首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The spitz class and Egfr signaling (spi/Egfr) genes are required for the proper establishment of cell fate in the Drosophila ventral neuroectoderm. We investigated the role of the central nervous system (CNS) midline cells, and the hierarchical relationship among the spi/Egfr genes, in this process by analyzing the spatial and temporal expression of several of the genes in selected spi/Egfr mutants. Our analysis showed that expression of all the spi/Egfr genes is severely reduced in the single-minded (sim) mutant, and ectopically induced in en-Gal4/UAS-sim embryos. This result indicates that sim acts upstream of all the other spi/Egfr genes. The CNS midline cells regulate rhomboid (rho) expression in the ventral neuroectoderm and activate the EGFR signaling pathway. We also found that argos (aos) and orthodenticle (otd) act downstream of pointed (pnt), and that aos represses expression of otd in the lateral neuroectoderm to establish differential cell fates in the ventral neuroectoderm. Our findings suggest the following hierarchical relationship among the spi/Egfr genes: [see text].  相似文献   

2.
The Drosophila embryonic central nervous system (CNS) develops from sets of neuroblasts (NBs) which segregate from the ventral neuroectoderm during early embryogenesis. It is not well established how each individual NB in the neuroectoderm acquires its characteristic identity along the dorsal-ventral axis. Since it is known that CNS midline cells and spitz class genes (pointed, rhomboid, single-minded, spitz and Star) are required for the proper patterning of ventral CNS and epidermis originated from the ventral neuroectoderm, this study was carried out to determine the functional roles of the CNS midline cells and spitz class genes in the fate determination of ventral NBs and formation of mature neurons and their axon pathways. Several molecular markers for the identified NBs, neurons, and axon pathways were employed to examine marker gene expression profile, cell lineage and axon pathway formation in the spitz class mutants. This analysis showed that the CNS midline cells specified by single-minded gene as well as spitz class genes are required for identity determination of a subset of ventral NBs and for formation of mature neurons and their axon pathways. This study suggests that the CNS midline cells and spitz class genes are necessary for proper patterning of the ventral neuroectoderm along the dorsal-ventral axis.  相似文献   

3.
Dorsoventral patterning of the Drosophila ventral neuroectoderm is established by the expression of three evolutionarily conserved homeodomain genes: ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh) in the medial, intermediate, and lateral columns of the ventral neuroectoderm, respectively. It was not clear whether extrinsic factor(s) from the CNS midline cells influence the initial dorsoventral patterning by controlling the expression of the dorsoventral patterning genes. We show here that the CNS midline cells, specified by single-minded (sim), are essential for maintaining expression of the dorsoventral patterning genes. Ectopic expression of sim in the ventral neuroectoderm during the blastoderm stage repressed expression of the three homeodomain genes in the ventral neuroectoderm. This indicates that the identity of the CNS midline cells is established by a series of repressions of the three homeodomain genes in the ventral neuroectoderm. Ectopic expression of sim in the ventral neuroectoderm during initial neurogenesis induced ectopic ind expression in the medial column in addition to that in the intermediate column via EGFR signaling between the ventral neuroectoderm and midline cells. In contrast, it repressed the expression of vnd and msh in the medial and lateral columns, respectively. Our findings demonstrate that the CNS midline cells provide extrinsic positional information via EGFR signaling that maintains the initial subdivision of the ventral neuroectoderm into three dorsoventral columns during initial neurogenesis.  相似文献   

4.
The Drosophila CNS develops from the ventral neuroectoderm (VNE) on both sides of the midline along the dorsoventral axis. During early neurogenesis, three homeodomain and Egfr signaling genes are required for the dorsoventral patterning of the VNE. However, the roles of CNS midline cells in patterning of the specific neural lineages are not well understood. Their roles in identity determination and differentiation of the well-established MP2 lineage were studied using several molecular markers. We showed that these cells are essential for identity determination of the MP2 lineage that originates from the VNE. The midline cells and the Egfr signaling genes were also required for the proper maintenance of MP2 and the correct formation of MP2 axonal pathways. Overexpression of sim in the midline cells activated ectopic expression of MP2 markers in the VNE. This analysis suggests that CNS midline cells and Egfr signaling genes play essential roles in the proper establishment and differentiation of the MP2 lineage.  相似文献   

5.
The CNS midline cells, specified by the single-minded (sim) gene, are required for the proper patterning of the ventral CNS and epidermis, which are derived from the Drosophila ventral neuroectoderm. Defects in the sim mutant are characterized by the loss of the gene expression, which is required for the proper formation of the ventral neurons and epidermis, and by a decrease in the spacing of longitudinal and commissural axon tracks. Molecular and cellular mechanisms for these defects were analyzed to elucidate the precise role of the CNS midline cells in proper patterning of the ventral neuroectoderm during embryonic neurogenesis. These analyses showed that the ventral neuroectoderm in the sim mutant fails to carry out its proper formation and characteristic cell division cycle. This resulted in the loss of the dividing neuroectodermal cells that are located ventral to the CNS midline. The CNS midline cells are also required for the cell cycle-independent expression of the neural and epidermal markers. This indicates that the CNS midline cells are essential for the establishment and maintenance of the ventral epidermal and neuronal cell lineage by cell-cell interaction. On the other hand, the CNS midline cells do not cause extensive cell death in the ventral neuroectoderm. This study indicates that the CNS midline cells play important roles in the coordination of the proper cell cycle progression and the correct identity determination of the adjacent ventral neuroectoderm along the dorsoventral axis.  相似文献   

6.
Genes of the ventrolateral group in Drosophila are dedicated to developmental regulation of Egfr signaling in multiple processes including wing vein development. Among these genes, Egfr encodes the Drosophila EGF-Receptor, spitz (spi) and vein (vn) encode EGF-related ligands, and rhomboid (rho) and Star (S) encode membrane proteins. In this study, we show that rho-mediated hyperactivation of the EGFR/MAPK pathway is required for vein formation throughout late larval and early pupal development. Consistent with this observation, rho activity is necessary and sufficient to activate MAPK in vein primordium during late larval and early pupal stages. Epistasis studies using a dominant negative version of Egfr and a ligand-independent activated form of Egfr suggest that rho acts upstream of the receptor. We show that rho and S function in a common aspect of vein development since loss-of-function clones of rho or S result in nearly identical non-autonomous loss-of-vein phenotypes. Furthermore, mis-expression of rho and S in wild-type and mutant backgrounds reveals that these genes function in a synergistic and co-dependent manner. In contrast, spi does not play an essential role in the wing. These data indicate that rho and S act in concert, but independently of spi, to promote vein development through the EGFR/MAPK signaling pathway.  相似文献   

7.
Oh CT  Kwon SH  Jeon KJ  Han PL  Kim SH  Jeon SH 《FEBS letters》2002,531(3):427-431
An important step in Drosophila neurogenesis is to establish the neural dorsoventral (DV) patterning. Here we describe how dpp loss-of- and gain-of-function mutation affects the homeobox-containing neural DV patterning genes expressed in the ventral neuroectoderm. Ventral nervous system defective (vnd), intermediate neuroblast defective (ind), muscle-specific homeobox (msh), and orthodenticle (otd) genes participate in development of the central nervous system and peripheral nervous system, and encode homeodomain proteins. otd and msh genes were ectopically expressed in dpp loss-of-function mutation, but vnd and ind were not affected. However, when dpp was ectopically expressed in the ventral neuroectoderm by rho-GAL4/UAS-dpp system, it caused the repression of vnd, and msh expressions in ventral and dorsal columns of the neuroectoderm, respectively, but not that of ind. The later expression pattern of otd was also restricted by Dpp. The expression pattern of msh, vnd and otd in dpp loss-of-function and gain-of-function mutation indicates that Dpp activity does not reach to the ventral midline and it works locally to establish the dorsal boundary of the ventral neuroectoderm.  相似文献   

8.
The Drosophila embryonic Central Nervous System (CNS) develops from the ventrolateral region of the embryo, the neuroectoderm. Neuroblasts arise from the neuroectoderm and acquire unique fates based on the positions in which they are formed. Previous work has identified six genes that pattern the dorsoventral axis of the neuroectoderm: Drosophila epidermal growth factor receptor (Egfr), ventral nerve cord defective (vnd), intermediate neuroblast defective (ind), muscle segment homeobox (msh), Dichaete and Sox-Neuro (SoxN). The activities of these genes partition the early neuroectoderm into three parallel longitudinal columns (medial, intermediate, lateral) from which three distinct columns of neural stem cells arise. Most of our knowledge of the regulatory relationships among these genes derives from classical loss of function analyses. To gain a more in depth understanding of Egfr-mediated regulation of vnd, ind and msh and investigate potential cross-regulatory interactions among these genes, we combined loss of function with ectopic activation of Egfr activity. We observe that ubiquitous activation of Egfr expands the expression of vnd and ind into the lateral column and reduces that of msh in the lateral column. Through this work, we identified the genetic criteria required for the development of the medial and intermediate column cell fates. We also show that ind appears to repress vnd, adding an additional layer of complexity to the genetic regulatory hierarchy that patterns the dorsoventral axis of the CNS. Finally, we demonstrate that Egfr and the genes of the achaete-scute complex act in parallel to regulate the individual fate of neural stem cells.  相似文献   

9.
10.
An important question in neurobiology is how different cell fates are established along the dorsoventral (DV) axis of the central nervous system (CNS). Here we investigate the origins of DV patterning within the Drosophila CNS. The earliest sign of neural DV patterning is the expression of three homeobox genes in the neuroectoderm-ventral nervous system defective (vnd), intermediate neuroblasts defective (ind), and muscle segment homeobox (msh)-which are expressed in ventral, intermediate, and dorsal columns of neuroectoderm, respectively. Previous studies have shown that the Dorsal, Decapentaplegic (Dpp), and EGF receptor (Egfr) signaling pathways regulate embryonic DV patterning, as well as aspects of CNS patterning. Here we describe the earliest expression of each DV column gene (vnd, ind, and msh), the regulatory relationships between all three DV column genes, and the role of the Dorsal, Dpp, and Egfr signaling pathways in defining vnd, ind, and msh expression domains. We confirm that the vnd domain is established by Dorsal and maintained by Egfr, but unlike a previous report we show that vnd is not regulated by Dpp signaling. We show that ind expression requires both Dorsal and Egfr signaling for activation and positioning of its dorsal border, and that abnormally high Dpp can repress ind expression. Finally, we show that the msh domain is defined by repression: it occurs only where Dpp, Vnd, and Ind activity is low. We conclude that the initial diversification of cell fates along the DV axis of the CNS is coordinately established by Dorsal, Dpp, and Egfr signaling pathways. Understanding the mechanisms involved in patterning vnd, ind, and msh expression is important, because DV columnar homeobox gene expression in the neuroectoderm is an early, essential, and evolutionarily conserved step in generating neuronal diversity along the DV axis of the CNS.  相似文献   

11.
The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.  相似文献   

12.
The relation between signal transduction pathways and the genes that specify regional identity remains poorly understood. We investigated the interaction between the epidermal growth factor receptor (EGFR) pathway and the homeobox gene orthodenticle (otd), which specifies cell fate during head development. Previous studies of head formation in Drosophila melanogaster demonstrated that reducing either EGFR signaling or otd expression in the imaginal primordium of the dorsal head capsule eliminates the ocelli and other dorsal head structures. Here, we show that blocking EGFR signaling reduces otd expression and that activating EGFR signaling outside this primordium induces ectopic otd expression. We also demonstrate that loss of EGFR can be rescued by constitutive otd expression. Our results indicate that otd is a downstream target of the EGFR pathway during head development.  相似文献   

13.
The Drosophila embryonic CNS arises from the neuroectoderm, which is divided along the dorsal-ventral axis into two halves by specialized mesectodermal cells at the ventral midline. The neuroectoderm is in turn divided into three longitudinal stripes--ventral, intermediate, and lateral. The ventral nervous system defective, or vnd, homeobox gene is expressed from cellularization throughout early neural development in ventral neuroectodermal cells, neuroblasts, and ganglion mother cells, and later in an unrelated pattern in neurons. Here, in the context of the dorsal-ventral location of precursor cells, we reassess the vnd loss- and gain-of-function CNS phenotypes using cell specific markers. We find that over expression of vnd causes significantly more profound effects on CNS cell specification than vnd loss. The CNS defects seen in vnd mutants are partly caused by loss of progeny of ventral neuroblasts-the commissures are fused and the longitudinal connectives are aberrantly positioned close to the ventral midline. The commissural vnd phenotype is associated with defects in cells that arise from the mesectoderm, where the VUM neurons have pathfinding defects, the MP1 neurons are mis-specified, and the midline glia are reduced in number. vnd over expression results in the mis-specification of progeny arising from all regions of the neuroectoderm, including the ventral neuroblasts that normally express the gene. The CNS of embryos that over express vnd is highly disrupted, with weak longitudinal connectives that are placed too far from the ventral midline and severely reduced commissural formation. The commissural defects seen in vnd gain-of-function mutants correlate with midline glial defects, whereas the mislocalization of interneurons coincides with longitudinal glial mis-specification. Thus, Drosophila neural and glial specification requires that vnd expression by tightly regulated.  相似文献   

14.
The Drosophila EGF receptor is required for differentiation of many cell types during eye development. We have used mosaic analysis with definitive null mutations to analyze the effects of complete absence of EGFR, Ras or Raf proteins during eye development. The Egfr, ras and raf genes are each found to be essential for recruitment of R1-R7 cells. In addition Egfr is autonomously required for MAP kinase activation. EGFR is not essential for R8 cell specification, either alone or redundantly with any other receptor that acts through Ras or Raf, or by activating MAP kinase. As with Egfr, loss of ras or raf perturbs the spacing and arrangement of R8 precursor cells. R8 cell spacing is not affected by loss of argos in posteriorly juxtaposed cells, which rules out a model in which EGFR acts through argos expression to position R8 specification in register between adjacent columns of ommatidia. The R8 spacing role of the EGFR was partially affected by simultaneous deletion of spitz and vein, two ligand genes, but the data suggest that EGFR activation independent of spitz and vein is also involved. The results prove that R8 photoreceptors are specified and positioned by distinct mechanisms from photoreceptors R1-R7.  相似文献   

15.
Patterning of the Drosophila ventral epidermis is a tractable model for understanding the role of signalling pathways in development. Interplay between Wingless and EGFR signalling determines the segmentally repeated pattern of alternating denticle belts and smooth cuticle: spitz group genes, which encode factors that stimulate EGFR signalling, induce the denticle fate, while Wingless signalling antagonizes the effect of EGFR signalling, allowing cells to adopt the smooth-cuticle fate. Medial fusion of denticle belts is also a hallmark of spitz group genes, yet its underlying cause is unknown. We have studied this phenotype and discovered a new function for EGFR signalling in epidermal patterning. Smooth-cuticle cells, which are receiving Wingless signalling, are nevertheless dependent on EGFR signalling for survival. Reducing EGFR signalling results in apoptosis of smooth-cuticle cells between stages 12 and 14, bringing adjacent denticle regions together to result in denticle belt fusions by stage 15. Multiple factors stimulate EGFR signalling to promote smooth-cuticle cell survival: in addition to the spitz group genes, Rhomboid-3/roughoid, but not Rhomboid-2 or -4, and the neuregulin-like ligand Vein also function in survival signalling. Pointed mutants display the lowest frequency of fusions, suggesting that EGFR signalling may inhibit apoptosis primarily at the post-translational level. All ventral epidermal cells therefore require some level of EGFR signalling; high levels specify the denticle fate, while lower levels maintain smooth-cuticle cell survival. This strategy might guard against developmental errors, and may be conserved in mammalian epidermal patterning.  相似文献   

16.
J R Nambu  R G Franks  S Hu  S T Crews 《Cell》1990,63(1):63-75
The single-minded (sim) gene of Drosophila encodes a nuclear protein that plays a critical role in the development of the neurons, glia, and other nonneuronal cells that lie along the midline of the embryonic CNS. Using distinct cell fate markers, we observe that in sim mutant embryos the midline cells fail to differentiate properly into their mature CNS cell types and do not take their appropriate positions within the developing CNS. We further present evidence that sim is required for midline expression of a group of genes including slit, Toll, rhomboid, engrailed, and a gene at 91F; that the sim mutant CNS defect may be largely due to loss of midline slit expression; and that the snail gene is required to repress sim and other midline genes in the presumptive mesoderm.  相似文献   

17.
The Drosophila jing gene encodes a zinc finger protein required for the differentiation and survival of embryonic CNS midline and tracheal cells. We show that there is a functional relationship between jing and the Egfr pathway in the developing CNS midline and trachea. jing function is required for Egfr pathway gene expression and MAPK activity in both the CNS midline and trachea. jing over-expression effects phenocopy those of the Egfr pathway and require Egfr pathway function. Activation of the Egfr pathway in loss-of-function jing mutants partially rescues midline cell loss. Egfr pathway genes and jing show dominant genetic interactions in the trachea and CNS midline. Together, these results show that jing regulates signal transduction in developing midline and tracheal cells.  相似文献   

18.
The Drosophila epidermal growth factor receptor (EGFR) may be activated by two ligands expressed in the embryonic nervous system, Spitz and Vein. Previous studies have established Spitz as an essential activator of EGFR signaling in nervous system development. Here, we report the pattern of expression of vein mRNA in the nervous system and characterize the contribution of vein to cell lineage and axonogenesis. The number of midline glia (MG) precursors is reduced in vein mutants before the onset of embryonic apoptosis. In contrast to spitz, mis-expression of vein does not suppress apoptosis in the MG. These data indicate that early midline EGFR signaling, requiring vein and spitz, establishes MG precursor number, whereas later EGFR signals, requiring spitz, suppress apoptosis in the MG. vein mutants show early irregularities during axon tract establishment, which resolve later to variable defasciculation and thinner intersegmental axon tracts. vein and spitz phenotypes act additively in the regulation of MG cell number, but show synergism in a midline neuronal cell number phenotype and in axon tract architecture. vein appears to act downstream of spitz to briefly amplify local EGFR activation.  相似文献   

19.
The Drosophila embryonic CNS arises from the neuroectoderm, which is divided along the dorsal‐ventral axis into two halves by specialized mesectodermal cells at the ventral midline. The neuroectoderm is in turn divided into three longitudinal stripes—ventral, intermediate, and lateral. The ventral nervous system defective, or vnd, homeobox gene is expressed from cellularization throughout early neural development in ventral neuroectodermal cells, neuroblasts, and ganglion mother cells, and later in an unrelated pattern in neurons. Here, in the context of the dorsal‐ventral location of precursor cells, we reassess the vnd loss‐ and gain‐of‐function CNS phenotypes using cell specific markers. We find that over expression of vnd causes significantly more profound effects on CNS cell specification than vnd loss. The CNS defects seen in vnd mutants are partly caused by loss of progeny of ventral neuroblasts—the commissures are fused and the longitudinal connectives are aberrantly positioned close to the ventral midline. The commissural vnd phenotype is associated with defects in cells that arise from the mesectoderm, where the VUM neurons have pathfinding defects, the MP1 neurons are mis‐specified, and the midline glia are reduced in number. vnd over expression results in the mis‐specification of progeny arising from all regions of the neuroectoderm, including the ventral neuroblasts that normally express the gene. The CNS of embryos that over express vnd is highly disrupted, with weak longitudinal connectives that are placed too far from the ventral midline and severely reduced commissural formation. The commissural defects seen in vnd gain‐of‐function mutants correlate with midline glial defects, whereas the mislocalization of interneurons coincides with longitudinal glial mis‐specification. Thus, Drosophila neural and glial specification requires that vnd expression by tightly regulated. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 118–136, 2002; DOI 10.1002/neu.10022  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号