首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Opisthorchis felineus is the etiological agent of opisthorchiasis in humans. O. felineus cytochrome P450 (OfCYP450) is an important enzyme in the parasite xenobiotic metabolism. To identify the potential anti-opisthorchid compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,65,869) against the OfCYP450. The ligands were screened against OfCYP450 in four sequential docking modes that resulted in 361 ligands having better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 10 compounds were found to fit well with re-docking studies. After refinement by docking and drug-likeness analyses, four potential inhibitors (ZINC2358298, ZINC8790946, ZINC70707116, and ZINC85878789) were identified. These ligands with reference compounds (itraconazole and fluconazole) were further subjected to molecular dynamics simulation (MDS) and binding energy analyses to compare the dynamic structure of protein after ligand binding and the stability of the OfCYP450 and bound complexes. The binding energy analyses were also calculated. The results suggested that the compounds had a negative binding energy with ?259.41, ?110.09, ?188.25, ?163.30, ?202.10, and ?158.79 kJ mol?1 for itraconazole, fluconazole, and compounds with IDs ZINC2358298, ZINC8790946, ZINC70707116, and ZINC85878789, respectively. These lead compounds displayed significant pharmacological and structural properties to be drug candidates. On the basis of MDS results and binding energy analyses, we concluded that ZINC8790946, ZINC70707116, and ZINC85878789 have excellent potential to inhibit OfCYP450.  相似文献   

2.
Fasciola gigantica is the causative organism of fascioliasis and is responsible for major economic losses in livestock production globally. F. gigantica thioredoxin1 (FgTrx1) is an important redox-active enzyme involved in maintaining the redox homeostasis in the cell. To identify a potential anti-fasciolid compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,67,740) against the FgTrx1 structure. The ligands were docked against FgTrx1 and 309 ligands were found to have better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 30 compounds were found to fit well for re-docking studies. After refinement by molecular docking and drug-likeness analysis, three potential inhibitors (ZINC15970091, ZINC9312362, and ZINC9312661) were identified. These three ligands were further subjected to molecular dynamics simulation (MDS) to compare the dynamics and stability of the protein structure after binding of the ligands. The binding free energy analyses were calculated to determine the intermolecular interactions. The results suggested that the two compounds had a binding free energy of –82.237, and –109.52 kJ.mol?1 for compounds with IDs ZINC9312362 and ZINC9312661, respectively. These predicted compounds displayed considerable pharmacological and structural properties to be drug candidates. We concluded that these two compounds could be potential drug candidates to fight against F. gigantica parasites.  相似文献   

3.
Persistent infection by Mycobacterium tuberculosis requires the glyoxylate shunt. This is a bypass to the tricarboxylic acid cycle in which isocitrate lyase (ICL) and malate synthase (MS) catalyze the net incorporation of carbon during mycobacterial growth on acetate or fatty acids as the primary carbon source. To identify a potential antitubercular compound, we performed a structure-based screening of natural compounds from the ZINC database (n = 1 67 740) against the M tuberculosis MS (MtbMS) structure. The ligands were screened against MtbMS, and 354 ligands were found to have better docking score. These compounds were assessed for Lipinski and absorption, distribution, metabolism, excretion, and toxicity prediction where 15 compounds were found to fit well for redocking studies. After refinement by molecular docking and drug-likeness analysis, four potential inhibitors (ZINC1483899, ZINC1754310, ZINC2269664, and ZINC15729522) were identified. These four ligands with phenyl-diketo acid were further subjected to molecular dynamics simulation to compare the dynamics and stability of the protein structure after ligand binding. The binding energy analysis was calculated to determine the intermolecular interactions. Our results suggested that the four compounds had a binding free energy of −201.96, −242.02, −187.03, and −169.02 kJ·mol−1, for compounds with IDs ZINC1483899, ZINC1754310, ZINC2269664, and ZINC15729522, respectively. We concluded that two compounds (ZINC1483899 and ZINC1754310) displayed considerable structural and pharmacological properties and could be probable drug candidates to fight against M tuberculosis parasites.  相似文献   

4.
Pharmacophore-based virtual screening, subsequent docking, and molecular dynamics (MD) simulations have been done to identify potential inhibitors of maltosyl transferase of Mycobacterium tuberculosis (mtb GlgE). Ligand and structure-based pharmacophore models representing its primary binding site (pbs) and unique secondary binding site 2 (sbs2), respectively, were constructed based on the three dimensional structure of mtb GlgE. These pharmacophore models were further used for screening of ZINC and antituberculosis compounds database (ATD). Virtually screened molecules satisfying Lipinski’s rule of five were then analyzed using docking studies and have identified 23 molecules with better binding affinity than its natural substrate, maltose. Four top scoring ligands from ZINC and ATD that either binds to pbs or sbs2 have been subjected to 10 ns each MD simulations and binding free energy calculations. Results of these studies have confirmed stable protein ligand binding. Results reported in the article are likely to be helpful in antitubercular therapeutic development research.  相似文献   

5.
6.
The shikimate pathway is as an attractive target because it is present in bacteria, algae, fungi, and plants but does not occur in mammals. In Mycobacterium tuberculosis (MTB), the shikimate pathway is integral to the biosynthesis of naphthoquinones, menaquinones, and mycobactin. In these study, novel inhibitors of 3-dehydroquinate synthase (DHQS), an enzyme that catalyzes the second step of the shikimate pathway in MTB, were determined. 12,165 compounds were selected from two public databases through virtual screening and molecular docking analysis using PyRx 8.0 and Autodock 4.2, respectively. A total of 18 compounds with the best binding energies (?13.23 to ?8.22 kcal/mol) were then selected and screened for absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis, and nine of those compounds were found to satisfy all of the ADME and toxicity criteria. Among those nine, the three compounds—ZINC633887?(binding energy =??10.29 kcal/mol), ZINC08983432?(?9.34 kcal/mol), and PubChem73393?(?8.61 kcal/mol)—with the best binding energies were further selected for molecular dynamics (MD) simulation analysis. The results of the 50-ns MD simulations showed that the two compounds ZINC633887 and PubChem73393 formed stable complexes with DHQS and that the structures of those two ligands remained largely unchanged at the ligand-binding site during the simulations. These two compounds identified through docking and MD simulation are potential candidates for the treatment of TB, and should undergo validation in vivo and in vitro.  相似文献   

7.
8.
Malaria is an endemic disease caused by the protozoan parasite Plasomodium falciparum. Febrifugine analogues are natural compound obtained from the traditional Chinese herbs have shown significant antimalarial and anticancerous efficacy in experimental model. Development of resistance against the existing antimalarial drug has alarmed the scientific innovators to find a potential antimalarial molecule which can be further used by endemic countries for the elimination of this disease. In this study, structure-based virtual screening and molecular dynamics (MD) base approaches were used to generate potential antimalarial compound against plasmepsin II and prolyl-tRNA synthetase of Plasmodium. Here, we have docked series of febrifugine analogues (n = 11,395) against plasmepsin II in three different docking modes and then it was compared with previously reported target prolyl-tRNA synthetase. Extra precision docking resulted into 235 ligands having better docking score were subject for QikProp analysis. Better ligands (n = 39) obtained from QikProp analysis were subject for ADMET prediction and docking protocol validation through the estimation of receiver operator characteristics. In the later stage, 24 ligands obtained from ADMET study were subject for the estimation of binding energy through MM-GBSA and same were also docked against prolyl-tRNA synthetase to get compounds with dual inhibitor role. Finally, MD simulation and 2D fingerprint MACCS study of two best ligands have shown significant interaction with plasmepsin II and homology against known active ligand with noteworthy MACCS index, respectively. This study concludes that FA12 could be potential drug candidate to fight against Plasmodium falciparum parasites.  相似文献   

9.
Human fatty acid synthase (hFASN), a homo dimeric lipogenic enzyme with seven catalytic domains, is an important clinical target in cancer, metabolic syndrome and infections. Here, molecular modelling and docking methods were implemented to examine the inter-molecular interactions of thioesterase (TE) domain in hFASN with its physiological substrate, and to identify potential chemical inhibitors. TE catalyses the hydrolysis of thioester bond between palmitate and the 4’ phosphopantetheine of acyl carrier protein, releasing 16-carbon palmitate. The crystal structure of hFASN TE in two inhibitory conformations (A and B) were geometry-optimized and used for molecular docking with palmitate, orlistat (a known FASN inhibitor) and virtual screening against compounds from National Cancer Institute (NCI) database. Relatively, low binding affinity was observed during the complex formation of palmitate with A (?.164 kcal/mol) and B (?.332 kcal/mol) forms of TE, when compared with orlistat-docked TE (A form: ?5.872 kcal/mol and B form: ?5.484 kcal/mol), clearly indicating that the native inhibited conformation (crystal structure) was unfavourable for substrate binding. We used these orlistat dual binding modes as positive controls for prioritizing the ligands during virtual screening. From 2, 31,617 molecules in the NCI database, 916 high-scoring compounds (hit ligands) were obtained for A-form and 4582 for B-form of the TE-domain, which were then ranked according to glide docking score, XP H bond score, absorption, distribution, metabolism and excretion and binding free energy (Prime/MM-GBSA). Consequently, two top scoring ligands (NSC: 319661 and NSC: 153166) emerged as promising drug candidates that may be tested in FASN-over-expressing diseases.  相似文献   

10.
Abstract

Phenazine compounds have good activity against Mycobacterium tuberculosis (MTB). Based on the reported activities that were obtained in MTB H37Rv, a three-dimensional quantitative structure–activity relationship (3D-QSAR) model was built to design novel compounds against MTB. A fivefold cross-validation method and external validation were used to analyze the accuracy of forecasting. The model has a cross-validation coefficient q2=0.7 and a non-cross-validation coefficient r= 0.903, indicating that the model has good predictive possibility. The design of anti-pneumococcus MTB compounds was guided by the obtained 3D-QSAR model, and several compounds with better activity were obtained. To test the activity of these compounds, molecular docking, molecular dynamics simulation, and post-simulation analysis of the already reported drug targets in MTB were carried out. Among the total 15 drug targets, only three targets (Rv2361c, Rv2965c, and Rv3048c) were selected based on the docking results. Initial results reported that these compounds possessed good inhibition activity for Rv2361c. The top nine complexes of Rv2361 ligands were only subjected to MD simulation which resulted in a stable dynamics of the structures and showed a residual fluctuation in inhibitors binding pocket. Free energy reported that overall, the derivatives hold strong energy against the protein target. Energetic contribution results showed that residues, Asp76, Arg80, Asn124, Arg127, Arg244, and Arg250, play a major role in total energy. Systems biology approach validates shortlisted drug effect on the entire system which might be useful to predict potential drug in wet lab as well.

Communicated by Ramaswamy H. Sarma  相似文献   

11.
Visceral leishmaniasis affects people from 70 countries worldwide, mostly from Indian, African and south American continent. The increasing resistance to antimonial, miltefosine and frequent toxicity of amphotericin B drives an urgent need to develop an antileishmanial drug with excellent efficacy and safety profile. In this study we have docked series of febrifugine analogues (n = 8813) against trypanothione reductase in three sequential docking modes. Extra precision docking resulted into 108 ligands showing better docking score as compared to two reference ligand. Furthermore, 108 febrifugine analogues and reference inhibitor clomipramine were subjected to ADMET, QikProp and molecular mechanics, the generalized born model and solvent accessibility study to ensure the toxicity caused by compounds and binding-free energy, respectively. Two best ligands (FFG7 and FFG2) qualifying above screening parameters were further subjected to molecular dynamics simulation. Conducting these studies, here we confirmed that 6-chloro-3-[3-(3-hydroxy-2-piperidyl)-2-oxo-propyl]-7-(4-pyridyl) quinazolin-4-one can be potential drug candidate to fight against Leishmania donovani parasites.  相似文献   

12.
Microtubule affinity-regulating kinase 4 (MARK4) has recently been identified as a potential drug target for several complex diseases including cancer, diabetes and neurodegenerative disorders. Inhibition of MARK4 activity is an appealing therapeutic option to treat such diseases. Here, we have performed structure-based virtual high-throughput screening of 100,000 naturally occurring compounds from ZINC database against MARK4 to find its potential inhibitors. The resulted hits were selected, based on the binding affinities, docking scores and selectivity. Further, binding energy calculation, Lipinski filtration and ADMET prediction were carried out to find safe and better hits against MARK4. Best 10 compounds bearing high specificity and binding efficiency were selected, and their binding pattern to MARK4 was analyzed in detail. Finally, 100 ns molecular dynamics simulation was performed to evaluate; the dynamics stability of MARK4-compound complex. In conclusion, these selected natural compounds from ZINC database might be potential leads against MARK4, and can further be exploited in drug design and development for associated diseases.  相似文献   

13.
Cytochrome P450 mono-oxygenases (2UUQ) enzyme from Mycobacterium tuberculosis catalyzes oxidation of organic compounds such as lipids and steroidal hormones therefore remain as potential drug target. Currently available first line anti-tuberculosis drugs have been caused several side effects in the body as well as resistance development by mycobacterium against these drugs, necessitates the considerable need for finding new drugs. Therefore, we propose a structure based computational method to find a new potential inhibitor for cytochrome P450 mono-oxygenases enzyme. Compounds from several ligand databases were docked against the functional sites of 2UUQ (A) through the standard GEMDOCK v2.0 and AUTODOCK4.0 molecular docking tools. Commercially available chemical compound ZINC00004165 (5-[3-(2-nitroimidazol-1-yl) propyl] phenanthridine) has produced top rank with lowest interaction energy of -113.2 (via GEMDOCK) and lowest docking energy of -9.80 kcal/mol (via AUTODOCK) as compared to first line anti TB compounds. Z score and normal distribution analysis verified that the ZINC00004165 compound has more affinity towards 2UUQ in comparison to large number of random population of compounds. ZINC00004165 is also in agreement with the drug likeness properties of Lipinski rule of five without any violation. Therefore, our finding concludes that the commercial compound ZINC00004165 can act as a potential inhibitor against cytochrome P450 mono-oxygenases enzyme of Mycobacterium tuberculosis.  相似文献   

14.
Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme for the biosynthesis of essential amino acids and several important metabolites in microbes. Inhibition of ASADH enzyme is a promising drug target strategy against Mycobacterium tuberculosis (Mtb). In this work, in silico approach was used to identify potent inhibitors of Mtb-ASADH. Aspartyl β-difluorophosphonate (β-AFP), a known lead compound, was used to understand the molecular recognition interactions (using molecular docking and molecular dynamics analysis). This analysis helped in validating the computational protocol and established the participation of Arg99, Glu224, Cys130, Arg249, and His256 amino acids as the key amino acids in stabilizing ligand–enzyme interactions for effective binding, an essential feature is H-bonding interactions with the two arginyl residues at the two ends of the ligand. Best binding conformation of β-AFP was selected as a template for shape-based virtual screening (ZINC and NCI databases) to identify compounds that competitively inhibit the Mtb-ASADH. The top rank hits were further subjected to ADME and toxicity filters. Final filter was based on molecular docking analysis. Each screened molecule carries the characteristics of the highly electronegative groups on both sides separated by an average distance of 6?Å. Finally, the best predicted 20 compounds exhibited minimum three H-bonding interactions with Arg99 and Arg249. These identified hits can be further used for designing the more potent inhibitors against ASADH family. MD simulations were also performed on two selected compounds (NSC4862 and ZINC02534243) for further validation. During the MD simulations, both compounds showed same H-bonding interactions and remained bound to key active residues of Mtb-ASADH.  相似文献   

15.
Sirtuins are NAD+-dependent lysine deacetylases member of the class III HDAC family. These are demonstrated to be therapeutic targets in parasitic diseases like schistosomiasis. Observations suggested that sirtuin enzyme is necessary for the functionality of fe/male reproductive system, due to which SmSirt2 is treated as a potential therapeutic target. There are no structural and molecular features of SmSirt2 have been reported yet. In this study, homology modeling has been used to determine the three-dimensional features of the SmSITRT2. Further, structure validation has been performed by energy minimization and Ramachandran plot. Validated structures are further subjected to molecular docking and virtual screening to find the best lead molecules for downstream analysis. Ten lead molecules were selected while comparing virtual screening of hSirt2 and SmSirt2 both. These leads are further compared with AKG2 which is known inhibitor of hSirt2 (?8.8 kcal/mol). Out of selected 10 leads, four of them (ZINC23995485 (?9.5 kcal/mol), ZINC53298162 (?9.4 kcal/mol), ZINC70927268 (?10.0 kcal/mol), ZINC89878705 (?11.2 kcal/mol)) have shown better interaction with SmSirt2, in which ZINC89878705 (?11.2 kcal/mol) shows a more compact packing as compared to AKG2 and rest of ligands. These molecules could be further subject to in vitro study and model of SmSirt2 has been proposed for further structure-based drug design projects concerning sirtuins from Schistosoma mansoni.  相似文献   

16.
Calcium/calmodulin-dependent protein kinase IV (CAMKIV) is associated with many diseases including cancer and neurodegenerative disorders and thus being considered as a potential drug target. Here, we have employed the knowledge of three-dimensional structure of CAMKIV to identify new inhibitors for possible therapeutic intervention. We have employed virtual high throughput screening of 12,500 natural compounds of Zinc database to screen the best possible inhibitors of CAMKIV. Subsequently, 40 compounds which showed significant docking scores (?11.6 to ?10.0?kcal/mol) were selected and further filtered through Lipinski rule and drug likeness parameter to get best inhibitors of CAMKIV. Docking results are indicating that ligands are binding to the hydrophobic cavity of the kinase domain of CAMKIV and forming a significant number of non-covalent interactions. Four compounds, ZINC02098378, ZINC12866674, ZINC04293413, and ZINC13403020, showing excellent binding affinity and drug likeness were subjected to molecular dynamics simulation to evaluate their mechanism of interaction and stability of protein-ligand complex. Our observations clearly suggesting that these selected ligands may be further employed for therapeutic intervention to address CAMKIV associated diseases.

Communicated by Ramaswamy H. Sarma  相似文献   


17.
Abstract

Streptococcal infections are common in human and antibiotics are frequently prescribed in clinical practice. However, infections caused by drug-resistant strains are particularly difficult to treat using common antibiotics. Hence, there is an urgent need for new antibiotics. Quorum sensing is a regulatory mechanism involving cell communication that is thought to play an important role in various bacterial infections, including those caused by Streptococcus. The ATP-binding cassette transporter ComA of Streptococcus is essential for quorum-sensing signal production. The inhibition of the ComA peptidase domain (ComA PEP) suppresses the quorum-sensing pathway and resulting changes in phenotype and/or behavior. Using virtual screening and molecular dynamics simulations, two promising candidate compounds, ZINC32918029 and ZINC6751571, were found. These compounds had similar binding modes and interactions to the experimentally determined reference inhibitor 6CH. However, a significantly stronger negative binding energy was achieved (?113.501?±?15.312?KJ/mol and ?103.153?±?11.912?KJ/mol for ZINC32918029 and ZINC6751571, respectively). Molecular dynamics simulations also revealed that ZINC32918029 and ZINC6751571 had a strong affinity for ComA PEP. These results indicate that ZINC32918029 and ZINC6751571 are promising candidate inhibitors of the Streptococcus quorum-sensing pathway.

Communicated by Ramaswamy H. Sarma  相似文献   

18.
Aspartate-semialdehyde dehydrogenase (ASADH; EC 1.2.1.11) is a key enzyme in the biosynthesis of essential amino acids in prokaryotes and fungi, inhibition of ASADH leads to the development of novel antitubercular agents. In the present work, a combined structure and ligand-based pharmacophore modeling, molecular docking, and molecular dynamics (MD) approaches were employed to identify potent inhibitors of mycobacterium tuberculosis (Mtb)-ASADH. The structure-based pharmacophore hypothesis consists of three hydrogen bond acceptor (HBA), two negatively ionizable, and one positively ionizable center, while ligand-based pharmacophore consists of additional one HBA and one hydrogen bond donor features. The validated pharmacophore models were used to screen the chemical databases (ZINC and NCI). The screened hits were subjected to ADME and toxicity filters, and subsequently to the molecular docking analysis. Best-docked 25 compounds carry the characteristics of highly electronegative functional groups (–COOH and –NO2) on both sides and exhibited the H-bonding interactions with highly conserved residues Arg99, Arg249, and His256. For further validation of docking results, MD simulation studies were carried out on two representative compounds NSC51108 and ZINC04203124. Both the compounds remain bound to the key active residues of Mtb-ASADH during the MD simulations. These identified hits can be further used for lead optimization and in the design more potent inhibitors against Mtb-ASADH.  相似文献   

19.
In order to identify novel inhibitors of the Helicobacter pylori nickel response regulator (HpNikR) an integrative protocol was performed for half a million compounds retrieved from the ZINC database. We firstly implement a structure-based virtual screening to build a library of potential inhibitors against the HpNikR using a docking analysis (AutoDock Vina). The library was then used to perform a hierarchical clustering of docking poses, based on protein-contact footprints calculation from the multiple conformations given by the AutoDock Vina software, and the drug-protein interaction analyses to identify and remove potential promiscuous compounds likely interacting with human proteins, hence causing drug side effects. 250 drug-like compounds were finally proposed as non-promicuous potential inhibitors for HpNikR. These compounds target the DNA-binding sites of HpNikR so that HpNikR-compound binding could be able to mimic key interactions in the DNA-protein recognition process. HpNikR inhibitors with promising potential against H. pylori could also act against other human bacterial pathogens due to the conservation of targeting motif of NikR involved in DNA-protein interaction.  相似文献   

20.
Poly(ADP-ribose) polymerase-1 (PARP-1) enzyme has critical roles in DNA replication repair and recombination. Thus, PARP-1 inhibitors play an important role in the cancer therapy. In the current study, we have performed combination of in silico and in vitro studies in order to discover novel inhibitors against PARP-1 target. Structure-based virtual screening was carried out for an available small molecules database. A total of 257,951 ligands from Otava database were screened at the binding pocket of PARP-1 using high-throughput virtual screening techniques. Filtered structures based on predicted binding energy results were then used in more sophisticated molecular docking simulations (i.e. Glide/standard precision, Glide/XP, induced fit docking – IFD, and quantum mechanics polarized ligand docking – QPLD). Potential high binding affinity compounds that are predicted by molecular simulations were then tested by in vitro methods. Computationally proposed compounds as PARP-1 inhibitors (Otava Compound Codes: 7111620047 and 7119980926) were confirmed by in vitro studies. In vitro results showed that compounds 7111620047 and 7119980926 have IC50 values of 0.56 and 63 μM against PARP-1 target, respectively. The molecular mechanism analysis, free energy perturbation calculations using long multiple molecular dynamics simulations for the discovered compounds which showed high binding affinity against PARP-1 enzyme, as well as structure-based pharmacophore development (E-pharmacophore) studies were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号