首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磷酸蔗糖合酶(sucrose phosphate synthase,SPS)是植物中蔗糖合成的主要限速酶,影响植物的生长发育和果实中蔗糖的含量。为探明苹果中SPS基因家族特性及其在蔗糖合成中的作用,该研究从苹果基因组中分离了MdSPS家族基因,分析了它们的进化关系以及mRNA表达特性与酶活性和蔗糖含量的关系。结果显示:(1)在苹果基因组中有8个SPS家族基因表达,它们分别属于双子叶植物的3个SPS亚家族。(2)荧光定量PCR分析显示,苹果C类的MdSPS6基因和A类的MdSPS1a/b基因是苹果中表达丰度最高的SPS基因成员,其中MdSPS6在苹果成熟果中表达丰度最高,其次是成熟叶片,而MdSPS1a/b在不积累蔗糖的幼果中表达丰度最高。(3)在果实发育过程中,除MdSPS1a/b之外,其它5个苹果MdSPS家族基因均随果实的生长表达丰度增加,与SPS活性和蔗糖含量明显呈正相关关系。研究表明,C类家族MdSPS6是苹果果实发育后期和叶片中蔗糖合成的主要SPS基因。  相似文献   

2.
3.
Carbon signaling can override carbon supply in the regulation of growth. At least some of this regulation is imparted by the sugar signal trehalose 6-phosphate (T6P) through the protein kinase, SnRK1. This signaling pathway regulates biosynthetic processes involved in growth under optimal growing conditions. Recently, using a seedling system we showed that under sub-optimal conditions, such as cold, carbon signaling by T6P/ SnRK1 enables recovery of growth following relief of the stress. The T6P/ SnRK1 mechanism thus could be selected as a means of improving low temperature tolerance. High-throughput automated Fv/Fm measurements provide a potential means to screen for T6P/ SnRK1, and here we confirm through measurements of Fv/Fm in rosettes that T6P promotes low temperature tolerance and recovery during cold to warm transfer. Further, to better understand the coordination between sugars, trehalose pathway, and temperature-dependent growth, we examine the interrelationship between sugars, trehalose phosphate synthase (TPS), and trehalose phosphate phosphatase (TPP) gene expression and T6P content in seedlings. Sucrose, particularly when fed exogenously, correlated well with TPS1 and TPPB gene expression, suggesting that these enzymes are involved in maintaining carbon flux through the pathway in relation to sucrose supply. However, when sucrose accumulated to higher levels under low temperature and low N, TPS1 and TPPB expression were less directly related to sucrose; other factors may also contribute to regulation of TPS1 and TPPB expression under these conditions. TPPA expression was not related to sucrose content and all genes were not well correlated with endogenous glucose. Our work has implications for understanding acclimation to sink-limited growth conditions such as low temperature and for screening cold-tolerant genotypes with altered T6P/ SnRK1 signaling.  相似文献   

4.
5.
6.
7.
D-type cyclins play key roles in the G1-to-S phase transition that occurs in response to nutrient and hormonal signals. In higher plants, sucrose is the major transported carbon source, and is likely to be a major determinant of cell division. To elucidate how sugar affects on the regulation of cell cycle machinery and plant development, we examined the role of carbon sources on the expression of cell-cycle-related genes in transgenic tobacco plants overexpressing Nicta;CycD3;4. The Nicta;CycD3;4 overexpressed transgenic plants showed accelerated growth and remarkable increase in the number of cells in the S and G2 phases in response to sucrose concentrations. Increased expressions level of Nicta;CycD3;4 gene was observed in transgenic tobacco plants grown on 1/2 strength MS medium supplemented with a high concentration of sugar. Moreover, the expression of sugar-sensing-related gene, invertase, was also maintained at a high level in transgenic tobacco plants with elevated sugar availabiliy. These findings indicate that sugar availability plays a role during the G1 phase and the transition of the G1-to-S phase of cell cycle by controlling the expression of Nicta;CycD3;4.  相似文献   

8.

Background  

Sucrose phosphate synthase (SPS) is an important component of the plant sucrose biosynthesis pathway. In the monocotyledonous Poaceae, five SPS genes have been identified. Here we present a detailed analysis of the wheat SPSII family in wheat. A set of homoeologue-specific primers was developed in order to permit both the detection of sequence variation, and the dissection of the individual contribution of each homoeologue to the global expression of SPSII.  相似文献   

9.
蔗糖是一类重要的碳水化合物,其代谢与植物生长发育及抵抗胁迫等有密切的关系。蔗糖合成酶(SUS)、蔗糖磷酸合成酶(SPS)与蔗糖转化酶(INV)是参与蔗糖代谢的三类关键酶。本研究依据转录组测序数据,从能源植物菊芋中鉴定了2个SUS、2个SPS和7个INV基因(GenBank No:MK386943-53)。生物信息学分析表明,菊芋SUS、SPS和INV的氨基酸序列与其他物种具有较高的相似性,均属于亲水性蛋白。在25、30°C处理10、15、20 d的菊芋幼苗叶片中,这三种基因家族成员呈现不同的表达模式;除可溶性总糖含量减少外,果糖、蔗糖、蔗果三糖等含量没有发生明显变化。表明高温下幼苗蔗糖代谢关键酶基因发生了响应,蔗糖代谢处于平衡状态,显示了菊芋对高温的良好耐受性。  相似文献   

10.
11.
12.
13.
14.
Sucrose phosphate synthase (SPS) catalyzes the first step in the synthesis of sucrose in photosynthetic tissues. We characterized the expression of three different isoforms of SPS belonging to two different SPS gene families in alfalfa (Medicago sativa L.), a previously identified SPS (MsSPSA) and two novel isoforms belonging to class B (MsSPSB and MsSPSB3). While MsSPSA showed nodule-enhanced expression, both MsSPSB genes exhibited leaf-enhanced expression. Alfalfa leaf and nodule SPS enzymes showed differences in chromatographic and electrophoretic migration and differences in V max and allosteric regulation. The root nodules in legume plants are a strong sink for photosynthates with its need for ATP, reducing power and carbon skeletons for dinitrogen fixation and ammonia assimilation. The expression of genes encoding SPS and other key enzymes in sucrose metabolism, sucrose phosphate phosphatase and sucrose synthase, was analyzed in the leaves and nodules of plants inoculated with Sinorhizobium meliloti. Based on the expression pattern of these genes, the properties of the SPS isoforms and the concentration of starch and soluble sugars in nodules induced by a wild type and a nitrogen fixation deficient strain, we propose that SPS has an important role in the control of carbon flux into different metabolic pathways in the symbiotic nodules.  相似文献   

15.

Background

The caleosin genes encode proteins with a single conserved EF hand calcium-binding domain and comprise small gene families found in a wide range of plant species. Some members of the gene family have been shown to be upregulated by environmental stresses including low water availability and high salinity. Caleosin 3 from wheat has been shown to interact with the α-subunit of the heterotrimeric G proteins, and to act as a GTPase activating protein (GAP). This study characterizes the size and diversity of the gene family in wheat and related species and characterizes the differential tissue-specific expression of members of the gene family.

Results

A total of 34 gene family members that belong to eleven paralogous groups of caleosins were identified in the hexaploid bread wheat, T. aestivum. Each group was represented by three homeologous copies of the gene located on corresponding homeologous chromosomes, except the caleosin 10, which has four gene copies. Ten gene family members were identified in diploid barley, Hordeum vulgare, and in rye, Secale cereale, seven in Brachypodium distachyon, and six in rice, Oryza sativa. The analysis of gene expression was assayed in triticale and rye by RNA-Seq analysis of 454 sequence sets and members of the gene family were found to have diverse patterns of gene expression in the different tissues that were sampled in rye and in triticale, the hybrid hexaploid species derived from wheat and rye. Expression of the gene family in wheat and barley was also previously determined by microarray analysis, and changes in expression during development and in response to environmental stresses are presented.

Conclusions

The caleosin gene family had a greater degree of expansion in the Triticeae than in the other monocot species, Brachypodium and rice. The prior implication of one member of the gene family in the stress response and heterotrimeric G protein signaling, points to the potential importance of the caleosin gene family. The complexity of the family and differential expression in various tissues and under conditions of abiotic stress suggests the possibility that caleosin family members may play diverse roles in signaling and development that warrants further investigation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-239) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
18.
19.
Sucrose synthesis/accumulation in sugarcane is a complex process involving many genes and regulatory sequences that control biochemical events in source–sink tissues. Among these, sucrose synthase (SuSy), sucrose phosphate synthase (SPS), soluble acid (SAI) and cell wall (CWI) invertases are important. Expression of these enzymes was compared in an early (CoJ64) and late (BO91) maturing sugarcane variety using end‐point and qRT‐PCR. Quantitative RT‐PCR at four crop stages revealed high CWI expression in upper internodes of CoJ64, which declined significantly in both top and bottom internodes with maturity. In BO91, CWI expression was high in top and bottom internodes and declined significantly only in top internodes as the crop matured. Overall, CWI expression was higher in CoJ64 than in BO91. During crop growth, there was no significant change in SPS expression in bottom internodes in CoJ64, whereas in BO91 it decreased significantly. Apart from a significant decrease in expression of SuSy in mature bottom internodes of BO91, there was no significant change. Similar SAI expression was observed with both end‐point and RT‐PCR, except for significantly increased expression in top internodes of CoJ64 with maturity. SAI, being a major sucrose hydrolysing enzyme, was also monitored with end‐point PCR expression in internode tissues of CoJ64 and BO91, with higher expression of SAI in BO91 at early crop stages. Enzyme inhibitors, e.g. manganese chloride (Mn++), significantly suppressed expression of SAI in both early‐ and late‐maturing varieties. Present findings enhance understanding of critical sucrose metabolic gene expression in sugarcane varieties differing in content and time of peak sucrose storage. Thus, through employing these genes, improvement of sugarcane sucrose content is possible.  相似文献   

20.
Members of the ankyrin repeats (ANK) gene family encode ANK domain that are common in diverse organisms and play important roles in cell growth and development, such as cell-cell signal transduction and cell cycle regulation. Recently, genome-wide identification and evolutionary analyses of the ANK gene family have been carried out in Arabidopsis and rice. However, little is known regarding the ANK genes in the entire maize genome. In this study, we described the identification and structural characterization of 71 ANK genes in maize (ZmANK). Then, comprehensive bioinformatics analyses of ZmANK genes family were performed including phylogenetic, domain and motif analysis, chromosomal localization, intron/exon structural patterns, gene duplications and expression profiling. Domain composition analyses showed that ZmANK genes formed ten subfamilies. Five tandem duplications and 14 segmental duplications were identified in ZmANK genes. Furthermore, we took comparative analysis of the total ANK gene family in Arabidopsis, rice and maize, ZmANKs were more closely paired with OsANKs than with AtANKs. At last, expression profile analyses were performed. Forty-one members of ZmANK genes held EST sequences records. Semi-quantitative expression and microarray data analysis of these 41 ZmANK genes demonstrated that ZmANK genes exhibit a various expression pattern, suggesting that functional diversification of ZmANK genes family. The results will present significant insights to explore ANK genes expression and function in future studies in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号