the structural and functional properties of HHb.  相似文献   

3.
The binding interaction between bovine serum albumin (BSA) and enalapril (ENPL) at the imitated physiological conditions (pH = 7.4) was investigated using UV–vis absorption spectroscopy (UV–vis), fluorescence emission spectroscopy (FES), synchronous fluorescence spectroscopy (SFS), Fourier transform infrared spectroscopy (FT‐IR), circular dichroism (CD) and molecular docking methods. It can be deduced from the experimental results from the steady‐state fluorescence spectroscopic titration that the intrinsic BSA fluorescence quenching mechanism induced by ENPL is static quenching, based on the decrease in the BSA quenching constants in the presence of ENPL with increase in temperature and BSA quenching rates >1010 L mol?1 sec?1. This result indicates that the ENPL–BSA complex is formed through an intermolecular interaction of ENPL with BSA. The main bonding forces for interaction of BSA and ENPL are van der Waal's forces and hydrogen bonding interaction based on negative values of Gibbs free energy change (ΔG 0), enthalpic change (ΔH 0) and entropic change (ΔS 0). The binding of ENPL with BSA is an enthalpy‐driven process due to |ΔH °| > |T ΔS °| in the binding process. The results of competitive binding experiments and molecular docking confirm that ENPL binds in BSA sub‐domain IIA (site I) and results in a slight change in BSA conformation, but BSA still retains its α‐helical secondary structure.  相似文献   

4.
The intermolecular interaction between cyanidin‐3‐glucoside (Cy‐3‐G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy‐3‐G resulted from the formation of Cy‐3‐G–BSA complex. The number of binding sites (n) for Cy‐3‐G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy‐3‐G to BSA, Cy‐3‐G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy‐3‐G with BSA is spontaneous, and Cy‐3‐G can be inserted into the hydrophobic cavity of BSA (site II′) in the binding process of Cy‐3‐G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH0 = – 29.64 kcal/mol and ΔS0 = – 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy‐3‐G with BSA are Van der Waals and hydrogen bonding interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Thymol is the main monoterpene phenol present in the essential oils which is used in the food industry as flavoring and preservative agent. In this study, the interaction of thymol with the concentration range of 1 to 6 μM and bovine serum albumin (BSA) at fixed concentration of 1 μM was investigated by fluorescence, UV‐vis, and molecular docking methods under physiological‐like condition. Fluorescence experiments were performed at 5 different temperatures, and the results showed that the fluorescence quenching of BSA by thymol was because of a static quenching mechanism. The obtained binding parameters, K, were in the order of 104 M?1, and the binding number, n, was approximately equal to unity indicating that there is 1 binding site for thymol on BSA. Calculated thermodynamic parameters for enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) showed that the reaction was spontaneous and hydrophobic interactions were the main forces in the binding of thymol to BSA. The results of UV‐vis spectroscopy and Arrhenius' theory showed the complex formation in the interaction of thymol and BSA. Negligible conformational changes in BSA by thymol were observed in fluorescence experiments, and the same results were also obtained from UV‐vis studies. Results of molecular docking indicated that the subdomain IA of BSA was the binding site for thymol.  相似文献   

6.
Molecular interaction of atenolol, a selective β1 receptor antagonist with the major carrier protein, bovine serum albumin (BSA), was investigated under imitated physiological conditions (pH 7.4) by means of fluorescence spectroscopy, UV absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and molecular modeling studies. The steady-state fluorescence spectra manifested that static type, due to formation of the atenolol-BSA complex, was the dominant mechanism for fluorescence quenching. The characteristic information about the binding interaction of atenolol with BSA in terms of binding constant (Kb) were determined by the UV–vis absorption titration, and were found to be in the order of 103 M?1 at different temperatures, indicating the existence of a weak binding in this system. Thermodynamic analysis revealed that the binding process was primarily mediated by van der Waals force and hydrogen bonds due to the negative sign for enthalpy change (ΔH0), entropy change (ΔS0). The molecular docking results elucidated that atenolol preferred binding on the site II of BSA according to the findings observed in competitive binding experiments. Moreover, via alterations in synchronous fluorescence, three-dimensional fluorescence and FT-IR spectral properties, it was concluded that atenolol could arouse slight configurational and micro-environmental changes of BSA.  相似文献   

7.
The interaction between N‐acetyl cysteine (NAC) and bovine serum albumin (BSA) was investigated by UV–vis, fluorescence spectroscopy, and molecular docking methods. Fluorescence study at three different temperatures indicated that the fluorescence intensity of BSA was reduced upon the addition of NAC by the static quenching mechanism. Binding constant (Kb) and the number of binding sites (n) were determined. The binding constant for the interaction of NAC and BSA was in the order of 103 M?1, and the number of binding sites was obtained to be equal to 1. Enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) as thermodynamic values were also achieved by van't Hoff equation. Hydrogen bonding and van der Waals force were the major intermolecular forces in the interaction process and it was spontaneous. Finally, the binding mode and the binding sites were clarified using molecular docking which were in good agreement with the results of spectroscopy experiments. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 638–645, 2015.  相似文献   

8.
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 1010 L mol?1 s?1, indicating forming QNPL–BSA complex through the intermolecular binding interaction. The binding constant for the QNPL–BSA complex is in the order of 105 M?1, indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal’s forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.  相似文献   

9.
The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA–BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb) and number of binding sites (n) for MA binding to BSA were 2.8 × 105 L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G0 in the binding process. The enthalpy change (∆H0) and entropy change (∆S0) were – 124.0 kJ/mol and –295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA–BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
We present here a systematic investigation on the interaction between a water‐soluble alloyed semiconductor quantum dot and bovine serum albumin using various spectroscopic techniques i.e. fluorescence quenching, resonance light scattering and synchronous fluorescence spectroscopy. The analysis of fluorescence spectrum and fluorescence intensity indicates that the intrinsic fluorescence of bovine serum albumin (BSA) gets quenched by both static and dynamic quenching mechanism. The Stern‐Volmer quenching constants, energy transfer efficiency parameters, binding parameters and corresponding thermodynamic parameters (ΔH0, ΔS0 and ΔG0) have been evaluated by using van 't Hoff equation at different temperatures. A positive entropy change with a positive enthalpy change was observed suggesting that the binding process was an entropy‐driven, endothermic process associated with the hydrophobic effect. The intermolecular distance (r) between donor (BSA) and acceptor (CdSeS/ZnS quantum dots) was estimated according to Förster's theory of non‐radiative energy transfer. The synchronous fluorescence spectra revealed a blue shift in the emission maxima of tryptophan which is indicative of increasing hydrophobicity. Negative ΔG0 values implied that the binding process was spontaneous. It was found that hydrophobic forces played a role in the quenching process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The binding of bovine serum albumin (BSA) to ethambutol (EMB) was investigated using spectroscopic methods, viz., fluorescence, Fourier transform infrared (FTIR), ultraviolet (UV)/vis absorption and cyclic voltammetry techniques. Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of serum albumin by EMB is static, which was also confirmed by lifetime measurements. The number of binding sites, n, and binding constant, K, were obtained at various temperatures. The distance, r, between EMB and the protein was evaluated according to the Förster energy transfer theory. Based on displacement experiments using site probes, viz., warfarin, ibuprofen and digitoxin, the site of binding of EMB in BSA was proposed to be Sudlow's site I. The effect of EMB on the conformation of BSA was analyzed by using synchronous fluorescence spectra (SFS) and 3D fluorescence spectra. The results of fluorescence, UV/vis absorption and FTIR spectra showed that the conformation of BSA was changed in the presence of EMB. The thermodynamic parameters including enthalpy change (ΔH0), entropy change (ΔS0) and free energy change (ΔG0) for BSA–EMB were calculated according to the van't Hoff equation and are discussed.  相似文献   

12.
The binding of two flavonols with fat mass and obesity-associated protein (FTO) was studied using fluorescence spectroscopy, Stern-Volmer kinetics, UV-Vis absorption, and molecular docking. The quenching of FTO fluorescence was determined to be static with binding constants on the order of 104 M?1. The interaction was studied over three temperatures, and the binding was found to be exothermic with a positive change in entropy. Thermodynamic analysis and molecular modeling suggest that hydrophobic interaction and hydrogen bonding interaction are the main binding force in stabilizing the flavonol–FTO complex.  相似文献   

13.
To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA–BSA complex. The number of binding sites (n) and the binding constant for MPA–BSA complex are ~1 and 4.6 × 103 M?1 at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG0, ΔH0 and ΔS0 in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II′′) of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α‐helix structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The interaction between human serum albumin (HSA) and aurantio‐obtusin was investigated by spectroscopic techniques combined with molecular docking. The Stern–Volmer quenching constants (KSV) decreased from 8.56 × 105 M?1 to 5.13 × 105 M?1 with a rise in temperatures from 289 to 310 K, indicating that aurantio‐obtusin produced a static quenching of the intrinsic fluorescence of HSA. Time‐resolved fluorescence studies proved again that the static quenching mechanism was involved in the interaction. The sign and magnitude of the enthalpy change as well as the entropy change suggested involvement of hydrogen bonding and hydrophobic interaction in aurantio‐obtusin–HSA complex formation. Aurantio‐obtusin binding to HSA produced significant alterations in secondary structures of HSA, as revealed from the time‐resolved fluorescence, Fourier transform infrared (FT‐IR) spectroscopy, three‐dimensional (3D) fluorescence and circular dichroism (CD) spectral results. Molecular docking study and site marker competitive experiment confirmed aurantio‐obtusin bound to HSA at site I (subdomain IIA).  相似文献   

15.
The fluorescence quenching spectrum of bovine serum albumin (BSA) was investigated in the presence of felodipine (FLD) by spectroscopic methods including fluorescence spectroscopy and UV–Vis absorption spectroscopy. Stern–Volmer quenching was successfully applied and the corresponding thermodynamic parameters, namely enthalpy change (ΔH), free energy change (ΔG) and entropy change (ΔS) at different temperatures (304, 314 and 324 K) were calculated according to the Van't Hoff relation. This revealed that the hydrophobic interaction plays a major role in stabilizing the complex. The fluorescence spectrum of BSA was studied in presence of various concentrations of SDS surfactant. The distance (r) between donor (BSA) and acceptor (FLD) was obtained according to fluorescence resonance energy transfer (FRET). The synchronous fluorescence spectroscopy was used to investigate the effect of FLD on BSA molecule. The result shows that the conformation of BSA was changed in the presence of felodipine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The present study employed the spectroscopic techniques, i.e. fluorescence, and circular dichroism (CD) and the molecular docking approach to investigate the mechanism of interaction of a potent anticancer glucosinolate, sinigrin (SIN), with bovine serum albumin (BSA). SIN binding to BSA resulted in the quenching of intrinsic fluorescence, and the analysis of results revealed the presence of static quenching mechanism. Based on the results, it was evident that the interaction of SIN with BSA was mainly stabilized by hydrogen bonding. Results from CD analysis revealed that the binding of SIN does not induce significant conformational changes in BSA. Molecular docking studies showed that four hydrogen bonds stabilize the binding of SIN in the site I of BSA with a binding energy of ?6.2 kcal mol?1. These findings will not only provide insights about the mechanism of interaction of sinigrin but also showed the effect of methylglyoxal-mediated glycation on ligand binding with BSA.  相似文献   

17.
Empagliflozin (EMP) is an oral antihyperglycemic agent for type 2 diabetic patients. The molecular binding of EMP to bovine serum albumin (BSA) was elucidated by a combined experimental/computational approach to fulfil the pharmacokinetics and pharmacodynamics gaps of the cited drug for further development. Fluorescence, synchronous, and three-dimensional fluorescence spectroscopy verified that EMP quenched BSA native fluorescence through a dual static/dynamic mechanism that was further supported by Fӧrster resonance energy transfer and ultraviolet absorption spectroscopy. Fourier transform infrared spectroscopy revealed the conformational variations in BSA secondary structure induced by EMP. Thermodynamic properties of the BSA–EMP complex were also investigated, and the hydrophobic interactions' role in the binding process was demonstrated by the computed enthalpy (ΔH = 6.558 kJ mol−1) and entropy (ΔS = 69.333 J mol−1 K−1). Gibbs free energy (ΔG) values were negative at three distinct temperatures, illuminating the spontaneity of this interaction. In addition, molecular docking studies depicted the optimal fitting of EMP to BSA on Site I (sub-domain IIA) through three hydrogen bonds. Additionally, and based on the quenching effect of EMP on BSA fluorescence, this study suggests a simple validated spectrofluorometric method for the quantitation of the studied drug in bulk form and human plasma samples with reasonable recoveries (96.99–103.10%).  相似文献   

18.
To further understand the mode of action and pharmacokinetics of lisinopril, the binding interaction of lisinopril with bovine serum albumin (BSA) under imitated physiological conditions (pH 7.4) was investigated using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) and molecular docking methods. The results showed that the fluorescence quenching of BSA near 338 nm resulted from the formation of a lisinopril–BSA complex. The number of binding sites (n) for lisinopril binding on subdomain IIIA (site II) of BSA and the binding constant were ~ 1 and 2.04 × 104 M–1, respectively, at 310 K. The binding of lisinopril to BSA induced a slight change in the conformation of BSA, which retained its α‐helical structure. However, the binding of lisinopril with BSA was spontaneous and the main interaction forces involved were van der Waal's force and hydrogen bonding interaction as shown by the negative values of ΔG0, ΔH0 and ΔS0 for the binding of lisinopril with BSA. It was concluded from the molecular docking results that the flexibility of lisinopril also played an important role in increasing the stability of the lisinopril–BSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The binding interactions of simvastatin (SIM), pravastatin (PRA), fluvastatin (FLU), and pitavastatin (PIT) with bovine serum albumin (BSA) were investigated for determining the affinity of four statins with BSA through multiple spectroscopic and molecular docking methods. The experimental results showed that SIM, PRA, FLU, and PIT statins quenched the intrinsic fluorescence of BSA through a static quenching process and the stable stains–BSA complexes with the binding constants in the order of 104 M?1 at 298 K were formed through intermolecular nonbond interaction. The values of ΔH0, ΔS0 and ΔG0 in the binding process of SIM, PRA, FLU, and PIT with BSA were negative at the studied temperature range, suggesting that the binding process of four statins and BSA was spontaneous and the main interaction forces were van der Waals force and hydrogen-bonding interactions. Moreover, the binding of four statins with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°| under the studied temperature range. From the results of site marker competitive experiments and molecular docking, subdomain IIIA (site II) was the primary binding site for SIM, PRA, FLU, and PIT on BSA. The results of UV–vis absorption, synchronous fluorescence, 3D fluorescence and FT-IR spectra proved that the slight change in the conformation of BSA, while the significant changes in the conformation of SIM, PRA, FLU, and PIT drug in statin–BSA complexes, indicating that the flexibility of statin molecules plays an important role in increasing the stability of statin–BSA complexes.  相似文献   

20.
A combination of fluorescence, UV–Vis absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) and molecular modeling approaches were employed to determine the interaction between lysionotin and bovine serum albumin (BSA) at physiological pH. The fluorescence titration suggested that the fluorescence quenching of BSA by lysionotin was a static procedure. The binding constant at 298 K was in the order of 105 L mol?1, indicating that a high affinity existed between lysionotin and BSA. The thermodynamic parameters obtained at different temperatures (292, 298, 304 and 310 K) showed that the binding process was primarily driven by hydrogen bond and van der Waals forces, as the values of the enthalpy change (ΔH°) and entropy change (ΔS°) were found to be ?40.81 ± 0.08 kJ mol?1 and ?35.93 ± 0.27 J mol?1 K?1, respectively. The surface hydrophobicity of BSA increased upon interaction with lysionotin. The site markers competitive experiments revealed that the binding site of lysionotin was in the sub-domain IIA (site I) of BSA. Furthermore, the molecular docking results corroborated the binding site and clarified the specific binding mode. The results of UV–Vis absorption, CD and FT-IR spectra demonstrated that the secondary structure of BSA was altered in the presence of lysionotin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号