首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
植物种群更新限制——从种子生产到幼树建成   总被引:8,自引:0,他引:8  
李宁  白冰  鲁长虎 《生态学报》2011,31(21):6624-6632
更新限制是指种子由于各种原因,不能够萌发并生长成幼树。它作为解释生物多样性的理论,一直受到国内外群落生态学家关注。从种源限制、传播限制和建成限制3个角度,对更新限制机制研究进展进行了综述。从种源限制而言,时空因素是影响植物种群更新限制的重要因素,因为植物结实量存在明显时空变化,造成植物更新个体出现明显的时空规律。从传播限制而言,传播数量、距离和食果动物行为均限制植物种群更新。数量上,缺乏有限传播者势必减少传播数量,但如果种子拥有较高质量,则能逃脱数量限制;距离上,植物更新个体显示出明显的Janzen-Connell格局,但传播距离趋向稳定,形成植物种群的进化稳定对策;食果动物行为上,不同传播者对更新贡献存在差异,捕食者直接降低更新,融入两类动物行为的模型更能反映食果动物对更新的限制。从建成限制而言,环境因子制约植物生长。小尺度下,微生境的好坏对于植物幼苗建成至关重要;大尺度下,植物提供较好的广告效应则能摆脱生境限制。将传播者行为、捕食者行为与幼苗的空间分布格局、种子传播机理模型等结合,建立植物更新限制机理模型应是更新限制未来的研究热点。选择稀有种和古老种为主题的长期更新限制研究,为种群恢复提供指导,也是未来重要研究方向。  相似文献   

2.
Frugivory (animals ingest all or part of fleshy-fruits and defecate or regurgitate seeds) and scatter-hoarding (animals store seeds in small caches in soil) are two important vertebrate-mediated seed dispersal syndromes. In both instances, there is an exchange of food for seed transport, but there are many important differences. For example, the seeds of frugivore-dispersed plants are often clumped in feces or under roosts and the microsite of depostion is often unsuitable for seedling establishment. However, frugivores can transport seeds long distances allowing plants to colonize new areas and promoting gene flow between populations. Scatter-hoarding animals, on the other hand, actively space seeds in microsites that often favor seedling establishment, but don’t move seeds very far. Both modes of seed dispersal can be very effective, but in different way. Some species of plants have evolved propagules that take advantage of both modes of dispersal in two separate phases (i.e., diplochory), apparently to obtain both types of benefits.  相似文献   

3.
The directed dispersal hypothesis has two components: (1) non-random seed deposition by a predicted vector, which removes greater amounts of seeds to specific sites, and (2) higher seed survival and seedling establishment in these specific sites. Several studies suggest that ants perform both tasks. This study was designed to cover the processes from post-dispersed seeds to established juvenile plants of a typical ant-dispersed species. Our main objective was to determine whether Ricinus communis benefits from directed dispersal by ants to maintain its populations in previously colonized habitats. We examined whether there were differences between ant nest pile mounds and their vicinities in the: (1) densities of seeds with and without elaiosome, seedlings and juveniles; (2) performance of post-dispersed seeds (without elaiosome), which may be affected by seed density, a key feature attracting seed predators; (3) nutrient quantities; (4) number of germinated seeds and juvenile biomass measurements; and (5) ant protection of seedlings from herbivores. There were more seeds without elaiosome, seedlings and juveniles in pile mounds, and seeds with elaiosome were equally distributed. There was no difference in the number of non-removed seeds in pile mounds and in their vicinities, and there was no tendency for this difference to increase or decrease with time or with initial seed density. Apparently, there was no difference in nutrient contents in soils of pile mounds and their vicinities. Likewise, there was no difference in the number of seeds germinated and in the biomass measurements of juveniles in both soils. Ants did not provide differential protection for seedlings in pile mounds against potential herbivores. The dispersal of Ricinus seeds by ants had a marked effect on the distribution pattern of the seeds, seedlings and juveniles of this species. However, there were no additional advantages for the seeds, seedlings and juveniles in pile mounds and, therefore, Ricinus does not benefit from directed dispersal by ants to maintain its populations in the study sites.  相似文献   

4.
Recognition that tree recruitment depends on the balance between seed arrival and seedling survival has led to a surge of interest in seed‐dispersal limitation and seedling‐establishment limitation in primary forests. Virtually unaddressed are comparisons of this balance in mature and early successional habitats. We assessed seed rain and seedling recruitment dynamics of tree species in primary forest, secondary forest and pasture released from grazing in a tropical agricultural landscape. Seed to seedling ratios (seed effectiveness; Φi) for 43 species in southern Mexico determined differences in the extent to which seeds produced seedlings by habitat, life history, and dispersal mode. Reproductive potential as estimated by the transition from seed rain to seedling recruitment, differed by habitats, and varied dramatically by life history and dispersal mode. Expected recruit densities (Eit) were higher for animal‐dispersed than wind‐dispersed species, and for non‐pioneer than pioneer species. Non‐pioneers and animal‐dispersed species had higher expected relative recruit abundance (εit) in primary forest (median of 4 seeds recruit?1) whereas in secondary forest wind‐dispersed pioneers had the highest expected relative recruit abundance (median of 16 seeds per recruit). In pastures, wind‐dispersed pioneer species were most successful with many more seeds per recruit (median of 291) than both forest habitats. Seeds per recruit (Φi) appeared to decrease with increase in seed mass for 43 species for which data were available (r = –0.55, P < 0.001). This was associated with a negative correlation of Φi with seed size in primary forest (r = –0.50, P = 0.08 for 13 species); Φi was not correlated with seed size in secondary forest (n = 16) or pasture (n = 14). Metrics of seeds per recruit, expected recruit density and expected relative recruit abundance dramatically illustrate differences in barriers to recruitment in successional habitats.  相似文献   

5.
Fleshy-fruited plants rely on animal frugivores to disperse their seeds, and seed removal by frugivores may leave an imprint on seedling recruitment. However, to what extent plant–frugivore interactions are related to seedling recruitment has rarely been quantified at the community level, especially in species-rich tropical forests. In this study, we tested the effect of different plant traits on fruit removal by frugivores and tested the relative importance of fruit removal, plant traits and abiotic factors for seedling recruitment. We quantified plant–frugivore interactions of 22 fleshy-fruited plant species consumed by 56 diurnal frugivore species, and counted the number of seedlings that emerged along an elevational gradient in the Colombian Andes. We measured a set of plant traits (i.e., crop size; fruit size; seed load and mass; fruit nutritional contents), estimated the density of adult plants and recorded relevant abiotic factors (light, temperature and humidity). We found that fruit removal by frugivores was positively associated with crop size, but negatively associated with fruit length and unrelated to seed load and fruit nutritional content. Seedling densities were positively related to the density of adult plants, seed mass and fruit removal by animals. We found no relationship between abiotic factors and seedling recruitment. Our results indicate that fruit abundance and morphology are important determinants of fruit removal and that fruit removal is positively associated with seedling recruitment accounting for effects of species abundance and plant traits. We conclude that plant traits shape fruit removal and seedling recruitment at the community level, while these two crucial processes of forest regeneration are directly linked by seed dispersal of animals.  相似文献   

6.
Western chokecherry (Prunus virginiana var. demissa, Rosaceae) is dispersed by frugivorous birds and carnivores, but it has large seeds that are potentially attractive to rodents that could act as seed predators and dispersers. Here, we quantify the benefits of primary dispersal by birds and secondary dispersal by scatter-hoarding rodents. In the fall, avian frugivores (mostly American robins, Turdus migratorius, and cedar waxwings, Bombycilla cedrorum) consumed 87% of the fruit crop and dispersed 67% of the fruit crop away from parent plants. Rodents removed 89% of seeds that simulated bird-dispersed seed rain from transects in riparian zones and 58% from transects in upland habitats. Rodents scatter-hoarded 91.6% of the seeds they removed, burying most in small caches (two to eight seeds) 8?C25?mm deep. About 39% of the seeds in spring caches produced seedlings. Inside rodent-proof exclosures, 52.1% of seeds buried to simulate rodent caches produced seedlings, 29.7% of which were still alive after 1?year. In contrast, only 3.8% of seeds placed on the soil surface, simulating dispersal by avian frugivores, produced seedlings. Seed dispersal by frugivorous birds likely contributes to colonization of unoccupied habitat through long-range dispersal and to escape from distance-dependent seed mortality near the parent plant. Despite seed losses, rodents offer short-range seed dispersal and bury seeds in more favorable sites for germination, improving seedling emergence and establishment. The combined mechanisms of seed dispersal significantly enhanced chokecherry seedling recruitment by providing more dispersal-related benefits than either frugivorous bird or scatter-hoarding rodents could provide alone.  相似文献   

7.
Primate frugivory may reduce density-dependent predation on seeds and seedlings via effective seed dispersal. Accordingly, the tendency of cercopithecines to spit and scatter seeds > 4 mm wide could represent a prominent means of dispersal. However, the importance of seed-spitting may vary according to the life history adaptations of plants. Indeed, the actions of cercopithecines may be incongruent with the reproductive biology of plants that rely on large frugivores to swallow and defecate their seeds. This possibility raises conservation concerns because large frugivores are often susceptible to extirpation or extinction from hunting and habitat fragmentation. It is therefore important to determine if cercopithecines have a compensatory effect; that is, whether or not seed-spitting effectively conveys large seeds to recruitment sites. To test this concept, we used geospatial techniques to measure and analyze the dispersion of tree species dispersed by elephants, chimpanzees, and cercopithecines to different spatial extents. We studied adult trees of Balanites wilsoniana, Chrysophyllum gorungosanum, and Uvariopsis congensis in a 2.2-ha plot in Kibale National Park, Uganda. Despite the tendency of cercopithecines to spit the seeds of Uvariopsis congensis, adult trees were highly clumped, with a modal nearest-neighbor distance of < 5 m and a crown overlap of 1.5 m. Virtually identical results for Balanites wilsoniana and Chrysophyllum gorungosanum, the seeds of which are not spat, suggest that seed-spitting may be a poor mechanism of dispersal for some large-seeded plants.  相似文献   

8.
K. LoGiudice  R. Ostfeld 《Oecologia》2002,130(3):420-425
The Janzen-Connell escape hypothesis predicts that the success of tree propagules increases with distance from the parent tree. Fleshy fruits that are transported in the guts of frugivores are believed to have evolved to facilitate the wide dispersal of seeds. However, some frugivores deposit seeds in latrines, thus creating aggregations of seeds that are large enough to attract seed predators and negate the advantages of dispersal. Raccoons (Procyon lotor) often produce large seed deposits since they habitually defecate in latrines. The survival of wild black cherry (Prunus serotina) seeds in simulated raccoon latrines was monitored in areas with natural levels of food availability and in areas to which supplemental food had been supplied to the primary seed predators. Dispersal of seeds by raccoons did not necessarily provide effective protection from post-dispersal seed predation at natural food levels. Once the resident seed predators had located the latrines, the majority of the seeds were quickly removed. However, seed removal from raccoon latrines was reduced significantly and dramatically by the addition of alternative food. This implies that raccoon latrines may represent safe sites for tree recruitment during periods of high food availability such as during masting events, thus providing conditional support for the escape hypothesis.  相似文献   

9.
Abstract. Aesculus turbinata is a tree species with large seeds (6.2 g mean dry weight). We studied the demography of its seeds and seedlings in a temperate deciduous forest in northern Japan to elucidate the ecological significance of large seeds with special reference to herbivory and secondary dispersal. Both seed and seedling stages suffered greatly from herbivores. Seedling herbivory was important judged from experiments with shoot clipping and hypogeal cotyledon removal. However, some seedlings survived through re-sprouting after herbivory. Survival rate and percentage resprouting seedlings were lower than those with remaining cotyledons, though seedling size was not affected. This suggests that stored resources in hypogeal cotyledons are working as a kind of ‘risk hedge’ against severe aboveground shoot clipping experienced by A. turbinata. The spatial distribution of seedlings was expanded via seed scatter-hoarding by rodents. Seedling survival rate was higher within canopy gaps than under closed canopy, indicating that canopy gaps are safe sites for establishment, and was negatively correlated with seedling density. Therefore, secondary seed dispersal in this species seems to be effective in ‘finding’ safe sites and in ‘escaping’ density-dependent mortality. The large seeds and seedlings of A. turbinata are attractive to herbivores, but the high resistance of seedlings to herbivory due to large reserves and the effective secondary dispersal appear to mitigate these disadvantages.  相似文献   

10.
Many native plant communities are replaced by exotic monocultures that may be successional stages or persistent community types. We surveyed a stand of Sapium sebiferum (Chinese Tallow Tree) that replaced tallgrass prairie in Texas and performed experiments with seeds and seedlings to determine the contributions of recruitment limitation and natural enemy release to allowing such a forest type to persist or to allowing native species to reduce Sapium dominance. The stand was dominated by Sapium, especially for mature trees (>99) and annual seed input (97) but less so for saplings (80). Field sown Sapium seeds had lower germination and survival rates than Celtis seeds. Together with the extreme dominance of Sapium in seed rain this suggests that native species are currently recruitment limited in this stand by seed supply but not by germination, early growth or survival. To investigate whether Sapium may benefit from low herbivory or diseases, we transplanted Sapium and Celtis seedlings into the forest and manipulated foliar fungal diseases and insect herbivores with sprays. As predicted, insect herbivores caused greater damage to Celtis seedlings than to Sapiumseedlings. However, suppression of insect herbivores caused significantly greater increases in survivorship of Sapium seedlings compared to Celtis seedlings. This suggests that herbivores in the understory of this Sapiumforest may significantly reduce Sapiumseedling success. Such a pattern of strong herbivore impact on seedlings growing near adult conspecifics was unexpected for this invasive species. However, even with insects and fungi suppressed, Sapium seedling performance was poor in this forest. Our results point towards Sapium as a successional species in a forest that will eventually be dominated by native trees that are currently recruitment limited but outperform Sapium in the understory.  相似文献   

11.
刘勇  陈进 《生物多样性》2002,10(2):213-218
在种子传播过程中动植物是否存在协同进化关系一直是争论的焦点。有观点认为,植物通过食果动物对其种子的传播可能获得逃避种子捕食者、占据新的生境斑块和基因流动等好处,而动物通过消化果肉获得营养和能量作为回报,动植物彼此相互作用,进而可能建立协同进化关系。动植物之间还可能发生在种、属或科水平以上的多物种的多配协同进化,或者通过关键种的协同进化来带动其他食果动物和植物相关性状的进化。“果肉防御假说”则认为果肉原本是保护种子的防御组织,后来才进化成为吸引食果动物以促进种子传播的物质。然而,食果动物和植物一对一的协同进化的例证并不多见;适合种子萌发和生长的环境在时空上难以确定;食果动物和植物的进化速度不一致;植物与种子传播者的选择压力存在着高度的不对称和不平衡,加上环境因素的重要影响,这种选择压力受到极大的限制而有可能变得不显著。种子传播中动植物在进化意义上的关系尚需进一步研究。未来研究应对食果动物和植物关系的复杂性和多样性有足够的认识。通过对系统发育中相联系的不同种的动植物关系的比较研究来揭示动植物关系对物种分化的影响,有可能为检验食果动物和植物之间的协同进化关系提供新的证据。食果动物传播种子对植物群落动态变化的影响、动植物关系和生物多样性保护等仍将是该领域研究的热点。  相似文献   

12.
Vertebrates play a fundamental role in the dispersal of Neotropical trees, generating different seed shadows according to their physical and behavioral features. Tapirs are capable of consuming great quantities of large fruits, and they defecate seeds far from parent trees. For instance, intact seeds of the palm Syagrus romanzoffiana have been found in tapir dung piles in the Atlantic Forest of southeastern Brazil, suggesting that tapirs effectively disperse this species. However, recruitment was not examined therein. We studied tapir endozoochory of large and medium seeds in the semi-deciduous Atlantic Forest of Argentina by examining dung piles found within Iguazu National Park. We recorded dung-pile positions to evaluate the spatial distribution. We also counted the number of juveniles in 2 × 2 m quadrats placed on old dung piles in latrines, beneath adults and in random sites to estimate recruitment levels. Syagrus romanzoffiana seeds were present in 98 percent of dung piles, averaging >200 seeds/dung pile, indicating that this species constitutes the main fruit component in the tapir's diet. Dung piles showed a clumped deposition pattern reflecting the use of latrines. Juvenile recruitment in latrines was 21 times higher than that of under-adult sites and 500 times greater than in random sites, and correlated with the frequency of use of the areas. We concluded that the lowland tapir is a major disperser of S. romanzoffiana . Given that this palm can be considered a keystone species, a disruption of this interaction might affect the entire community of frugivores in the long term.  相似文献   

13.
The effect of forest disturbance on survival and secondary dispersal of an artificial seed shadow (N= 800) was studied at Brownsberg Natural Park, Suriname, South America. We scattered single seeds of the frugivore‐dispersed tree Virola kwatae (Myristicaceae), simulating loose dispersal by frugivores, in undisturbed and disturbed secondary forest habitats. Seed survival rate aboveground was high (69%) within 2 wk and was negatively correlated with scatterhoarding rate by rodents, the latter being significantly lower in the undisturbed forest (9%) than in the disturbed forest (20%). Postdispersal seed predation by vertebrates was low (3%) and infestation of seeds by invertebrates was almost zero in all instances. Therefore, secondary seed dispersal by rodents in forest is not as critical for recruitment as observed among other bruchid‐infested large‐seeded species. Secondary seed dispersal by rodents may, however, facilitate seedling recruitment whether cached seeds experience greater survival than seeds remaining above ground surface.  相似文献   

14.
In order to assess the importance of seed dispersal (escape and colonization hypotheses), I used transplant experiments for seeds and seedlings of 5–11 plant species with fleshy fruits in a lowland tropical forest (Tinigua National Park, Colombia). I controlled seed density, distance to parental tree, and habitat type. I monitored seed removal, seedling survival, and seedling growth during the first year of development for an average of 554 seeds and 169 seedlings for each species. I supplemented the experimental results with measurements of natural recruitment. I found little support for the escape hypothesis during the seed and seedling stages. For six species that showed differences in seed removal associated with distance, five showed highest removal away from, than close to parent trees, suggesting predator satiation. Seedling survival during the first year was not consistently associated with low densities and long distances from parent trees. For the majority of species, seedlings did not survive flooding in low basins, and there was growth advantage for most plant species in canopy gaps. These differences imply advantages for seed dispersal to adequate habitats, as predicted by the colonization hypothesis. In contrast to experiments, strong negative distance-dependent effects were evident when analyzing natural recruitment patterns. The ratio between saplings and seedlings was higher away from parent trees for the species with enough recruitment to be analyzed and this suggests that a negative distance-dependent effect may also occur after seedling establishment. This pattern is suspected for several other species, but an analysis with some of the other most common trees showed a variety of negative, neutral, and positive distance dependent effects. This study emphasizes the importance of long-term studies to asses the role of seed dispersal.  相似文献   

15.
Pleistocene extinctions affected mainly large‐bodied animals, determining the loss or changes in numerous ecological functions. Evidence points to a central role of many extinct megafauna herbivores as seed dispersers. An important step in understanding the legacy of extinct mutualistic interactions is to evaluate the roles and effectiveness of megafauna herbivores in seed dispersal. Here we use morphological and ecophysiological allometries to estimate both quantitative and qualitative aspects of seed‐dispersal services likely provided by extinct megafauna. We developed a mechanistic model that encompasses four stages of seed dispersal – seed ingestion, gut retention, animal movement, and seed deposition. We estimate seed‐dispersal kernels through simulations to infer the role of Pleistocene megafauna in promoting long‐distance dispersal and examine how seed dispersal was affected by extinctions. Simulations suggest extinct large‐bodied frugivores would frequently disperse large seeds over a thousand meters, whereas smaller‐bodied frugivores are more likely to deposit the seeds over a few hundred meters. Moreover, events of long‐distance seed dispersal by the extinct megafauna would be up to ten times longer than long‐distance dispersal by smaller‐sized extant mammals. By estimating the combined distribution of seed dispersal distances considering all large‐bodied mammalian frugivores in specific South American Pleistocene assemblages we found that long‐distance dispersal contracted by at least two thirds after the megafauna died out. The disruption of long‐distance dispersal is expected to have consequences for recruitment, spatial and genetic structure of plant populations, population persistence and community composition. Promoting long‐distance seed dispersal was one among other salient features of extinct Pleistocene megafauna that reveal their influence on natural ecosystems. Modeling the consequences of megafaunal extinctions can offer quantitative predictions on the consequences of ongoing defaunation to plant populations and ecological communities.  相似文献   

16.
This study compares the establishment success of cleistogamous (CL, obligately selfed) and chasmogamous (CH, potentially outcrossed) seeds of the neotropical understory herb, Calathea micans (Marantaceae). In this species, CH and CL seeds are morphologically identical and are both dispersed by ants. I measured dispersal distances and analyzed seedling recruitment and seedling size for ant-planted CH and CL seeds, a protocol made possible by the fact that the seed coat of C. micans can be indelibly marked and remains attached to the base of the seedling for a few months. Seeds were taken by ants from experimental depots placed in natural conditions. In a second experiment, I planted CH and CL seeds in gap and understory sites to determine the effects of seed type and light on germination percentage, date of emergence, and seed and seedling survivorship. Ant-planted CH and CL seedlings did not differ in dispersal distance. CH and CL seeds did not differ significantly in recruitment probability and seedling size in either experiment. However, for the ant-planted seedlings, CH recruitment was higher in the understory than in the gap, while CL recruitment was uniform across light environments. In conclusion, I found a difference in the establishment success of CH and CL seeds in this understory herb, only after dispersal by ants in field conditions.  相似文献   

17.
Although global declines in frugivores may disrupt seed dispersal mutualisms and inhibit plant recruitment, quantifying the likely reduction in plant regeneration has been difficult and rarely attempted. We use a manipulative factorial experiment to quantify dependence of recruitment on dispersal (i.e. fruit pulp removal and movement of seed away from parental area) in two large-seeded New Zealand tree species. Complete dispersal failure would cause a 66 to 81 per cent reduction in recruitment to the 2-year-old seedling stage, and synergistic interactions with introduced mammalian seed and seedling predators increase the reduction to 92 to 94 per cent. Dispersal failure reduced regeneration through effects on seed predation, germination and (especially) seedling survival, including distance- and density-dependent (Janzen-Connell) effects. Dispersal of both species is currently largely dependent on a single frugivore, and many fruits today remain uneaten. Present-day levels of frugivore loss and mammal seed and seedling predators result in 57 to 84 per cent fewer seedlings after 2 years. Our study demonstrates the importance of seed dispersal for local plant population persistence, and validates concerns about the community consequences of frugivore declines.  相似文献   

18.
Sheep epizoochory has often been proposed as an important vector which can help to overcome the dispersal limitation of plants in fragmented landscapes. In order to evaluate the contribution of herbivores to recruitment especially of target species, the dispersal and post-dispersal fate of such seeds must be known. In a field experiment sheep with seeds of mainly target species (experimentally attached to their coats) were present at three sand plots for 24 h. Natural epizoochorous dispersal was already shown for most of the species in our study area. Seed detachment, trampling intensity and seed shadow were measured; seedling emergence and survival were recorded over an 8-month period. In addition, the effect of sheep trampling on seedling emergence and survival of two threatened species, Jurinea cyanoides and Koeleria glauca, were studied.  相似文献   

19.
Although seed dispersal is considered to be a key process determining the spatial structure and spread of non-native plant populations, few studies have explicitly addressed the link between dispersal vector behaviour, seed distribution and seedling recruitment to gain insight into the process of exotic species invasion within a fragmented landscape context. The present study analyses the relationship between avian frugivory and spatial patterns of seed deposition and seedling recruitment for an expanding population of the invasive Prunus serotina in a hedgerow network landscape in Flanders, Belgium. We quantified fruit production, observed frugivores, and determined the spatial distribution of bird droppings and P. serotina seedlings. A relatively diverse assemblage of frugivores visited P. serotina seed trees, with Columba palumbus and Turdus merula being by far the most important dispersers. Landscape structure strongly affected dispersal vector behaviour and the spatial distribution of perching birds, droppings and seedlings. Frugivorous birds non-randomly dispersed seeds to perching sites and an association between perching birds, seed deposition and seedling recruitment was found. Results indicate that landscape structure contributes to non-random seed deposition of P. serotina by common local frugivores. Cutting the larger seed trees is proposed as the most feasible measure to slow down the invasion rate.  相似文献   

20.
Vertebrate frugivory and seed dispersal of a Chihuahuan Desert cactus   总被引:2,自引:0,他引:2  
Montiel  Salvador  Montaña  Carlos 《Plant Ecology》2000,146(2):219-227
Vertebrate frugivory of fleshy-fruited plants may be very important for the recruitment of sexually derived seedlings if it represents the main mechanism of primary seed-dispersal.Opuntia rastrera produces fleshy fruits rich in water and sugars that are attractive to vertebrate frugivores. However, there is a very low rate of seedling recruitment in natural conditions. One of the causes that can influence this low recruitment is an insufficient seed dispersal due to a low fruit removal even under different resource (fruits) availability. To test this prediction, we studied the production and consumption of fruits in two consecutive years in two vegetation types: nopaleras (dense Opuntia-dominated scrublands) and grasslands with sparse populations of O. rastrera. Plant cover, fruit production and removal, and frugivore identity were recorded within each vegetation type in four randomly selected circular plots (7854 m2). Fruit production per area was higher in nopaleras in both years whereas per cladode production did not differ between vegetation types but differed between years in response to variation in precipitation. Fruit consumption by vertebrates was high (100%) and independent of spatial and temporal fruit availability. The intensity of fruit removal was inversely related to resource availability: it was faster in the less dense community (grassland) and in the driest year. Contrary to other studies with similar cacti, fruit removal by small mammals was insignificant whereas main consumers were birds and large mammals. Vertebrate frugivory represents the only mechanism of primary dispersal of seeds as all fruits are removed in about one month. Despite the high quantity of viable seeds (more than one million per ha in nopaleras and a tenth of that in grasslands) that are dispersed by frugivores after the consumption of about 300 kg of fruit per ha in nopaleras and a tenth of that in grasslands, the rare establishment of seedlings (about one seedling per three million of seeds produced) reported in the literature indicates that the interaction between O. rastrera and the disperser guild is indeed very asymmetrical. We speculate that the harsh conditions for cactus establishment found in this ecosystem demand a high investment in disperser rewards (fleshy fruits) to allow a very modest rate of sexually-derived seedling establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号