首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Interactions between endothelial cells and the surrounding extracellular matrix are continuously adapted during angiogenesis, from early sprouting through to lumen formation and vessel maturation. Regulated control of these interactions is crucial to sustain normal responses in this rapidly changing environment, and dysfunctional endothelial cell behaviour results in angiogenic disorders. The proteoglycan decorin, an extracellular matrix component, is upregulated during angiogenesis. While it was shown previously that the absence of decorin leads to dysregulated angiogenesis in vivo, the molecular mechanisms were not clear. These abnormal endothelial cell responses have been attributed to indirect effects of decorin; however, our recent data provides evidence that decorin directly regulates endothelial cell-matrix interactions. This data will be discussed in conjunction with findings from previous studies, to better understand the role of this proteoglycan in angiogenesis.Key words: decorin, angiogenesis, motility, α2β1 integrin, insulin-like growth factor I receptor, Rac GTPaseLed by appropriate cues, the vascular system undergoes postnatal remodelling (angiogenesis), to maintain tissue homeostasis. Thus while much of the mature endothelium is quiescent, locally activated endothelial cells re-enter the cell cycle, and assume a motile phenotype essential for sprouting and neo-vessel formation. Concomitantly, the surrounding extracellular matrix (ECM) is significantly altered through de novo protein expression, deposition of plasma components and protease-mediated degradation. The latter liberates cryptic binding sites and sequestered growth factors in addition to intact and degraded ECM components, which themselves possess pro- and anti-angiogenic signalling properties. For supported blood flow, endothelium quiescence and integrity is re-established, and the ECM is organized into mature, cross-linked networks. In short, endothelial cells regulate ECM synthesis, assembly and turnover while the structure and composition of ECM in turn influences cellular phenotype. The ECM therefore, plays a critical role in control of endothelial cell behaviour during angiogenesis.Decorin is a member of the small leucine-rich repeat proteoglycan (SLRP) family, which was first discovered ‘decorating’ collagen I fibrils and was subsequently shown to regulate fibrillogenesis.1,2 Both the protein core and the single, covalently attached glycosaminoglycan (GAG) moieties of decorin are involved in this function, the relevance of which is demonstrated by the phenotype of the decorin null mouse, which exhibits loose, fragile skin due to dysregulated fibrillogenesis.2 Interestingly, a role for decorin in postnatal angiogenesis was also revealed by studies in the decorin null background. Corneal neoangiogenesis was reduced.3 Conversely, neo-angiogenesis was enhanced during dermal wound healing, although surprisingly this led to delayed wound closure.4 In this case, skin fragility due to the absence of decorin may have hindered wound closure, despite an increased blood supply. It is apparent however, that decorin plays a role in inflammation-associated angiogenesis. Indeed, endothelial cells undergoing angiogenic morphogenesis in this environment express decorin, while quiescent endothelial cells do not,36 indicating that decorin modulates endothelial cell behaviour specifically during inflammatory-associated remodelling of the vascular system.To understand decorin effects on angiogenic morphogenesis within a minimalist environment, various in vitro models of angiogenesis have been employed (6 Similarly, decorin expression enhanced tube formation on matrigel,8 but in other studies utilising this substrate was found to either have no influence9 or to inhibit tubulogenesis induced by growth factors.10 In yet another study, decorin inhibited tube formation when presented as a substrate prior to addition of collagen I.7 These contrasting observations may reflect the importance of the micro-environment within which decorin is presented. Alternatively, controversial results could result from different sources of decorin since cell types differ in their post-translational modifications of the GAG moiety. Hence, varying length or sulfation patterns of GAG chains may account for different biological activities of decorin. Discrepancies can also be explained as artefacts due to different purification protocols, such as when denaturing conditions are used to extract decorin from tissue. Taken together however, these observations suggest that decorin is neither a pro- nor an anti-angiogenic factor per se, but rather a regulator of angiogenesis, dependent on local cues for different activities. Further, that decorin is capable of both enhancing and inhibiting tubulogenesis may suggest a role in balancing vessel regression versus persistence. Immature vessels have a period of plasticity prior to maturation, during which they can be remodelled, and either regress, or given the appropriate signals, proceed to maturity.11 As a modulator of tube formation, it is tempting to speculate that decorin could influence the switch from immature to mature vessels, favouring one or the other in conjunction with signals from the local environment.

Table 1

Summary of the key functions of decorin in controlling cell behaviour
Cell typeFunctionDecorin additionEnvironment/MechanismReferences
Endothelial (HUVEC derived)Enhanced tubulogenesisOverexpressionCollagen I lattices, enhanced survival potentially IGF-IR mediated6, 18
Mouse cerebral endothelial cellsEnhanced tubulogenesisOverexpressionMatrigel substrate, EGFR activation leads to VEGF upregulation8
HUVECNo effect on tubulogenesisExogenousMatrigel substrate9
HUVECInhibited tubulogenesisExogenousMatrigel substrate, growth factor induced10
HUVEC, HDMECInhibited tubulogenesisSubstrateCollagen I lattice overlay7
HUVECMinimal adhesionSubstrateDecorin substrate7
HUVECInhibited adhesionExogenousCollagen I and fibronectin10
HUVECInhibited migrationExogenousVEGF-mediated chemotaxis through gelatin10
Endothelial (HUVEC derived)Enhanced adhesionExogenousCollagen I, fibronectin17
BAEInhibited migrationOverexpressionCollagen I, enhanced fibronectin fibrilllogenesis by decorin12
Endothelial (HUVEC derived)Enhanced motilityExogenousCollagen I, Decorin activates IGF-IR/Rac-1 and α2β1 integrin activity17
Human lung fibroblastEnhanced motilityExogenousDecorin activates Rho GTPases, mediators of motility20
Human foreskin fibroblastInhibited adhesionExogenousDecorin GAG moiety competes with CD44 for binding to collagen XIV14
Mouse Fibroblast (3T3)Inhibited adhesionExogenousDecorin competes with cells for interaction with thrombospondin at the cell-binding domain15
Human fibroblastInhibits adhesionExogenousDecorin GAG competes with cell-surface heparin-sulphate for interaction with fibronectin16
PlateletsSupported adhesionSubstrateDecorin interacts with, and signals through α2β1 integrin on platelets19
Open in a separate windowDecorin has been demonstrated to influence cell adhesion and motility, in particular, its influence on endothelial cell adhesion, migration and tube formation is controversial, and is the main focus of this table. Some additional key effects of decorin on fibroblast and platelet adhesion and motility are also summarised. In each case, the extracellular matrix environment in which the assay was conducted is shown, and where known, the proposed mechanism is stated.What are the molecular mechanisms by which decorin influences tubulogenesis? Since endothelial cell-matrix interactions control all aspects of angiogenesis, from motility, sprouting and lumen formation, to survival and proliferation, the role of decorin should be considered in this regard. Indirectly, decorin could quite feasibly modulate cell-matrix interactions through regulation of matrix structure and organisation2,12 and growth factor activity.13 However in vitro studies have begun to unravel rather more direct mechanisms. Studies on fibroblasts indicate that decorin can inhibit cell-matrix interactions by binding to and masking integrin attachment sites in matrix substrates. For instance, decorin inhibits fibroblast adhesion by competing with cell-surface GAG-containing CD44 for GAG binding sites on collagen XIV;14 similarly, decorin inhibits fibroblast adhesion to thrombospondin by interacting with the cell-binding domain of this substrate15 and may compete with fibroblast cell-surface heparin sulphate proteoglycans for binding to fibronectin.16 While such studies are rather lacking in endothelial cell systems, any one of these interactions could be relevant to endothelial cells. However, that decorin slightly enhanced endothelial cell attachment to fibronectin and collagen I in our system points to the existence of alternative mechanisms.17Indeed, a recent study demonstrated that decorin is an important signalling molecule in endothelial cells, where it both signals through the insulin-like growth factor I receptor (IGF-IR) and competes with the natural ligand for interaction.18 Further, decorin appears to be biologically available and relevant for interaction with this receptor in vivo. Increased receptor expression was observed in both native and neo-vessels in decorin knockout mouse cornea in conjunction with reduced neoangiogenesis. In accordance with this, decorin downregulates the IGF-IR in vitro,18 indicating that signalling through, and control of IGF-IR levels by decorin could be an important factor in regulating angiogenesis. Additionally, immobilised decorin supports platelet adhesion through interactions with the collagen I-binding integrin, α2β1.19 We have shown that decorin—α2β1 integrin interaction may play a part in modulating endothelial cell—collagen I interactions, and further, have demonstrated that decorin promotes motility in this context through activation of IGF-IR and the small Rho GTPase, Rac.17 Similarly, decorin stimulates fibroblast motility through activation of small Rho GTPases,20 supporting a direct mechanism by which decorin influences cell-matrix interactions and motility, via activation of key regulators of cytoskeleton and focal adhesion dynamics. It should also be noted that signalling by decorin directly through ErbB receptors has also been extensively demonstrated in cancer cell systems where these receptors are frequently overexpressed.21 This interaction was not relevant to human umbilical vein endothelial cells18 although a recent study found that decorin activated the epidermal growth factor receptor in mouse cerebral endothelial cells.8 These differences presumably depend on cell-specific factors such as receptor availability as well as relative receptor affinities. In a complex system such as angiogenesis, multiple mechanisms doubtlessly are involved. However, it is clear that modulation of cell-matrix interactions by decorin could certainly be expected to play a key role in contributing to regulation of postnatal angiogenesis.Signals from the extracellular matrix via integrins and from growth factors to their receptors are co-ordinately integrated into the complex angiogenic cascade. Evidence exists to suggest that decorin could regulate cell-matrix interactions during early tube formation, i.e., endothelial cell sprouting and cell alignment, through both influencing integrin activity and signalling through IGF-IR.17 Later stages of angiogenesis, such as lumen formation and maturation are also potentially regulated by decorin through activation of Rac and α2β1 integrin,17 since activity of both these molecules is integral to this phase of angiogenesis.22 Additionally, Rac activity is implicated in regulating endothelium permeability and integrity,23 providing further possibilities in control of endothelium function by decorin. Further investigations would be required however, to establish whether decorin exerts its effects on tubulogenesis through these molecular mechanisms.Of relevance to α2β1 integrin-dependent endothelial cell interaction with collagen I, sprouting endothelial cells would encounter interstitial ECM, of which collagen I is a major component. Further, a ‘provisional’ matrix containing collagen I is secreted by sprouting endothelial cells and may be required for motility,24 and tube formation.25 Theoretically, various interactions could exist between decorin, collagen type I and α2β1 integrin in this context, which may be differentially supported through various stages of angiogenesis. Up to eleven interaction sites of α2β1 integrin have been postulated to exist within collagen I, albeit with different affinities towards this receptor. Some of these binding sites may only be recognized by the integrin in its highly active conformation.26 By influencing the collagen I binding activity of α2β117 decorin could thus alter the number of endothelial cell—collagen I contacts, thereby modulating adhesion and motility. Additionally, some decorin and α2β1 integrin binding sites may overlap, or are in close proximity.27 By virtue of this location, decorin would be ideally placed to locally modulate collagen I—binding activity of the integrin. Interestingly, modulation of activity of both α2β1 integrin and the small Rho GTPase Rac by decorin also could have implications for collagen I fibrillogenesis, which in turn, would indirectly influence cell-matrix interactions. Both the related Rho GTPase RhoA, and α2β1 integrin are involved in cellular control of pericellular collagen I fibrillogenesis.28 Thus in addition to regulating cell independent fibrillogenesis1 decorin could potentially influence cell-mediated aspects of this process. Pertinent questions remain therefore, as to under which biological situations is the interaction between α2β1 integrin and decorin relevant, and does decorin influence α2β1 integrin activity on the cell-surface through direct interactions, and/or by inside-out signalling through the IGF-I receptor (or alternative receptors)? Further, how do differential decorin/α2β1 integrin/collagen I interactions mediate fibrillogenesis and cell-matrix interactions?Interaction of decorin with multiple binding partners makes it challenging to fully understand the role of decorin in angiogenesis (Fig. 1). A consideration of the relative accessibility and affinity of binding sites on both decorin and its'' binding partners would facilitate further understanding. It is still an open question whether collagen I—bound decorin can simultaneously interact with other ligands. In the case of the IGF-IR, the binding site on the concave surface of decorin overlaps with that of collagen I, thus mutually exclusive interactions seem more likely. That decorin clearly influences both collagen I matrix integrity and IGF-IR activity in vivo, would suggest that decorin is not exclusively associated with collagen I. Perhaps decorin occurs in a more ‘soluble’ form when locally secreted by endothelial cells undergoing angiogenic morphogenesis. Does collagen-bound decorin interact simultaneously with α2β1 integrin? This could be a possibility, since decorin core protein interacts with collagen I, allowing the possibility of GAG—integrin interaction. In this scenario however, interaction of α2β1 integrin with the GAG moiety of decorin in preference to collagen I might sound improbable. Nevertheless, during remodelling, interactions such as these could occur in a transient manner, and be crucial in controlling cell-matrix interactions in a rapidly changing environment. Interestingly, decorin interacts with IGF-IR via the core protein,18 and with α2β1 integrin via the GAG moiety17 raising yet another possibility of simultaneous decorin interaction with multiple binding partners. Additionally, while it is a matter of some debate whether decorin exists predominantly as a monomer or as a dimer in a physiologically relevant environment, it has been proposed that collagen-bound decorin could support simultaneous interactions of decorin with additional binding partners, and that dimer-monomer transitions also could facilitate differential interactions.29 Perhaps supporting multiple simultaneous interactions of decorin, the phenotype of patients with a progeroid variant of Ehlers-Danlos Syndrome indicates an essential role for properly glycosylated decorin (and the related SLRP biglycan). These patients exhibit skeletal and craniofacial abnormalities, loose skin and deficiencies in wound healing as a direct result of abnormal decorin and biglycan glycosylation, such that approximately half the population of decorin is secreted as the core protein only.30 Notably, the defect in loose skin and in wound healing is similar to the phenotype of the decorin knockout mouse.2,4 Evidently, the core protein alone cannot maintain normal function in vivo, despite being responsible for several important interactions of decorin, in particular, binding to collagen I and the IGF-IR. These studies may therefore support a requirement for simultaneous interactions of the core protein and GAG moieties for proper function of decorin.Open in a separate windowFigure 1Decorin influences cell-matrix interactions through multiple mechanisms. Decorin signals through the IGF-IR via the core protein moiety (grey diamond), and may simultaneously interact with the α2 subunit (cross-hatched subunit) of α2β1 integrin via the GAG moiety (wavy black line) (A). Activation of Rac through IGF-IR enhances motility by modulating cytoskeleton dynamics and may influence α2β1 integrin activity for collagen I through inside-out signalling (B). Decorin induces large, peripheral vinculin (grey oval)-positive focal adhesions by signalling through IGF-IR and/or α2β1 integrin (C and D). Decorin could also directly influence α2β1 integrin activity through binding to the α2 subunit and/or simultaneous interactions with collagen I (thick wavy black line) through the core protein. Collagen I interacts with the A-domain (white circle) of the α2 subunit at a site distinct to that of decorin (D). In summary, activation of IGF-IR, Rac and modulation of α2β1 integrin affinity for collagen I by decorin modulates cell-matrix interactions and contributes to enhanced motility and tubulogenesis in a collagen I environment.Modulation of cell-matrix interactions by decorin plays a key role in modulating endothelial cell motility and angiogenesis in vivo, and some of the mechanisms responsible have been elucidated in conjunction with in vitro studies. The large number of potential interactions of decorin with multiple matrix components and cell-surface receptors makes a clear understanding difficult. However, direct activation of signalling pathways by decorin has been highlighted recently as likely to play an important role. In conclusion, a better understanding of the mechanisms by which decorin regulates vessel formation and persistence would contribute to understanding how angiogenesis is dysregulated in a clinical setting, and how rational therapeutic strategies can be developed to restore tissue function and homeostasis.  相似文献   

2.
3.
4.
5.
The photoreceptors for chloroplast photorelocation movement have been known, but the signal(s) raised by photoreceptors remains unknown. To know the properties of the signal(s) for chloroplast accumulation movement, we examined the speed of signal transferred from light-irradiated area to chloroplasts in gametophytes of Adiantum capillus-veneris. When dark-adapted gametophyte cells were irradiated with a microbeam of various light intensities of red or blue light for 1 min or continuously, the chloroplasts started to move towards the irradiated area. The speed of signal transfer was calculated from the relationship between the timing of start moving and the distance of chloroplasts from the microbeam and was found to be constant at any light conditions. In prothallial cells, the speed was about 1.0 µm min−1 and in protonemal cells about 0.7 µm min−1 towards base and about 2.3 µm min−1 towards the apex. We confirmed the speed of signal transfer in Arabidopsis thaliana mesophyll cells under continuous irradiation of blue light, as was about 0.8 µm min−1. Possible candidates of the signal are discussed depending on the speed of signal transfer.Key words: Adiantum capillus-veneris, Arabidopsis thaliana, blue light, chloroplast movement, microbeam, red light, signalOrganelle movement is essential for plant growth and development and tightly regulated by environmental conditions.1 It is well known that light regulates chloroplast movement in various plant species. Chloroplast movement can be separated into three categories, (1) photoperception by photoreceptors, (2) signal transduction from photoreceptor to chloroplasts and (3) movement of chloroplasts and has been analyzed from a physiological point of view.2 We recently identified the photoreceptors in Arabidopsis thaliana, fern Adiantum capillus-veneris, and moss Physcomitrella patens. In A. thaliana, phototropin 2 (phot2) mediates the avoidance movement,3,4 whereas both phototropin 1 (phot1) and phot2 mediate the accumulation response.5 A chimeric photoreceptor neochrome 1 (neo1)6 was identified as a red/far-red and blue light receptor that mediates red as well as blue light-induced chloroplast movement in A. capillusveneris.7 Interestingly, neo1 mediated red and blue light-induced nuclear movement and negative phototropic response of A. capillus-veneris rhizoid cells.8,9 On the mechanism of chloroplast movement, we also found a novel structure of actin filaments that appeared between chloroplast and the plasma membrane at the front side of moving chloroplast.10 Recent studies using the technique of microbeam irradiation have revealed that chloroplasts do not have a polarity for light-induced accumulation movement and can move freely in any direction both in A. capillus-veneris prothallial cells and in A. thaliana mesophyll cells.11 However, the signal that may be released from photoreceptors and transferred to chloroplasts remains unknown.To understand the properties of the signal for the chloroplast accumulation response, we examined the speed of signal transfer in dark-adapted A. capillus-veneris gametophyte cells and A. thaliana mesophyll cells by partial cell irradiation with a red and/or blue microbeam of various light intensities for 1 min and the following continuous irradiation, respectively.12As shown in Figure 1, the relation between the distance of chloroplasts from the microbeam and the timing when each chloroplast started moving toward the microbeam irradiated area (shown as black dots in Fig. 1) was obtained and plotted. The lag time between the onset of microbeam irradiation and the timing of start moving of chloroplasts is the time period needed for a signal to reach each chloroplast. To obtain more accurate data many chloroplasts at various positions were used. The slope of the approximate line indicates the average speed of the signal transfer. Shown with a protonemal cell at the left side of this figure is an instance where the speed of signal transfer from basal-to-apical (acropetal) direction is obtained.Open in a separate windowFigure 1How to calculate the speed of signal transfer in the basal cell of two-celled protonema of Adiantum capillus-veneris. The relationship between the distance of chloroplast position from the edge of the microbeam to the center of each chloroplast as shown in left side of figure and the timing of chloroplast movement initiated shown as the black dots was obtained. Inclination of the approximate lines connecting dots indicates the speeds of the signal transfer.In protonemal cells, which are tip-growing linear cells, the average speed of signal transfer was about 2.3 µm min−1 from basal-to-apical (acropetal) and about 0.7 µm min−1 from apical-to-basal (basipetal) directions. These values were almost constant irrespective of light intensity, wavelength, irradiation period, and the region of the cell irradiated.12 The difference of speed between basipetal and acropetal directions may be depending on cell polarity. The signal transfer in prothallial cells of A. capillus-veneris and mesophyll cells of A. thaliana was about 1.0 µm min−1 to any direction, probably because they may not have a polarity comparing to protonemal cells or have a weak polarity if any. Thus, the speed of signal transfer must be conserved in most land plants,12 if not influenced by strong polarity.
R1W m−2R1W m−2B1W m−2R0.1W m−2R10W m−2B10W m−2
1 mincountinuouscountinuouscountinuouscountinuouscountinuous
Protonemal cell (towards apical region)2.322.372.282.412.39
Protonemal cell (towards basal region)0.580.730.800.740.86
Prothallial cell1.130.921.101.080.95
Arabidopsis thaliana0.70
Open in a separate windowThe speeds of signal transfer under different light intensities and wave length in Adiantum capillus-veneris gametophyte cells and Arabidopsis thaliana mesophyll cells are summarized. When dark-adapted cells were irradiated with various light intensities (red light: 10, 1, 0.1 W m−2) of a microbeam of red or blue light for 1 min or continuously, the chloroplasts moved towards the irradiated area. The speed of signal transfer was measured from the relationship between the timing of onset of moving and the distance of chloroplalsts from the microbeam irradiated area.Calcium ions have been proposed as one of the candidates of the signal. Calcium is reported to be necessary for chloroplast movement in some plants.13,14 Chloroplast movement under polarized light could not be induced in the existence of EGTA in protonemal cells of A. capillus-veneris, although chloroplasts show slight movement in random direction.13 In Lemna trisulca, chloroplast movement correlates with an increase of cytoplasmic calcium levels and is inhibited by antagonists of calcium homeostasis.14 The speed of intracellular transfer of calcium ions in plant cells was measured only in moss Physcomitrella patens by microinjection of a calcium indicator into protonemal cells.15 The speed of calcium waves in the cytoplasm of protonemal cell was about 3.4 µm sec−1. The speed of substance transfer as signals is not known in plant cells except for the above instance, as far as we know, but in animal cells various experimental data has been accumulated.1621The transfer speed of calcium waves visualizing cytoplasmic free calcium by microinjection of aequorin was about 8 µm sec−1 in Xenopus eggs.16 Calcium ion expands as a spherical wave and the wave speed in plane is 50 µm sec−1 in rat cardiac myocytes when measured by loading a membrane-permeable indicator of calcium into the cell. The maximum velocity was 112 µm sec−1.17 Calcium waves could also be observed in the SR-free single isolated rabbit cardiac myofibrils with a propagation velocity of 15.5 µm sec−1.18 The propagation velocity of the calcium wave was about 65–100 µm sec−1 by calciuminduced calcium release (CICR) in pig heart muscle cells.1921 Comparing these values to our data in A. capillus-veneris, the speed of signal transfer in chloroplast movement in fern gametophytes was 100–200 times slower than those measured for calcium ion transfers in animal cells, suggesting that the calcium might not be the signal involved in chloroplast movement.Intracellular transport is depended on the cytoskeleton systems in many cases. So the speed of movement of the cytoskeleton itself has been examined. When motor-proteins (such as 22s dynein, 14s dynein, kinesin) were anchored on a slide glass microtubules overlaid moved with a speed of about 4.52, 4.29, 0.422 µm sec−1, respectively. In similar ways, actin filaments placed over myosin-coated glass moved at about 5.21 µm sec-1.22 On the other hand, the motor domain of the Centromere Binding Factor (CBF) protein complex moves at 4.04 µm min−1 on microtubules.23 In A. capillus-veneris protonemal cells, the speed of cytoplasmic streaming depending on the actomyosin system was calculated from the speed of oil drop movement.24 The speed was dependent upon the position of long protonemal cells and was about 2 µm min−1 in the apical region and gradually increased to 10 µm min−1 in the basal region. In comparison to the data cited here, the speed of signal transfer involved in chloroplast accumulation was 30–120 times slower than the speed of the actomyosin system or the microtubule-kinesin/dynein system, but it is similar to the moving speed of a protein complex on a microtubule23 and oil droplets in a protonemal cell.24Polymerization rates of cytoskeletal proteins have been measured using in vitro systems. For instance, the plus end of microtubules from bovine brains grew at 1.04–1.88 µm min−1.25,26 Polymerization rate of actin filaments from rabbit muscle was about 0.13–0.49 µm min−1 and depended on the G-actin concentration.27 Live BHK21 fibroblasts, mouse melanoma cells and Dictyostelium amoebae expressing GFP-actin fusion proteins move on glass by using three-dimensional F-actin bands. These structures propagate throughout the cytoplasm at rates ranging between 2–5 µm min−1 in each cell type and produce lamellipodia or pseudopodia at the cell boundary.28 The extending speed of these cytoskeletons is roughly equal to the speed of signal transfer for the chloroplast accumulation response. We therefore aim to measure the speed of extension of these filaments when a method of gene transformation has been established for A. capillus-veneris.  相似文献   

6.
Arabidopsis thaliana overexpressing glycolate oxidase in chloroplasts: H2O2-induced changes in primary metabolic pathways     
Holger Fahnenstich  Ulf-Ingo Flügge  Verónica G Maurino 《Plant signaling & behavior》2008,3(12):1122-1125
Reactive oxygen species (ROS) represent both toxic by-products of aerobic metabolism as well as signaling molecules in processes like growth regulation and defense pathways. The study of signaling and oxidative-damage effects can be separated in plants expressing glycolate oxidase in the plastids (GO plants), where the production of H2O2 in the chloroplasts is inducible and sustained perturbations can reproducibly be provoked by exposing the plants to different ambient conditions. Thus, GO plants represent an ideal non-invasive model to study events related to the perception and responses to H2O2 accumulation. Metabolic profiling of GO plants indicated that under high light a sustained production of H2O2 imposes coordinate changes on central metabolic pathways. The overall metabolic scenario is consistent with decreased carbon assimilation, which results in lower abundance of glycolytic and tricarboxylic acid cycle intermediates, while simultaneously amino acid metabolism routes are specifically modulated. The GO plants, although retarded in growth and flowering, can complete their life cycle indicating that the reconfiguration of the central metabolic pathways is part of a response to survive and thus, to adapt to stress conditions imposed by the accumulation of H2O2 during the light period.Key words: Arabidopsis thaliana, H2O2, oxidative stress, reactive oxygen species, signalingReactive oxygen species (ROS) are key molecules in the regulation of plant development, stress responses and programmed cell death. Depending on the identity of ROS species or its subcellular production site, different cellular responses are provoked.1 To assess the effects of metabolically generated H2O2 in chloroplasts, we have recently generated Arabidopsis plants in which the peroxisomal GO was targeted to chloroplasts.2 The GO overexpressing plants (GO plants) show retardation in growth and flowering time, features also observed in catalase, ascorbate peroxidase and MnSOD deficient mutants.35 The analysis of GO plants indicated that H2O2 is responsible for the observed phenotype. GO plants represent an ideal non-invasive model system to study the effects of H2O2 directly in the chloroplasts because H2O2 accumulation can be modulated by growing the plants under different ambient conditions. By this, growth under low light or high CO2 concentrations minimizes the oxygenase activity of RubisCO and thus the flux through GO whereas the exposition to high light intensities enhances photorespiration and thus the flux through GO.Here, we explored the impact of H2O2 production on the primary metabolism of GO plants by assessing the relative levels of various metabolites by gas chromatography coupled to mass spectrometry (GC-MS)6 in rosettes of plants grown at low light (30 µmol quanta m−2 s−1) and after exposing the plants for 7 h to high light (600 µmol quanta m−2 s−1). The results obtained for the GO5 line are shown in After 1 h at 30 µEAfter 7 h at 600 µEAlanine0.88 ± 0.052.83 ± 0.68Asparagine1.39 ± 0.123.64 ± 0.21Aspartate0.88 ± 0.031.65 ± 0.10GABA1.14 ± 0.051.13 ± 0.05Glutamate0.97 ± 0.041.51 ± 0.07Glutamine1.06 ± 0.111.87 ± 0.06Glycine1.23 ± 0.070.30 ± 0.02Isoleucine3.52 ± 0.403.00 ± 0.15Leucine1.36 ± 0.220.57 ± 0.06Lysine1.49 ± 0.130.38 ± 0.02Methionine0.96 ± 0.054.54 ± 0.51Phenylalanine0.95 ± 0.030.94 ± 0.04Proline1.32 ± 0.221.60 ± 0.13Serine1.05 ± 0.041.49 ± 0.15Threonine4.74 ± 0.175.51 ± 0.34Valine0.91 ± 0.130.29 ± 0.02Citrate/Isocitrate0.65 ± 0.020.64 ± 0.022-oxoglutarate0.95 ± 0.110.76 ± 0.05Succinate0.78 ± 0.040.72 ± 0.02Fumarate0.64 ± 0.030.31 ± 0.01Malate0.74 ± 0.030.60 ± 0.02Pyruvate1.19 ± 0.280.79 ± 0.04Ascorbate1.13 ± 0.142.44 ± 0.45Galactonate-γ-lactone1.81 ± 0.401.62 ± 0.28Fructose1.20 ± 0.130.37 ± 0.01Glucose1.38 ± 0.170.30 ± 0.01Mannose0.90 ± 0.271.34 ± 0.28Sucrose1.04 ± 0.070.49 ± 0.02Fructose-6P0.82 ± 0.151.20 ± 0.15Glucose-6P0.87 ± 0.061.25 ± 0.183-PGA1.13 ± 0.110.35 ± 0.02DHAP1.38 ± 0.091.26 ± 0.08Glycerate0.99 ± 0.040.67 ± 0.01Glycerol1.07 ± 0.041.12 ± 0.05Shikimate1.18 ± 0.040.35 ± 0.01Salicylic acid1.04 ± 0.180.66 ± 0.18Open in a separate windowPlants were grown at 30 µmol m−2 sec−1 (30 µE). The samples were collected 1 h after the onset of the light period and after 7 h of exposure to 600 µmol m−2 sec−1 (600 µE), respectively. The values are relative to the respective wild-type (each metabolite = 1) and represent means ± SE of four determinations of eight plants. (*) indicates the value is significantly different from the respective wild-type as determined by the Student''s t test (p < 0.05).At the beginning of the light period in low light conditions, some significant deviations in the levels of metabolites tested were observed in GO plants when compared to the wild-type (2 the transgenic GO activity is sufficient to induce a characteristic metabolic phenotype (Fig. 1). The levels of the tricarboxylic acid (TCA) cycle intermediates, citrate/isocitrate, succinate, fumarate and malate were lower in the GO plants (7 In consequence, OAA might not freely enter the TCA cycle and is redirected to the synthesis of Lys, Thr and Ile, which accumulate in the GO plants (Open in a separate windowFigure 1Simplified scheme of the primary metabolism showing the qualitative variations in metabolite abundance in GO plants obtained by GC-MS analysis (2 Blue boxes indicate a significant increase in the content of the particular metabolite compared to the wild-type, while red boxes indicate a significant decrease. Metabolites without boxes have not been determined. The arrows do not always indicate single steps. Adapted from Baxter et al., 2007.High light treatment induced massive changes in the metabolic profile of GO plants (Fig. 1). The OAA-derived amino acids Asp, Asn, Thr, Ile and Met as well as the 2-oxoglutarate-derived amino acids Glu and Gln accumulated. On the contrary, the levels of the Pyr-derived amino acids Val and Leu and the OAA-derived amino acid Lys decreased. A rational explanation for these metabolic changes is difficult to assess, but these changes could be a consequence of a metabolic reconfiguration in response to high light leading to required physiological functions and thus ensuring continued cellular function and survival, e.g., production of secondary metabolites to mitigate photooxidative damage. The higher levels of Glu observed in the GO plants could be attributed to alternative pathways of glyoxylate metabolism that may occur during photorespiration.8 It has been shown earlier that isocitrate derived from glyoxylate and succinate is decarboxylated by cytosolic isocitrate dehydrogenase producing 2-oxoglutarate and further glutamate.8In GO plants grown under low light conditions (minimized photorespiratory conditions), the levels of Gly were similar to those of the wild-type whereas, after exposure to high light (photorespiratory conditions), the Gly levels were extremely low, indicating that the GO activity diverts a significant portion of flux from the photorespiratory pathway (7 and also the levels of the lipoic acid-containing subunits of the pyruvate- and 2-oxoglutarate dehydrogenases were shown to be significantly reduced under oxidative stress conditions.9,10 Similarly, the contents of the soluble sugars sucrose, fructose and glucose and those of 3-PGA and glycerate were lower. In addition, the GO plants showed an impairment in the accumulation of starch under high light conditions, a feature that was not observed if the plants were grown under non-photorespiratory conditions.2Together, these results indicate that the low photosynthetic carbon assimilation in the GO plants exposed to high light is most probably due to enhanced photoinhibition,2 the repression of genes encoding photosynthetic components by H2O2,1113 and the direct damage or inhibition of enzyme activities involved in CO2 assimilation and energy metabolism by H2O2.7,10,14,15 Moreover, Scarpeci and Valle13 showed that in plants treated with the superoxid anion radical producing methylviologen (MV) most of the genes involved in phosphorylytic starch degradation, e.g., the trioseP/Pi translocator and genes involved in starch and sucrose synthesis were repressed, while genes involved in hydrolytic starch breakdown and those involved in sucrose degradation were induced. In line with this, the contents of carbohydrates were also lower in MV-treated plants. Together, these observations can also explain the lower growth rates of the GO plants in conditions where the oxygenase activity of RubisCO becomes important and thus, the flux through GO increases.2The levels of shikimate were lower in GO plants (2,16 and the low levels of substrates available, as anthocyanins are ultimately synthesized from photosynthates and the GO plants showed a diminished photosynthetic performance.2As expected, the levels of ascorbate and its precursor, galactonate-γ-lactone, were enhanced in the GO plants clearly showing the activation of the cellular antioxidant machinery (10 described the metabolic response to oxidative stress of heterotrophic Arabidopsis cells treated with menadione, which also generates superoxide anion radicals. This oxidative stress was shown to induce metabolic inhibition of flux through the TCA cycle and sectors of amino acid metabolism together with a diversion of carbon into the oxidative pentose phosphate pathway.Signaling and oxidative-damage effects are difficult to separate by manipulating the enzymes of antioxidant systems. In this regard, the GO plants represent a challenging inducible model that avoid acclimatory and adaptative effects. Moreover, it is possible to control the H2O2 production in the chloroplasts of GO plants without inducing oxidative damage by changing the conditions of growth.2 Further exploration of metabolic changes imposed by different ROS at the cellular and whole organ levels will allow to address many intriguing questions on how plants can rearrange metabolism to cope with oxidative stresses.  相似文献   

7.
Long antisense non-coding RNAs and their role in transcription and oncogenesis     
Kevin V Morris  Peter K Vogt 《Cell cycle (Georgetown, Tex.)》2010,9(13):2544-2547
  相似文献   

8.
The interplay of lipid acyl hydrolases in inducible plant defense     
Etienne Grienenberger  Pierrette Geoffroy  Jérome Mutterer  Michel Legrand  Thierry Heitz 《Plant signaling & behavior》2010,5(10):1181-1186
  相似文献   

9.
Indirect effects of tending ants on holm oak volatiles and acorn quality     
Carolina I Paris  Joan Llusia  Josep Pe?uelas 《Plant signaling & behavior》2011,6(4):547-550
The indirect effect of ants on plants through their mutualism with honeydew-producing insects has been extensively investigated. Honeydew-producing insects that are tended by ants impose a cost on plant fitness and health by reducing seed production and/or plant growth. This cost is associated with sap intake and virus transmissions but may be overcompesated by tending ants if they deter or prey on hebivorous insects. The balance between cost and benefits depends on the tending ant species. In this study we report other indirect effects on plants of the mutualism between aphids and ants. We have found that two Lasius ant species, one native and the other invasive, may change the composition of volatile organic compounds (VOCs) of the holm oak (Quercus ilex) blend when they tend the aphid Lachnus roboris. The aphid regulation of its feeding and honeydew production according to the ant demands was proposed as a plausible mechanism that triggers changes in VOCs. Additionally, we now report here that aphid feeding, which is located most of the time on acorns cap or petiole, significantly increased the relative content of linolenic acid in acorns from holm oak colonized by the invasive ant. This acid is involved in the response of plants to insect herbivory as a precursor or jasmonic acid. No effect was found on acorn production, germination or seedlings quality. These results suggest that tending-ants may trigger the physiological response of holm oaks involved in plant resistance toward aphid herbivory and this response is ant species-dependent.Key words: tended aphid, invasive ants, linolenic acid, jasmonic acid, monoterpene emissionsTo achieve an indirect effect it is necessary to have a minimun of three species, two focal species that interact directly and an associate species whose presence promotes an indirect effect on one or both focal species. In general, indirect effects of a third species are defined by how and to what degree a pairwise species interaction is influenced by the presence and density of this third species.1 There are several examples of interactions presenting indirect effects: apparent competition,1 facilitation,2 tri-trophic level interactions,3 cascading effects4 and exploitative competition. 5 But, indirect effects have been studied most extensively in the context of trophic cascades when top predators are removed6 or added7 and in the context of mutualisms.810 Usually, indirect effects are investigated as changes in abundance of the focal species occur. However, indirect effects may result in biologically significant changes in a species that are not reflected only to its abundance.11 There are many examples of changes in physiology, behavior, morphology and/or genotypic composition of the focal species.11,12 These changes on density and/or morphological, physiological and behavioral traits of the focal species are not mutually exclusive, and all can act at the same time.13 The magnitude and direction of both direct and indirect effects should influence the relative resilience of communities to perturbation, which in turn will affect species coexistence and community evolution.14 In this regard, indirect effects had been postulated as one of the main forces structuring communities2 and shaping the evolution of communities.14In terrestrial communities ants interact with plants both directly and indirectly. They can disperse or consume seeds, feed from specialized plant structures such as food bodies and extrafloral nectaries, act as or deter pollinitators, prey on herbivorous insects and/or develop mutualisms with honeydew-producing insects indirectly modifying plant fitness.1517 Additionally, through their nesting activities in soil, ants increase soil nutrient content available to plants, may change water infiltration and soil holding-capacity and modify biodiversity and abundance of soil organisms related to the decomposition process.18,19 As a consequence of their activities, ants may thus change behavior, density, physiology or fitness of other species.12,22,23 In the case of ants that tend honeydew-producing insects, evidence shows that their attention may change some traits of insect life history, 22 their abundance or physiology.18 For the plant, the net outcome of the mutualism between ants and honeydew-producing insects will depend on the balance between the costs for plant fitness via consumption of plant sap and transmission of plant pathogens and the benefit of ants deterring herbivorous insects.18,23 As a consequence, plant seed production, pod production or even plant growth may decrease when the cost of honeydew-producing insects exceed the benefit provided by tending ants.18,23Recently, we have described the changes that two tending ant species may exert indirectly on monoterpene emissions of holm oak (Quercus ilex) saplings through its mutualism with Lachnus roboris aphids.24 One of these tending ant species was Lasius neglectus, an invasive ant species that displaces the local ant Lasius grandis. We found that aphids feeding on holm oak increased the emission of total volatile organic carbon (VOCs) by 31%. In particular, aphids feeding elicited the emission of a new monoterpene, Δ3-carene, and increased the emission of myrcene (mean ± SE; sapling alone: 0.105 ± 0.011 µg g−1 h−1; sapling plus not tended aphid: 0.443 ± 0.057 µg g1 h1) and γ-terpinene (sapling alone: 0.0013 ± 0.0001; sapling plus not tended aphid: 0.0122 ± 0.0022 µg g1 h1) (Mann-Whitney, sapling alone vs. sapling plus not tended aphids, U4,4 = 0, p < 0.05 for both compounds). Changes of VOC emission in response to aphid infestation were noticed also in boreal trees.24 When the aphids became tended by the invasive ant, L. neglectus, VOCs emissions increased only 19% because myrcene, the main compound of the blend, decreased significantly (25 When our data was recalculated on leaf area basis (nmol m−2 s−1), the general pattern was the same independently of the units, but the differences among treatments were not statistically significant (26 These slight differences in the statitiscal significance of the differences of VOC emissions depending on the reference unit may be due to differences in leaf morphology, i.e., changes of leaf area and mass. However, in our study, all holm oaks showed a similar leaf morphology among treatments (Kruskal-Wallis, leaf mass: H3,20 = 2.16, p = 0.53; leaf area: H3,20 = 2.64, p = 0.45) (24,27 This lack of consistence of aphid effect on leaf area and mass limits the development of a clear pattern linking aphids feeding, leaf area or mass and VOC emissions. On the other hand, to achieve statistical significance of emitted VOCs among treatments, values should differ strongly given the high variability of VOC emission within treatments.26 Under this scenario, we recommend giving the values of leaf morphology and to give VOC emissions on both unit bases to facilite comparisons among different studies.

Table 1

Means and standard error of the emission rates of the main compounds emitted by Quercus ilex saplings (n = 4 for T1 and T2 and n = 8 for T3) infested with untended aphids (T1) or infested with aphids tended by the native ant Lasius grandis (T2) or by the invasive ant Lasius neglectus (T3)
Emission rates: µg g−1 h−1 above and nmol m−2 s−1 below
CompoundT1T2T3
Non tendedTended by native antTended by invasive ant
α-Thujene0.007 ± 0.004a0.015 ± 0.005a0.005 ± 0.001a
0.006 ± 0.004a0.006 ± 0.003a0.009 ± 0.008a
α-Pinene0.391 ± 0.182a2.072 ± 0.033b0.551 ± 0.105a
0.244 ± 0.139a0.532 ± 0.082a0.244 ± 0.127a
Camphene0.007 ± 0.003a0.047 ± 0.014b0.012 ± 0.004ab
0.005 ± 0.003a0.014 ± 0.004a0.007 ± 0.004a
Sabinene0.084 ± 0.042a0.387 ± 0.045b0.075 ± 0.017a
0.100 ± 0.076a0.210 ± 0.097a0.128 ± 0.107a
β-Pinene0.227 ± 0.105a1.454 ± 0.269b0.306 ± 0.075a
0.159 ± 0.097a0.322 ± 0.134a0.179 ± 0.097a
Myrcene0.443 ± 0.057a0.482 ± 0.044a0.093 ± 0.020b
0.101 ± 0.034a0.119 ± 0.026a0.060 ± 0.034a
Δ3-Carene0.003 ± 0.002a0.018 ± 0.001b0.010 ± 0.003ab
0.001 ± 0.001a0.004 ± 0.001a0.002 ± 0.001a
α-Terpine0.004 ± 0.001a0.003 ± 0.001a0.001 ± 0.000a
0.001 ± 0.000a0.004 ± 0.003a0.001 ± 0.001a
γ-Terpinene0.012 ± 0.002a0.011 ± 0.004a0.013 ± 0.005a
0.003 ± 0.001a0.013 ± 0.010a0.006 ± 0.003a
Terpinolene0.001 ± 0.000a0.002 ± 0.001a0.005 ± 0.002a
0.001 ± 0.000a0.002 ± 0.001a0.001 ± 0.001a
Leaf mass (g)0.001 ± 0.000a0.002 ± 0.001a0.005 ± 0.002a
Leaf area (m2)0.104 ± 0.005a0.146 ± 0.026a0.113 ± 0.006a
Open in a separate windowThe emission rate were compared first by Kruskal-Wallis test. Values given above were calculated as µg g−1 h−1, while values below were calculated as nmols m−2 s−1. At the last row, leaf morphology is shown for each treatment. Different letters indicate statistical differences of multiple non parametrical post hoc comparisons (Dunn''s test, p < 0.05).The tended aphid, Lachnus roboris, feed most of the time on the petiole or on the cap of acorns of holm oaks.28 Therefore, acorn quantity and quality (lipid content) and seedlings quality could be affected by tending ants through their mutualism with aphids. We analyzed lipid content as an estimator of acorn quality. Lipids and starches are synthetized in acorns from carbohydrates translocated from leaves.29 However, before being used for metabolic functions, lipid content of acorns must be transformed into glucids and then can be used as respiratory substrate during germination.29 As a consequence, when aphids suck sap from acorns they may act as a sink of translocated carbohydrates, thus decreasing the amount that reaches the seeds.30During two consecutive years, we counted all acorns from one branch (8–11 cm diameter) for each one of 6 holm oaks colonized by L. neglectus and 6 holm oaks colonized by L. grandis that we studied. We followed them at different stages of their development (July, September and December). Among holm oaks, the loss of acorn production varied between 87.9–96.8%. Acorn production (acorns that started to develop and reached maturity) did not differ between the tree colonized by one or another ant species (mean number of acorns per branch ± SE, 2003: L. neglectus trees: 2.67 ± 1.38, L. grandis trees: 2.67 ± 2.01; Mann Whitney, U = 15, p = 0.69; 2004: L. neglectus trees: 35.83 ± 19.23, L. grandis trees: 49.80 ± 27.99; Mann Whitney, U = 12, p = 0.66). The only work in which researchers evaluated the effect of ants on acorn production was conducted by Ito and Higashi.31 These authors showed that the acorn production of Quercus dentata in the presence of the tending ant Formica yessensis did not differ either. However, there was a significantly lower proportion of infested acorns with weevil larvae when Formica yessensis were tending aphids.31 So, ants may indirectly increase the probability that acorns reach the maturity in healthy conditions, improving in this way one component of the fitness of the oak. In the case of the larvae of weevils, wasps and moth species that infest holm oak acorns32 during their development, they do not move to other acorn as in the case reported by Ito and Higashi.31 This behavior prevents ant predation during the move from one acorn to another.Lipid content of acorn cotyledons was analyzed by gas cromatography-flame ionization detector (FID) after performing the derivatization of lipid acids to methyl esters with BF3 in methanol.33 Acorn quality only differed in the content of linolenic acid, which was significantly higher in acorns from oaks colonized by the invasive ant Lasius neglectus (Fig. 1). Linolenic acid acts as a precursor for the synthesis of jasmonic acid,34 a signaling molecule involved in responses associated with insect herbivory.35 The increase of linolenic acid suggests that a local response to aphid feeding was triggered during acorn development. In boreal trees, aphid feeding increased up to 50% the emission of methyl salicylate, a defence compound of plants, that acts as aphid repellent and an attractor of foraging predators and parasitoids.24Open in a separate windowFigure 1Mean (±SE) of the percentage of each fatty acid relative to the total amount of fatty acids of acorns from holm oaks colonized by invasive ants L. neglectus (in grey) or by native ants L. grandis (in white). Asterisk shows significant differences of linolenic content (Mann Whitney, U = 7.5, p = 0.026).We then performed a germination test at the second year when enough acorns reached maturity. We picked mature acorns from trees colonized by the invasive or by the native ant. Those acorns with visual evidence of being infested by insect larvae were discarded as non-viable. From the group of healthy acorns, we chose randomly between 6 to 18 acorns per tree comprising in total 94 or 97 acorns for holm oaks colonized by L. neglectus or L. grandis, respectively. We performed a laboratory germination test at 20–25°C under natural light conditions. Acorns were planted in nursery flats of 300 cc filled with commercial compost (70% organic matter, pH = 6.5), watered twice a week and inspected daily from January to April until emergency. After 90 days, acorn viability (germination + seedling emergence) was 89% and 87% for acorns from holm oaks colonized by the invasive or by native ant, respectevily. Puerta-Piñeiro et al. obtained a 90% acorn viability when acorns where sown in sterilized river sand. On the other hand, Leiva and Fernαndez-Alés37 sowed 20 acorns per 7l pots filled with peat and obtained 59% of acorn viability. In our test, we sowed acorns in separate flats under a less competitive environment. The mean time of seedling emergence was 47.8 ± 13.1 days for acorns from holm oaks colonized by L. neglectus and 47.3 ± 14.1 days for acorns from holm oaks colonized by L. grandis. We randomly chose 10 one-month-old seedlings to calculate their quality using the Dickson index.38 This index indicates the potentiality of a seedling to survive and to grow by combining the ratio between root biomass and total biomass with the height and the diameter of the sapling. Seedlings with a higher quality have a higher index. Seedlings showed a very low and similar Dickson index (Mann-Whitnney, L. neglectus: 0.072 ± 0.015; L. grandis: 0.075 ± 0.015, U = 44, p = 0.68, n = 10 seedlings). The low values of Dickson index of the two treatments suggest that from the chosen acorns, emerged seedlings had, per se, a low quality. Only a long term experiment, i.e., at least 10 years to achieve at least two masting years with reproductive holm oaks that never had been infested with aphids, and another group that was infested, could reveal if the effect of aphid feeding on acorns really affect holm oak fitness.We conclude that ants, through their mutualism with tended aphids, may promote considerable changes of holm oaks VOCs emission and acorn quality. However, there was no effect on seedling quality in spite of the decrease of linolenic acid content of acorns from holm oaks where aphids were tended by the invasive ant. These results indicate that the physiological response of acorns to aphid feeding tended by invasive or local ants does not necessary imply a low quality of seedlings as we previously expected. Under natural conditions, the emission of mature holm oak doubled those of saplings from a plantation.39 So considering that we performed our experiment using 4-year-old saplings, it is probable that the indirect effect of ants on VOCs emissions and acorn quality could be magnified when aphid outbreaks occur in mature holm oak forest. Taking into account the contribution of monoterpenes and isoprene emitted by mediterranean and boreal forests to atmospheric VOC pools40 and the species richness of aphids in the north hemisphere,41 we suggest, in agreement with Blande et al., that aphid infestations should be considered in future models of biogenic VOC emissions from forests.  相似文献   

10.
Focus on Chromatin/Epigenetics: Trans-Homolog Interactions Facilitating Paramutation in Maize     
Brian John Giacopelli  Jay Brian Hollick 《Plant physiology》2015,168(4):1226-1236
  相似文献   

11.
DNA Repair at Telomeres: Keeping the Ends Intact     
Christopher J. Webb  Yun Wu  Virginia A. Zakian 《Cold Spring Harbor perspectives in biology》2013,5(6)
  相似文献   

12.
Peptidoglycan Fine Structure of the Radiotolerant Bacterium Deinococcus radiodurans Sark     
José Carlos Quintela  Francisco García-del Portillo  Ernst Pittenauer  Günter Allmaier  Miguel A. de Pedro 《Journal of bacteriology》1999,181(1):334-337
Peptidoglycan from Deinococcus radiodurans was analyzed by high-performance liquid chromatography and mass spectrometry. The monomeric subunit was: N-acetylglucosamine–N-acetylmuramic acid–l-Ala–d-Glu-(γ)–l-Orn-[(δ)Gly-Gly]–d-Ala–d-Ala. Cross-linkage was mediated by (Gly)2 bridges, and glycan strands were terminated in (1→6)anhydro-muramic acid residues. Structural relations with the phylogenetically close Thermus thermophilus are discussed.The gram-positive bacterium Deinococcus radiodurans is remarkable because of its extreme resistance to ionizing radiation (14). Phylogenetically the closest relatives of Deinococcus are the extreme thermophiles of the genus Thermus (4, 11). In 16S rRNA phylogenetic trees, the genera Thermus and Deinococcus group together as one of the older branches in bacterial evolution (11). Both microorganisms have complex cell envelopes with outer membranes, S-layers, and ornithine-Gly-containing mureins (7, 12, 19, 20, 22, 23). However, Deinococcus and Thermus differ in their response to the Gram reaction, having positive and negative reactions, respectively (4, 14). The murein structure for Thermus thermophilus HB8 has been recently elucidated (19). Here we report the murein structure of Deinococcus radiodurans with similar detail.D. radiodurans Sark (23) was used in the present study. Cultures were grown in Luria-Bertani medium (13) at 30°C with aeration. Murein was purified and subjected to amino acid and high-performance liquid chromatography (HPLC) analyses as previously described (6, 9, 10, 19). For further analysis muropeptides were purified, lyophilized, and desalted as reported elsewhere (6, 19). Purified muropeptides were subjected to plasma desorption linear time-of-flight mass spectrometry (PDMS) as described previously (1, 5, 16, 19). Positive and negative ion mass spectra were obtained on a short linear 252californium time-of-flight instrument (BioIon AB, Uppsala, Sweden). The acceleration voltage was between 17 and 19 kV, and spectra were accumulated for 1 to 10 million fission events. Calibration of the mass spectra was done in the positive ion mode with H+ and Na+ ions and in the negative ion mode with H and CN ions. Calculated m/z values are based on average masses.Amino acid analysis of muramidase (Cellosyl; Hoechst, Frankfurt am Main, Germany)-digested sacculi (50 μg) revealed Glu, Orn, Ala, and Gly as the only amino acids in the muramidase-solubilized material. Less than 3% of the total Orn remained in the muramidase-insoluble fraction, indicating an essentially complete solubilization of murein.Muramidase-digested murein samples (200 μg) were analyzed by HPLC as described in reference 19. The muropeptide pattern (Fig. (Fig.1)1) was relatively simple, with five dominating components (DR5 and DR10 to DR13 [Fig. 1]). The muropeptides resolved by HPLC were collected, desalted, and subjected to PDMS. The results are presented in Table Table11 compared with the m/z values calculated for best-matching muropeptides made up of N-acetylglucosamine (GlucNAc), N-acetylmuramic acid (MurNAc), and the amino acids detected in the murein. The more likely structures are shown in Fig. Fig.1.1. According to the m/z values, muropeptides DR1 to DR7 and DR9 were monomers; DR8, DR10, and DR11 were dimers; and DR12 and DR13 were trimers. The best-fitting structures for DR3 to DR8, DR11, and DR13 coincided with muropeptides previously characterized in T. thermophilus HB8 (19) and had identical retention times in comparative HPLC runs. The minor muropeptide DR7 (Fig. (Fig.1)1) was the only one detected with a d-Ala–d-Ala dipeptide and most likely represents the basic monomeric subunit. The composition of the major cross-linked species DR11 and DR13 confirmed that cross-linking is mediated by (Gly)2 bridges, as proposed previously (20). Open in a separate windowFIG. 1HPLC muropeptide elution patterns of murein purified from D. radiodurans. Muramidase-digested murein samples were subjected to HPLC analysis, and the A204 of the eluate was recorded. The most likely structures for each muroeptide as deduced by PDMS are shown. The position of residues in brackets is the most likely one as deduced from the structures of other muropeptides but could not be formally demonstrated. R = GlucNac–MurNac–l-Ala–d-Glu-(γ)→.

TABLE 1

Calculated and measured m/z values for the molecular ions of the major muropeptides from D. radiodurans
MuropeptideaIonm/z
ΔmbError (%)cMuropeptide composition
Muropeptide abundance (mol%)
CalculatedMeasuredNAGdNAMeGluOrnAlaGly
DR1[M+H]+699.69700.10.410.0611101012.0
DR2[M+H]+927.94928.30.360.041111125.7
DR3[M+Na]+1,006.971,007.50.530.051111133.0
DR4[M+Na]+963.95964.60.650.071111212.5
DR5[M+H]+999.02999.80.780.0811112227.7
[M−H]997.00997.30.300.03
DR6[M+Na]+1,078.51,078.80.750.071111232.4
DR7[M+H]+1,070.091,071.00.900.081111322.2
DR8[M+Na]+1,520.531,521.61.080.071122442.2
DR9[M+Na]+701.64702.10.460.0311f10105.0
DR10[M+H]+1,907.941,907.80.140.0122223410.1
[M−H]1,905.921,906.60.680.04
DR11[M+H]+1,979.011,979.10.090.0122224419.1
[M−H]1,977.001,977.30.300.02
DR12[M+H]+2,887.932,886.5−1.43−0.053333564.4
[M−H]2,885.912,885.8−0.11−0.01
DR13[M+H]+2,959.002,957.8−1.20−0.043333663.6
[M−H]2,956.992,955.9−1.09−0.04
Open in a separate windowaDR5 and DR10 to DR13 were analyzed in both the positive and negative ion modes. Muropeptides DR1 to DR4 and DR6 to DR9 were analyzed in the positive mode only due to the small amounts of sample available. bMass difference between measured and calculated quasimolecular ion values. c[(Measured mass−calculated mass)/calculated mass] × 100. dN-Acetylglucosamine. eN-Acetylmuramitol. f(1→6)Anhydro-N-acetylmuramic acid. Structural assignments of muropeptides DR1, DR2, DR8 to DR10, and DR12 deserve special comments. The low m/z value measured for DR1 (700.1) fitted very well with the value calculated for GlucNAc–MurNAc–l-Ala–d-Glu (699.69). Even smaller was the mass deduced for DR9 from the m/z value of the molecular ion of the sodium adduct (702.1) (Fig. (Fig.2).2). The mass difference between DR1 and DR9 (19.9 mass units) was very close indeed to the calculated difference between N-acetylmuramitol and the (1→6)anhydro form of MurNAc (20.04 mass units). Therefore, DR9 was identified as GlucNAc–(1→6)anhydro-MurNAc–l-Ala–d-Glu (Fig. (Fig.1).1). Muropeptides with (1→6)anhydro muramic acid have been identified in mureins from diverse origins (10, 15, 17, 19), indicating that it might be a common feature among peptidoglycan-containing microorganisms. Open in a separate windowFIG. 2Positive-ion linear PDMS of muropeptide DR9. Muropeptide DR9 was purified, desalted by HPLC, and subjected to PDMS to determine the molecular mass. The masses for the dominant molecular ions are indicated.The measured m/z value for the [M+Na]+ ion of DR8 was 1,521.6, very close to the mass calculated for a cross-linked dimer without one disaccharide moiety (1,520.53) (Fig. (Fig.1;1; Table Table1).1). Such muropeptides, also identified in T. thermophilus HB8 and other bacteria (18, 19), are most likely generated by the enzymatic clevage of MurNAc–l-Ala amide bonds in murein by an N-acetylmuramyl–l-alanine amidase (21). In particular, DR8 could derive from DR11. The difference between measured m/z values for DR8 and DR11 was 478.7, which fits with the mass contribution of a disaccharide moiety (480.5) within the mass accuracy of the instrument.The m/z values for muropeptides DR2, DR10, and DR12 supported the argument for structures in which the two d-Ala residues from the d-Ala–d-Ala C-terminal dipeptide were lost, leaving Orn as the C-terminal amino acid.The position of one Gly residue in muropeptides DR2, DR8, and DR10 to DR13 could not be formally demonstrated. One of the Gly residues could be at either the N- or the C-terminal positions. However, the N-terminal position seems more likely. The structure of the basic muropeptide (DR7), with a (Gly)2 acylating the δ-NH2 group of Orn, suggests that major muropeptides should present a (Gly)2 dipeptide. The scarcity of DR3 and DR6, which unambiguously have Gly as the C-terminal amino acid (Fig. (Fig.1),1), supports our assumption.Molar proportions for each muropeptide were calculated as proposed by Glauner et al. (10) and are shown in Table Table1.1. For calculations the structures of DR10 to DR13 were assumed to be those shown in Fig. Fig.1.1. The degree of cross-linkage calculated was 47.2%. Trimeric muropeptides were rather abundant (8 mol%) and made a substantial contribution to total cross-linkage. However, higher-order oligomers were not detected, in contrast with other gram-positive bacteria, such as Staphylococcus aureus, which is rich in such oligomers (8). The proportion of muropeptides with (1→6)anhydro-muramic acid (5 mol%) corresponded to a mean glycan strand length of 20 disaccharide units, which is in the range of values published for other bacteria (10, 17).The results of our study indicate that mureins from D. radiodurans and T. thermophilus HB8 (19) are certainly related in their basic structures but have distinct muropeptide compositions. In accordance with the phylogenetic proximity of Thermus and Deinococcus (11), both mureins are built up from the same basic monomeric subunit (DR7 in Fig. Fig.1),1), are cross-linked by (Gly)2 bridges, and have (1→6)anhydro-muramic acid at the termini of glycan strands. Most interestingly, Deinococcus and Thermus are the only microorganisms identified at present with the murein chemotype A3β as defined by Schleifer and Kandler (20). Nevertheless, the differences in muropeptide composition were substantial. Murein from D. radiodurans was poor in d-Ala–d-Ala- and d-Ala–Gly-terminated muropeptides (2.2 and 2.4 mol%, respectively) but abundant in Orn-terminated muropeptides (23.8 mol%) and in muropeptides with a peptide chain reduced to the dipeptide l-Ala–d-Glu (18 mol%). In contrast, neither Orn- nor Glu-terminated muropeptides have been detected in T. thermophilus HB8 murein, which is highly enriched in muropeptides with d-Ala–d-Ala and d-Ala–Gly (19). Furthermore, no traces of phenyl acetate-containing muropeptides, a landmark for T. thermophilus HB8 murein (19), were found in D. radiodurans. Cross-linkage was definitely higher in D. radiodurans than in T. thermophilus HB8 (47.4 and 27%, respectively), largely due to the higher proportion of trimers in the former.The similarity in murein basic structure suggests that the difference between D. radiodurans and T. thermophilus HB8 with respect to the Gram reaction may simply be a consequence of the difference in the thickness of cell walls (2, 3, 23). Interestingly, D. radiodurans murein turned out to be relatively simple for a gram-positive organism, possibly reflecting the primitive nature of this genus as deduced from phylogenetic trees (11). Our results illustrate the phylogenetic proximity between Deinococcus and Thermus at the cell wall level but also point out the structural divergences originated by the evolutionary history of each genus.  相似文献   

13.
Extracytoplasmic Function σ Factors Regulate Expression of the Bacillus subtilis yabE Gene via a cis-Acting Antisense RNA     
Warawan Eiamphungporn  John D. Helmann 《Journal of bacteriology》2009,191(3):1101-1105
  相似文献   

14.
Cell Biology of Mitotic Recombination     
Michael Lisby  Rodney Rothstein 《Cold Spring Harbor perspectives in biology》2015,7(3)
Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination.Homologous recombination (HR) is defined as the homology-directed exchange of genetic information between two DNA molecules (Fig. 1). Mitotic recombination is often initiated by single-stranded DNA (ssDNA), which can arise by several avenues (Mehta and Haber 2014). They include the processing of DNA double-strand breaks by 5′ to 3′ resection, during replication of damaged DNA, or during excision repair (Symington 2014). The ssDNA is bound by replication protein A (RPA) to control its accessibility to the Rad51 recombinase (Sung 1994, 1997a; Sugiyama et al. 1997; Morrical 2014). The barrier to Rad51-catalyzed recombination imposed by RPA can be overcome by a number of mediators, such as BRCA2 and Rad52, which serve to replace RPA with Rad51 on ssDNA, and the Rad51 paralogs Rad55-Rad57 (RAD51B-RAD51C-XRCC2-XRCC3) and the Psy3-Csm2-Shu1-Shu2 complex (SHU) (RAD51D-XRCC2-SWS1), which stabilize Rad51 filaments on ssDNA (see Sung 1997b; Sigurdsson et al. 2001; Martin et al. 2006; Bernstein et al. 2011; Liu et al. 2011; Qing et al. 2011; Amunugama et al. 2013; Zelensky et al. 2014). The Rad51 nucleoprotein filament catalyzes the invasion into a homologous duplex to produce a displacement loop (D-loop) (Fig. 1). At this stage, additional antirecombination functions are exerted by Srs2 (FBH1, PARI), which dissociates Rad51 filaments from ssDNA, and Mph1 (FANCM), which disassembles D-loops (see Daley et al. 2014). Upon Rad51-catalyzed strand invasion, the ATP-dependent DNA translocase Rad54 enables the invading 3′ end to be extended by DNA polymerases to copy genetic information from the intact duplex (Li and Heyer 2009). Ligation of the products often leads to joint molecules (JMs), such as single- or double-Holliday junctions (s/dHJs) or hemicatenanes (HCs), which must be processed to allow separation of the sister chromatids during mitosis. JMs can be dissolved by the Sgs1-Top3-Rmi1 complex (STR) (BTR, BLM-TOP3α-RMI1-RMI2) (see Bizard and Hickson 2014) or resolved by structure-selective nucleases, such as Mus81-Mms4 (MUS81-EME1), Slx1-Slx4, and Yen1 (GEN1) (see Wyatt and West 2014). Mitotic cells favor recombination events that lead to noncrossover events likely to avoid potentially detrimental consequences of loss of heterozygosity and translocations.Open in a separate windowFigure 1.Primary pathways for homology-dependent double-strand break (DSB) repair. Recombinational repair of a DSB is initiated by 5′ to 3′ resection of the DNA end(s). The resulting 3′ single-stranded end(s) invade an intact homologous duplex (in red) to prime DNA synthesis. For DSBs that are repaired by the classical double-strand break repair (DSBR) model, the displaced strand from the donor duplex pairs with the 3′ single-stranded DNA (ssDNA) tail at the other side of the break, which primes a second round of DNA synthesis. After ligation of the newly synthesized DNA to the resected 5′ strands, a double-Holliday junction (dHJ) intermediate is generated. The dHJ can be either dissolved by branch migration (indicated by arrows) into a hemicatenane (HC) leading to noncrossover (NCO) products or resolved by endonucleolytic cleavage (indicated by triangles) to produce NCO (positions 1, 2, 3, and 4) or CO (positions 1, 2, 5, and 6) products. Alternatively to the double-strand break repair (DSBR) pathway, the invading strand is often displaced after limited synthesis and the nascent complementary strand anneals with the 3′ single-stranded tail of the other end of the DSB. After fill-in synthesis and ligation, this pathway generates NCO products and is referred to as synthesis-dependent strand annealing (SDSA).

Table 1.

Evolutionary conservation of homologous recombination proteins between Saccharomyces cerevisiae and Homo sapiens
Functional classS. cerevisiaeH. sapiens
End resectionMre11-Rad50-Xrs2MRE11-RAD50-NBS1
Sae2CtIP
Exo1EXO1
Dna2-Sgs1-Top3-Rmi1DNA2-BLM-TOP3α-RMI1-RMI2
AdaptorsRad953BP1, MDC1
BRCA1
Checkpoint signalingTel1ATM
Mec1-Ddc2ATR-ATRIP
Rad53CHK2
Rad24-RFCRAD17-RFC
Ddc1-Mec3-Rad17RAD9-HUS1-RAD1
Dpb11TOPBP1
Single-stranded DNA bindingRfa1-Rfa2-Rfa3RPA1-RPA2-RPA3
Single-strand annealingRad52RAD52
Rad59
MediatorsBRCA2-PALB2
Rad52
Strand exchangeRad51RAD51
Rad54RAD54A, RAD54B
Rdh54
Rad51 paralogsRad55-Rad57RAD51B-RAD51C-RAD51D-XRCC2-XRCC3
Psy3-Csm2-Shu1-Shu2RAD51D-XRCC2-SWS1
AntirecombinasesSrs2FBH1, PARI
Mph1FANCM
RTEL
Resolvases and nucleasesMus81-Mms4MUS81-EME1
Slx1-Slx4SLX1-SLX4
Yen1GEN1
Rad1-Rad10XPF-ERCC1
DissolutionSgs1-Top3-Rmi1BLM-TOP3α-RMI1-RMI2
Open in a separate windowThe vast majority of cell biological studies of mitotic recombination in living cells are performed by tagging of proteins with genetically encoded green fluorescent protein (GFP) or similar molecules (Shaner et al. 2005; Silva et al. 2012). In this context, it is important to keep in mind that an estimated 13% of yeast proteins are functionally compromised by GFP tagging (Huh et al. 2003). By choosing fluorophores with specific photochemical properties, it has been possible to infer biochemical properties, such as diffusion rates, protein–protein interactions, protein turnover, and stoichiometry of protein complexes at the single-cell level. To visualize the location of specific loci within the nucleus, sequence-specific DNA-binding proteins such the Lac and Tet repressors have been used with great success. Specifically, tandem arrays of 100–300 copies of repressor binding sites are inserted within 10–20 kb of the locus of interest in cells expressing the GFP-tagged repressor (Straight et al. 1996; Michaelis et al. 1997). In wild-type budding yeast, such protein-bound arrays are overcome by the replication fork without a cell-cycle delay or checkpoint activation (Dubarry et al. 2011). However, the arrays are unstable in rrm3Δ and other mutants (Dubarry et al. 2011). More pronounced DNA replication blockage by artificial protein-bound DNA tandem arrays has be observed in fission yeast, which is accompanied by increased recombination and formation of DNA anaphase bridges (Sofueva et al. 2011). Likewise, an array of Lac repressor binding sites was reported to induce chromosomal fragility in mouse cells (Jacome and Fernandez-Capetillo 2011). However, these repressor-bound arrays generally appear as a focus with a size smaller than the diffraction limit of light, which is in the range 150–300 nm for wide-field light microscopy.  相似文献   

15.
De novo mammalian prion synthesis     
Federico Benetti  Giuseppe Legname 《朊病毒》2009,3(4):213-219
Prions are responsible for a heterogeneous group of fatal neurodegenerative diseases. They can be sporadic, genetic, or infectious disorders involving post-translational modifications of the cellular prion protein (PrPC). Prions (PrPSc) are characterized by their infectious property and intrinsic ability to convert the physiological PrPC into the pathological form, acting as a template. The “protein-only” hypothesis, postulated by Stanley B. Prusiner, implies the possibility to generate de novo prions in vivo and in vitro. Here we describe major milestones towards proving this hypothesis, taking into account physiological environment/s, biochemical properties and interactors of the PrPC.Key words: prion protein (PrP), prions, amyloid, recombinant prion protein, transgenic mouse, protein misfolding cyclic amplification (PMCA), synthethic prionPrions are responsible for a heterogeneous group of fatal neurodegenerative diseases (1 They can be sporadic, genetic or infectious disorders involving post-translational modifications of the cellular prion protein (PrPC).2 Prions are characterized by their infectious properties and by their intrinsic ability to encipher distinct biochemical properties through their secondary, tertiary and quaternary protein structures. In particular, the transmission of the disease is due to the ability of a prion to convert the physiological PrPC into the pathological form (PrPSc), acting as a template.3 The two isoforms of PrP appear to be different in terms of protein structures, as revealed by optical spectroscopy experiments such as Fourier-transform infrared and circular dichroism.4 PrPC contains 40% α-helix and 3% β-sheet, while the pathological isoform, PrPSc, presents approximately 30% α-helix and 45% β-sheet.4,5 PrPSc differs from PrPC because of its altered physical-chemical properties such as insolubility in non-denaturing detergents and proteinases resistance.2,6,7

Table 1

The prion diseases
Prion diseaseHostMechanism
iCJDhumansinfection
vCJDhumansinfection
fCJDhumansgenetic: octarepeat insertion, D178N-129V, V180I, T183A, T188K, T188R-129V, E196K, E200K, V203I, R208H, V210I, E211Q, M232R
sCJDhumans?
GSShumansgenetic: octarepeat insertion, P102L-129M, P105-129M, A117V-129V, G131V-129M, Y145*-129M, H197R-129V, F198S-129V, D202N-129V, Q212P, Q217R-129M, M232T
FFIhumansgenetic: D178-129M
Kurufore peopleinfection
sFIhumans?
Scrapiesheepinfection
BSEcattleinfection
TMEminkinfection
CWDmule deer, elkcontaminated soils?
FSEcatsinfection
Exotic ungulate encephalopathygreater kudu, nyala, oryxinfection
Open in a separate windowi, infective form; v, variant; f, familial; s, sporadic; CJD, Creutzfeldt-Jakob disease; GSS, Gerstmann-Straüssler-Sheinker disease; FFI, fatal familial insomnia; sFI, sporadic fatal insomnia; BSE, bovine spongiform encephalopathy; TME, transmissible mink encephalopathy; CWD, chronic wasting disease; FSE, feline spongiform encephalopathy.73,78The prion conversion occurring in prion diseases seems to involve only conformational changes instead of covalent modifications. However, Mehlhorn et al. demonstrated the importance of a disulfide bond between the two cysteine residues at position 179 and 214 (human (Hu) PrP numbering) to preserve PrP into its physiological form. In the presence of reducing conditions and pH higher than 7, recombinant (rec) PrP tends to assume high β-sheet content and relatively low solubility like PrPSc.8  相似文献   

16.
Improved Molecular Detection of Angiostrongylus cantonensis in Mollusks and Other Environmental Samples with a Species-Specific Internal Transcribed Spacer 1-Based TaqMan Assay     
Yvonne Qvarnstrom  Ana Cristina Aramburu da Silva  John L. Teem  Robert Hollingsworth  Henry Bishop  Carlos Graeff-Teixeira  Alexandre J. da Silva 《Applied and environmental microbiology》2010,76(15):5287-5289
Angiostrongylus cantonensis is the most common cause of human eosinophilic meningitis. Humans become infected by ingesting food items contaminated with third-stage larvae that develop in mollusks. We report the development of a real-time PCR assay for the species-specific identification of A. cantonensis in mollusk tissue.Angiostrongylus cantonensis is the most common agent associated with eosinophilic meningitis in humans. Young adult worms develop in the brains of rodents and are carried to pulmonary arteries to reach sexual maturity. Eggs are laid in lung tissues, and first-stage (L1) larvae break into air spaces, migrate to the trachea, are swallowed, and are passed with rodent feces. The L1 larvae must infect mollusks to develop into third-stage (L3) larvae; L3 is the infective stage for rodents and other mammals. Humans become infected by ingesting raw produce contaminated with L3 larvae or infected raw or undercooked mollusks or paratenic hosts. The immature worms remain in the human brain, creating tissue damage and inflammation (2, 19, 21).A. cantonensis is endemic in Southeast Asia, parts of the Caribbean, and the Pacific Islands, including Hawaii (7, 12, 15-17). The worm has been detected in host animals in Louisiana (5, 14) and in one human patient from New Orleans (18), but it is currently unclear to what extent the nematode has spread into other U.S. states (8, 9). Ascertaining the geographic presence of the parasite is important to manage and prevent new cases of eosinophilic meningitis associated with ingestion of infective larvae (12, 18).Detection of A. cantonensis in mollusks can be performed by releasing the larvae from the tissue with pepsin digestion (11). However, that procedure requires access to living mollusks, which complicates analysis of large numbers of samples. After a recent outbreak of angiostrongyliasis in Hawaii (12), we developed a conventional PCR assay and applied it to survey the Hawaiian mollusk population using frozen tissue (20). That PCR assay, as well as morphological identification using pepsin digestion, can only identify the larvae on the superfamily level, so additional molecular work is required for species-specific classification. Here we describe a new real-time PCR assay that allows for a direct detection of A. cantonensis at the species level.The 18S rRNA gene is too conserved among nematode species to allow species-specific detection. The first and second internal transcribed spacers (ITS1 and ITS2) are comparatively more variable than the rRNA coding regions and have thus been used for differentiation of closely related species (1, 4, 6, 10, 22, 23). We PCR amplified and sequenced ITS1 from A. costaricensis (two laboratory strains from Costa Rica and Brazil), A. vasorum (from naturally infected hosts in United Kingdom), and A. cantonensis from three geographical regions (one laboratory strain from Japan plus nine environmental isolates from Hawaii and New Orleans, LA) to assess the variability of this potential PCR target. The oligonucleotide primers used were AngioF1674 (5′-GTCGTAACAAGGTATCTGTAGGTG-3′) and 58SR4 (5′-TAGCTGCGTTTTTCATCGATA-3′). The reaction mixtures contained 0.4 μM each primer and AmpliTaq Gold PCR master mix (Applied Biosystems, Foster City, CA) and were cycled 45 times at 94°C for 30 s, 65°C for 30 s, and 72°C for 1 min. PCR products were cloned into pCR2.1 vectors using the TOPO cloning technique (Invitrogen, Carlsbad, CA) and sequenced on both strands as described elsewhere (20).The sequence analysis revealed high interspecific and low intraspecific variability. A TaqMan assay targeting ITS1 was then designed using Primer Express version 2.3 (Applied Biosystems, Foster City, CA). The real-time PCR assay was performed in a 20-μl total volume containing Platinum qPCR Supermix (Invitrogen, Carlsbad, CA), 0.2 μM (each) primers AcanITS1F1 (5′-TTCATGGATGGCGAACTGATAG-3′) and AcanITS1R1 (5′-GCGCCCATTGAAACATTATACTT-3′), and 0.05 μM the TaqMan probe AcanITS1P1 (5′-6-carboxyfluorescein-ATCGCATATCTACTATACGCATGTGACACCTG-BHQ-3′). The standard cycling conditions for TaqMan assays were used (i.e., 40 cycles of 95°C for 15 s and 60°C for 1 min).We evaluated the real-time PCR assay with a set of 26 Parmarion martensi slugs from Hawaii. Seventeen slugs were positive for L3 larvae as determined by pepsin digestion, and nine slugs were negative. DNA was extracted from approximately 25 mg of tissue of each slug using the DNeasy tissue and blood DNA extraction kit (Qiagen, Inc., Valencia, CA). The real-time PCR performed on this set of samples returned an identical result to the morphological analysis. The real-time PCR amplified only DNA from A. cantonensis and did not react with DNA from other nematode species (Table (Table1).1). The detection limit of the assay was determined by serially diluting a recombinant plasmid containing the ITS1 sequence to less than 1 copy per μl of sample. The real-time PCR reliably detected down to 10 plasmid copies in the reaction.

TABLE 1.

Comparison of conventional and real-time PCR for detection of Angiostrongylus cantonensis in mollusks and nematode samples
Biological origin of DNA sampleGeographic originNo. of samples testedNo. of samples positive by:
18S rRNA-based conventional PCRITS1-based TaqMan PCR
Parmarion martensiHawaii1127583
Veronicella cubensisHawaii5023a22
Laevicaulis alteHawaii534
Achatina fulicaHawaii645
Other/unidentified mollusksHawaii1645
FlatwormsHawaii222
Slime from infected slugsHawaii1311
Pomacea insularumLouisiana3155
A. costaricensisBrazil, Costa Rica22b0
A. vasorumUnited Kingdom22b0
Other nematodescCDC collection1400
Total253121127
Open in a separate windowaThis number includes three samples positive by PCR but later identified as non-Angiostrongylus nematodes by DNA sequencing analysis of the amplicons (20). These three samples were negative in the real-time PCR assay.bThe conventional PCR detects other Angiostrongylus species besides A. cantonensis.cTwo stool samples containing Strongyloides worms, eight environmental samples containing unclassified free-living nematodes and one of each of the following parasitic nematodes: Dipetalonema sp., Toxocara cati, Dracunculus medinensis, and Ascaris lumbricoides.The real-time PCR assay was then used to analyze a larger set of naturally infected host animals from Hawaii, partly described elsewhere (13, 20), and Island Apple snails (Pomacea insularum) from New Orleans, LA. All samples had previously been characterized by the conventional PCR followed by DNA sequencing analysis (20).Table Table11 summarizes the PCR findings and highlights the enhanced performance of the real-time PCR in comparison to the conventional PCR. In addition, the real-time PCR assay was more practical to use since it did not require DNA sequence confirmation to rule out false positives.The findings from Island Apple snails from New Orleans infected with A. cantonensis concur with previous reports about the potential for angiostrongyliasis transmission in this area (5, 14). Another interesting finding was the positive PCR results in two samples of flatworms from Hawaii. Predatory flatworms that ingest infected mollusks are known to be paratenic hosts of A. cantonensis and have been suspected to be an important source of infection for humans in Japan because they hide in leafy vegetables (3).In conclusion, this real-time PCR assay can be a useful tool for environmental surveys of local wildlife to determine the geographic distribution of this reemerging human parasite.  相似文献   

17.
A Systematic Proteomic Analysis of Listeria monocytogenes House-keeping Protein Secretion Systems     
Sven Halbedel  Swantje Reiss  Birgit Hahn  Dirk Albrecht  Gopala Krishna Mannala  Trinad Chakraborty  Torsten Hain  Susanne Engelmann  Antje Flieger 《Molecular & cellular proteomics : MCP》2014,13(11):3063-3081
  相似文献   

18.
Tomato BRI1 and systemin wound signalling     
Nicholas Holton  Kate Harrison  Takao Yokota  Gerard J Bishop 《Plant signaling & behavior》2008,3(1):54-55
Brassinosteroids (BRs) are perceived by Brassinosteroid Insensitive 1 (BRI1), that encodes a leucine-rich repeat receptor kinase. Tomato BRI1 has previously been implicated in both systemin and BR signalling. The role of tomato BRI1 in BR signalling was confirmed, however it was found not to be essential for systemin/wound signalling. Tomato roots were shown to respond to systemin but this response varied according to the species and growth conditions. Overall the data indicates that mutants defective in tomato BRI1 are not defective in systemin-induced wound signalling and that systemin perception can occur via a non-BRI1 mechanism.Key words: tomato BRI1, brassinosteroids, systemin, wound signallingBrassinosteroids (BRs) are steroid hormones that are essential for normal plant growth. The most important BR receptor in Arabidopsis is BRASSINOSTERIOD INSENSITIVE 1 (BRI1), a serine/threonine kinase with a predicted extracellular domain of ∼24 leucine-rich repeats (LRRs).1,2 BRs bind to BRI1 via a steroid-binding domain that includes LRR 21 and a so-called “island” domain.2,3 In tomato a BRI1 orthologue has been identified that when mutated, as in the curl3 (cu3) mutation, results in BR-insensitive dwarf plants.4 Tomato BRI1 has also been purified as a systemin-binding protein.5 Systemin is an eighteen amino acid peptide, which is produced by post-translational cleavage of prosystemin. Systemin has been implicated in wound signalling and is able to induce the production of jasmonate, protease inhibitors (PIN) and rapid alkalinization of cell suspensions (reviewed in ref. 6).To clarify whether tomato BRI1 was indeed a dual receptor it was important to first confirm its role in BR signalling. Initially this was carried out by genetic complementation of the cu3 mutant phenotype.7 Overexpression of tomato BRI1 restored the dwarf phenotype and BR sensitivity and normalized BR levels (35S:TomatoBRI1 complemented lineWt*cu3*6-deoxocathasterone5669646766-deoxoteasteronend47483-dehydro-6-deoxoteasterone8762696-deoxotyphasterolnd5884226-deoxocastasterone1,7556,24726,210castasterone25563717,428brassinolidendndndOpen in a separate windowBR content ng/kg fw.*Montoya et al.4 nd, not detected.To show the role of tomato BRI1 in systemin signalling tomato BR mutants and the complemented line were tested for their systemin response. Tomato cu3 mutants were shown not to be defective in systemin-induced proteinase inhibitor (PIN) gene induction, nor were they defective in PIN gene induction in response to wounding. Cell suspensions made from cu3 mutant tissue exhibited an alkalinization of culture medium similar to wild-type cell suspension. These data taken together indicated that BRI1 was not essential for systemin signalling. However, Scheer et al.8 demonstrated that the overexpression of tomato BRI1 in tobacco suspension cultures results in an alkalinization in response to systemin, which was not observed in untransformed cultures. This suggests that BRI1 is capable of eliciting systemin responsiveness and that in tomato BRI1 mutants another mechanism is functioning to enable systemin signalling.Root elongation is a sensitive bioassay for BR action with BRs inhibiting root growth. Solanum pimpinellifolium roots elongate in response to systemin, in a BRI1-dependent fashion. In Solanum lycopersicum root length was reduced in response to systemin and BR and jasmonate synthesis mutants indicated that the inhibition did not require jasmonates or BRs. Normal ethylene signalling was required for the root response to systemin. When a tobacco, Nicotiana benthamiana, BRI1 orthologue was transformed into cu3 both the dwarfism and systemin-induced root elongation was restored to that of wild type. Tobacco plants however do not respond to systemin. This is puzzling as the introduction of tomato BRI1 into tobacco enabled systemin responsiveness.8 Further investigation as to how tomato BRI1 elicits this response is therefore required.Systemin has been demonstrated to bind to two tomato proteins BRI1/SR1605 and SBP50.9 The data presented by Holton et al.7 indicates that tomato BRI1 is not essential for systemin-induced wound responses and that a non-BRI1 pathway is present that is able to facilitate a systemin response. Whether this is via a related LRR receptor kinase or by another protein remains to be elucidated.  相似文献   

19.
Towards elucidating the differential regulation of floral and extrafloral nectar secretion     
Venkatesan Radhika  Christian Kost  Wilhelm Boland  Martin Heil 《Plant signaling & behavior》2010,5(7):924-926
  相似文献   

20.
Cultivation and Genomic,Nutritional, and Lipid Biomarker Characterization of Roseiflexus Strains Closely Related to Predominant In Situ Populations Inhabiting Yellowstone Hot Spring Microbial Mats     
Marcel T. J. van der Meer  Christian G. Klatt  Jason Wood  Donald A. Bryant  Mary M. Bateson  Laurens Lammerts  Stefan Schouten  Jaap S. Sinninghe Damsté  Michael T. Madigan  David M. Ward 《Journal of bacteriology》2010,192(12):3033-3042
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号