首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia results in adaptationally appropriate alterations of gene expression through the activation of hypoxia-inducible factor (HIF)-1 to overcome any shortage of oxygen. Peripheral blood mononuclear cells may be exposed to low oxygen tensions for different times as they migrate between blood and various tissues. We and others have previously shown that T-cell adaptation to hypoxia is characterized by a modulation of cytokine expression and an inhibition of T-cell activation. We have recently demonstrated that the adaptor protein p66Shc negatively regulates T-cell activation and survival. We here show that hypoxia enhances HIF-1alpha accumulation and vascular endothelial growth factor production in T cells. Hypoxic T cells expressed high levels of p21(WAF1/CIP1), of the pro-apoptotic molecules BNIP3, a classic HIF target gene, and BAX, as well as low levels of the anti-apoptotic molecule BCLxl, associated with an induction of cell death. We found out that hypoxic T cells expressed p66Shc. Furthermore, using T-cell transfectants expressing p66Shc, as well as T cells derived from mice p66Shc-/-, we defined a role of p66Shc in T-cell responses to hypoxia. Of interest, hypoxic p66Shc-positive transfectants expressed higher level of HIF-1alpha than negative controls. Thus, p66Shc may play an important role in downstream hypoxic signaling, involving HIF-1alpha protein accumulation and cell death in T lymphocytes.  相似文献   

2.
Aggregation of FcεRI on mast cells activates signaling pathways, resulting in degranulation and cytokine release. Release of mast cell-derived inflammatory mediators is tightly regulated by the interplay of positive and negative signals largely orchestrated by adapter proteins. Among these, the Shc family adapter p52Shc, which couples immunoreceptors to Ras activation, positively regulates FcεRI-dependent signaling. Conversely, p66Shc was shown to uncouple the TCR for the Ras-MAPK pathway and prime T cells to undergo apoptotic death. Loss of p66Shc in mice results in breaking of immunologic tolerance and development of lupus-like autoimmune disease, which includes alopecia among its pathological manifestations. The presence of numerous activated mast cells in alopecic skin areas suggests a role for this adapter in mast cells. In this study, we addressed the involvement of p66Shc in FcεRI-dependent mast cell activation. We showed that p66Shc is expressed in mast cells and that mast cells from p66Shc(-/-) mice exhibit enhanced responses following Ag stimulation of FcεRI. Furthermore, using RBL-2H3 cell transfectants, we showed that aggregation of FcεRI resulted in the recruitment of a p66Shc-SHIP1 complex to linker for activation of T cells. Collectively, our data identified p66Shc as a negative regulator of mast cell activation.  相似文献   

3.
4.
Shc (Src homology 2 domain containing) adaptors are ubiquitous components of the signaling pathways triggered by tyrosine kinase-coupled receptors. In lymphocytes, similar to other cell types, the p52 and p66 isoforms of ShcA/Shc participate in a self-limiting loop where p52Shc acts as a positive regulator of antigen receptor signaling by promoting Ras activation, whereas p66Shc limits this activity by competitively inhibiting p52Shc. Based on the fact that many signaling mediators are shared by antigen and chemokine receptors, including p52Shc, we have assessed the potential implication of p66Shc in the regulation of B-cell responses to chemokines, focusing on the homing receptors CXCR4 (C-X-C chemokine receptor type 4) and CXCR5 (C-X-C chemokine receptor type 5). The results identify p66Shc as a negative regulator of the chemotactic responses triggered by these receptors, including adhesion, polarization and migration. We also provide evidence that this function is dependent on the ability of p66Shc to interact with the chemokine receptors and promote the assembly of an inhibitory complex, which includes the phosphatases SHP-1 (Src homology phosphatase-1) and SHIP-1 (SH2 domain-containing inositol 5''-phosphatase-1), that results in impaired Vav-dependent reorganization of the actin cytoskeleton. This function maps to the phosphorylatable tyrosine residues in the collagen homology 1 (CH1) domain. The results identify p66Shc as a negative regulator of B-cell chemotaxis and suggest a role for this adaptor in the control of B-cell homing.  相似文献   

5.
p66Shc, an adaptor molecule which enhances reactive oxygen species (ROS) production by mitochondria, promotes T-cell apoptosis by inducing mitochondrial dysfunction and impairing Ca2+ homeostasis. We have addressed the potential role of Lck, a kinase which has been implicated in T-cell apoptosis induced by a number of stimuli, in the proapoptotic activity of p66Shc. Lck deficiency in Jurkat T cells overexpressing p66Shc leads to impaired apoptotic responses to supraphysiological increases in [Ca2+]c. This defect could be rescued by reconstitution of Lck expression, indicating that Lck is required for p66Shc-dependent apoptosis. Furthermore, p66Shc phosphorylation on serine 36 (S36), an event on which the proapoptotic function of p66Shc depends, requires Lck. p66Shc-dependent mitochondrial dysfunction, altered Ca2+ homeostasis and S36 phosphorylation require moreover the activity of CaMKII, a Ca2+/calmodulin-dependent kinase known to be implicated in the proapoptotic activity of Lck in T cells. The results suggest that increases in [Ca2+]c lead to CaMKII activation and subsequent Lck-dependent p66Shc phosphorylation on S36. This event causes both mitochondrial dysfunction and impaired Ca2+ homeostasis, which synergize in promoting Jurkat T-cell apoptosis.  相似文献   

6.
Thrombin activates protease-activated receptor-1 (PAR-1) and engages signaling pathways that influence the growth and survival of cardiomyocytes as well as extracellular matrix remodeling by cardiac fibroblasts. This study examines the role of Shc proteins in PAR-1-dependent signaling pathways that influence ventricular remodeling. We show that thrombin increases p46Shc/p52Shc phosphorylation at Tyr(239)/Tyr(240) and Tyr(317) (and p66Shc-Ser(36) phosphorylation) via a pertussis toxin-insensitive epidermal growth factor receptor (EGFR) transactivation pathway in cardiac fibroblasts; p66Shc-Ser(36) phosphorylation is via a MEK-dependent mechanism. In contrast, cardiac fibroblasts express beta(2)-adrenergic receptors that activate ERK through a pertussis toxin-sensitive EGFR transactivation pathway that does not involve Shc isoforms or lead to p66Shc-Ser(36) phosphorylation. In cardiomyocytes, thrombin triggers MEK-dependent p66Shc-Ser(36) phosphorylation, but this is not via EGFR transactivation (or associated with Shc-Tyr(239)/Tyr(240) and/or Tyr(317) phosphorylation). Importantly, p66Shc protein expression is detected in neonatal, but not adult, cardiomyocytes; p66Shc expression is induced (via a mechanism that requires protein kinase C and MEK activity) by Pasteurella multocida toxin, a Galpha(q) agonist that promotes cardiomyocyte hypertrophy. These results identify novel regulation of individual Shc isoforms in receptor-dependent pathways leading to cardiac hypertrophy and the transition to heart failure. The observations that p66Shc expression is induced by a Galpha(q) agonist and that PAR-1 activation leads to p66Shc-Ser(36) phosphorylation identifies p66Shc as a novel candidate hypertrophy-induced mediator of cardiomyocyte apoptosis and heart failure.  相似文献   

7.
p66Shc, a longevity adaptor protein, is demonstrated as a key regulator of reactive oxygen species (ROS) metabolism involved in aging and cardiovascular diseases. Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration and proliferation primarily through the VEGF receptor-2 (VEGFR2). We have shown that ROS derived from Rac1-dependent NADPH oxidase are involved in VEGFR2 autophosphorylation and angiogenic-related responses in ECs. However, a role of p66Shc in VEGF signaling and physiological responses in ECs is unknown. Here we show that VEGF promotes p66Shc phosphorylation at Ser36 through the JNK/ERK or PKC pathway as well as Rac1 binding to a nonphosphorylated form of p66Shc in ECs. Depletion of endogenous p66Shc with short interfering RNA inhibits VEGF-induced Rac1 activity and ROS production. Fractionation of caveolin-enriched lipid raft demonstrates that p66Shc plays a critical role in VEGFR2 phosphorylation in caveolae/lipid rafts as well as downstream p38MAP kinase activation. This in turn stimulates VEGF-induced EC migration, proliferation, and capillary-like tube formation. These studies uncover a novel role of p66Shc as a positive regulator for ROS-dependent VEGFR2 signaling linked to angiogenesis in ECs and suggest p66Shc as a potential therapeutic target for various angiogenesis-dependent diseases.  相似文献   

8.
Longevity of a p66Shc knockout strain (ShcP) was previously attributed to increased stress resistance and altered mitochondria. Microarrays of ShcP tissues indicated alterations in insulin signaling. Consistent with this observation, ShcP mice were more insulin sensitive and glucose tolerant at organismal and tissue levels, as was a novel p66Shc knockout (ShcL). Increasing and decreasing Shc expression in cell lines decreased and increased insulin sensitivity, respectively - consistent with p66Shc's function as a repressor of insulin signaling. However, differences between the two p66Shc knockout strains were also observed. ShcL mice were fatter and susceptible to fatty diets, and their fat was more insulin sensitive than controls. On the other hand, ShcP mice were leaner and resisted fatty diets, and their adipose was less insulin sensitive than controls. ShcL and ShcP strains are both highly inbred on the C57Bl/6 background, so we investigated gene expression at the Shc locus, which encodes three isoforms, p66, p52, and p46. Isoform p66 is absent in both strains; thus, the remaining difference to which to attribute the 'lean' phenotype is expression of the other two isoforms. ShcL mice have a precise deletion of p66Shc and normal expression of p52 and p46Shc isoforms in all tissues; thus, a simple deletion of p66Shc results in a 'fat' phenotype. However, ShcP mice in addition to p66Shc deletion have a fourfold increase in p46Shc expression in white fat. Thus, p46Shc overexpression in fat, rather than p66Shc deletion, is the likely cause of decreased adiposity and reduced insulin sensitivity in the fat of ShcP mice, which has implications for the longevity of the strain.  相似文献   

9.
The two SH3 domains and one SH2 domain containing adaptor protein Grb2 is an essential element of the Ras signaling pathway in multiple systems. The SH2 domain of Grb2 recognizes and interacts with phosphotyrosine residues on activated tyrosine kinases, whereas the SH3 domains bind to several proline-rich domain-containing proteins such as Sos1. To define the difference in Grb2-associated proteins in hepatocarcinoma cells, we performed coprecipitation analysis using recombinant GST-Grb2 fusion proteins and found that several protein components (p170, p125, p100, and p80) differently associated with GST-Grb2 proteins in human Chang liver and hepatocarcinoma HepG2 cells. Sos1 and p80 proteins dominantly bind to Grb2 fusion proteins in Chang liver, whereas p100 remarkably associate with Grb2 in HepG2 cells. Also GST-Grb2 SH2 proteins exclusively bound to the p46(Shc), p52(Shc), and p66(Shc) are important adaptors of the Ras pathway in HepG2 cells. The p100 protein has been identified as dynamin II. We observed that the N-SH3 and C-SH3 domains of Grb2 fusion proteins coprecipitated with dynamin II besides Sos1. These results suggest that dynamin II may be a functional molecule involved in Grb2-mediated signaling pathway on Ras activation for tumor progression and differentiation of hepatocarcinoma cells.  相似文献   

10.
The abundance of mitochondria is regulated by biogenesis and division. These processes are controlled by cellular factors, given that, for example, mitochondria have to replicate their DNA prior to cell division. However, the mechanisms that allow a synchronization of cell proliferation with mitochondrial genome replication are still obscure. We report here our investigations on the role of proliferation and the contribution of Ras and p66Shc in the regulation of mitochondrial DNA copy number. Ras proteins mediate a variety of receptor-transduced mitogenic signals and appear to play an essential role in the cellular response to growth factors. P66Shc is a genetic determinant of life span in mammals and has been implicated in the regulation of receptor signaling and various mitochondrial functions. First, we confirmed previous reports showing that mitochondrial DNA is replicated during a specific phase of the cell cycle (the pre-S phase) and provided novel evidences that this process is regulated by mitogenic growth factors. Second, we showed that mitochondrial DNA replication is activated following Ras-induced cellular hyper-proliferation. Finally, we showed that p66Shc expression induces mitochondrial DNA replication, both in vitro and in vivo. We suggest that mitochondria are target of intracellular signaling pathways leading to proliferation, involving Ras and p66Shc, which might function to integrate cellular bio-energetic requirements and the inheritance of mitochondrial DNA in a cell cycle-dependent manner.  相似文献   

11.
Excessive reactive oxygen species (ROS) generation has been implicated as one of main agents in ouabain-induced anticancer effect. Unfortunately, the signaling pathways under it are not very clarified. In the present study, we investigated the molecular mechanism involved in ouabain-induced ROS generation and cell apoptosis on human U373MG and U87MG glioma cells. Ouabain-induced glioblastoma cells apoptosis and increased ROS generation. Clearance ROS by three different ROS scavenger partly, but not totally, reversed ouabain’s effect on cell apoptosis. Ouabain-induced ROS generation was not regulated by calcium overload, reduced nicotinamide adenine dinucleotide phosphate oxidation, but by p66Shc phosphorylation. Ouabain treatment increased p66Shc Ser36 phosphorylation. Knockdown of p66Shc by siRNA significantly inhibited ROS generations in response to ouabain. Ouabain-induced p66Shc phosphorylation through Src/Ras/extracellular signal-regulated kinase signal pathway. Our results uncovered a novel signaling pathway with p66Shc, ouabain-induced ROS generation, and glioblastoma cell apoptosis.  相似文献   

12.
13.
14.
The fully executed epidermal growth factor receptor (EGFR)/Ras/MEK/ERK pathway serves a pro-survival role in renal epithelia under moderate oxidative stress. We and others have demonstrated that during severe oxidative stress, however, the activated EGFR is disconnected from ERK activation in cultured renal proximal tubule cells and also in renal proximal tubules after ischemia/reperfusion injury, resulting in necrotic death. Studies have shown that the tyrosine-phosphorylated p46/52 isoforms of the ShcA family of adaptor proteins connect the activated EGFR to activation of Ras and ERK, whereas the p66(shc) isoform can inhibit this p46/52(shc) function. Here, we determined that severe oxidative stress (after a brief period of activation) terminates activation of the Ras/MEK/ERK pathway, which coincides with ERK/JNK-dependent Ser(36) phosphorylation of p66(shc). Isoform-specific knockdown of p66(shc) or mutation of Ser(36) to Ala, but not to Asp, attenuated severe oxidative stress-mediated ERK inhibition and cell death in vitro. Also, severe oxidative stress (unlike ligand stimulation and moderate oxidative stress, both of which support survival) increased binding of p66(shc) to the activated EGFR and Grb2. This binding dissociated the SOS1 adaptor protein from the EGFR-recruited signaling complex, leading to termination of Ras/MEK/ERK activation. Notably, Ser(36) phosphorylation of p66(shc) and its increased binding to the EGFR also occurred in the kidney after ischemia/reperfusion injury in vivo. At the same time, SOS1 binding to the EGFR declined, similar to the in vitro findings. Thus, the mechanism we propose in vitro offers a means to ameliorate oxidative stress-induced cell injury by either inhibiting Ser(36) phosphorylation of p66(shc) or knocking down p66(shc) expression in vivo.  相似文献   

15.
p66Shc plays a key role in oxidative stress-induced apoptosis. p66Shc gene expression is tissue-specific and controlled by promoter methylation. In T-cells p66Shc expression is induced by a variety of apoptotic stimuli. We have addressed the mechanisms regulating p66Shc expression in T-cells. We show that the increase in p66Shc protein following stimulation with a Ca2+ ionophore results from enhanced gene expression, which is primarily dependent on DNA replication-independent promoter demethylation. Our data underline the role of CpG methylation in the control of p66Shc gene expression and provide evidence that Ca2+ signaling may lead to epigenetic modifications in nondividing cells.  相似文献   

16.
Serine phosphorylation of the ShcA signaling molecule has been reported recently. In this work, we have identified 12-O-tetradecanoylphorbol-13-acetate (TPA)- and growth factor-induced serine/threonine phosphorylation sites in p52(Shc) and p66(Shc). Among them, Ser(29) in p52(Shc) (equivalent to Ser(138) in p66(Shc)) was phosphorylated only after TPA stimulation. Phosphorylation of this site together with the intact phosphotyrosine-binding domain was essential for ShcA binding to the protein-tyrosine phosphatase PTP-PEST. TPA-induced ShcA phosphorylation at this site (and hence, its association with PTP-PEST) was inhibited by a protein kinase C-specific inhibitor and was induced by overexpression of constitutively active mutants of protein kinase Calpha, -epsilon, and -delta isoforms. Insulin also induced ShcA/PTP-PEST association, although to a lesser extent than TPA. Overexpression of a PTP-PEST binding-defective mutant of p52(Shc) (S29A) enhanced insulin-induced ERK activation in insulin receptor-overexpressing HIRc-B cells. Consistent with this, p52(Shc) S29A was more tyrosine-phosphorylated than wild-type p52(Shc) after insulin stimulation. Thus, we have identified a new mechanism whereby serine phosphorylation of ShcA controls the ability of its phosphotyrosine-binding domain to bind PTP-PEST, which is responsible for the dephosphorylation and down-regulation of ShcA after insulin stimulation.  相似文献   

17.
Mammalian life span can be controlled by p66Shc protein through regulation of cellular response to oxidative stress. We investigated age-related changes in the amount of p66Shc and its Ser36-phosphorylated form in various mouse organs and tissues and correlated it with the level of antioxidant enzymes. Comparing to the newborn, in adult 6-month-old mice, the level of p66Shc was increased particularly in liver, lungs, skin and diaphragm. In older animals the level of p66Shc decreased while signaling pathway responsible for Ser36 phosphorylation of p66Shc protein seemed to be continually enhanced. The amount of p66Shc phosphorylated at Ser36, significantly increased with age, resulted in higher free radical production and, in consequence accumulation of damages caused by free radicals. The increased amount of Ser36-phosphorylated p66Shc in livers of 12- and 23-month-old mice was correlated with the decreased level of antioxidant enzymes. Moreover, we found that p66Shc is a resident of mitochondria- and plasma membrane-associated membranes and that its level there depends on the age of animal.  相似文献   

18.
Fibronectin receptor integrin-mediated cell adhesion triggers intracellular signaling events such as the activation of the Ras/mitogen-activated protein (MAP) kinase cascade. In this study, we show that the nonreceptor protein-tyrosine kinases (PTKs) c-Src and focal adhesion kinase (FAK) can be independently activated after fibronectin (FN) stimulation and that their combined activity promotes signaling to extracellular signal-regulated kinase 2 (ERK2)/MAP kinase through multiple pathways upstream of Ras. FN stimulation of NIH 3T3 fibroblasts promotes c-Src and FAK association in the Triton-insoluble cell fraction, and the time course of FN-stimulated ERK2 activation paralleled that of Grb2 binding to FAK at Tyr-925 and Grb2 binding to Shc. Cytochalasin D treatment of fibroblasts inhibited FN-induced FAK in vitro kinase activity and signaling to ERK2, but it only partially inhibited c-Src activation. Treatment of fibroblasts with protein kinase C inhibitors or with the PTK inhibitor herbimycin A or PP1 resulted in reduced Src PTK activity, no Grb2 binding to FAK, and lowered levels of ERK2 activation. FN-stimulated FAK PTK activity was not significantly affected by herbimycin A treatment and, under these conditions, FAK autophosphorylation promoted Shc binding to FAK. In vitro, FAK directly phosphorylated Shc Tyr-317 to promote Grb2 binding, and in vivo Grb2 binding to Shc was observed in herbimycin A-treated fibroblasts after FN stimulation. Interestingly, c-Src in vitro phosphorylation of Shc promoted Grb2 binding to both wild-type and Phe-317 Shc. In vivo, Phe-317 Shc was tyrosine phosphorylated after FN stimulation of human 293T cells and its expression did not inhibit signaling to ERK2. Surprisingly, expression of Phe-925 FAK with Phe-317 Shc also did not block signaling to ERK2, whereas FN-stimulated signaling to ERK2 was inhibited by coexpression of an SH3 domain-inactivated mutant of Grb2. Our studies show that FN receptor integrin signaling upstream of Ras and ERK2 does not follow a linear pathway but that, instead, multiple Grb2-mediated interactions with Shc, FAK, and perhaps other yet-to-be-determined phosphorylated targets represent parallel signaling pathways that cooperate to promote maximal ERK2 activation.  相似文献   

19.
P66Shc regulates life span in mammals and is a critical component of the apoptotic response to oxidative stress. It functions as a downstream target of the tumor suppressor p53 and is indispensable for the ability of oxidative stress-activated p53 to induce apoptosis. The molecular mechanisms underlying the apoptogenic effect of p66Shc are unknown. Here we report the following three findings. (i) The apoptosome can be properly activated in vitro in the absence of p66Shc only if purified cytochrome c is supplied. (ii) Cytochrome c release after oxidative signals is impaired in the absence of p66Shc. (iii) p66Shc induces the collapse of the mitochondrial trans-membrane potential after oxidative stress. Furthermore, we showed that a fraction of cytosolic p66Shc localizes within mitochondria where it forms a complex with mitochondrial Hsp70. Treatment of cells with ultraviolet radiation induced the dissociation of this complex and the release of monomeric p66Shc. We propose that p66Shc regulates the mitochondrial pathway of apoptosis by inducing mitochondrial damage after dissociation from an inhibitory protein complex. Genetic and biochemical evidence suggests that mitochondria regulate life span through their effects on the energetic metabolism (mitochondrial theory of aging). Our data suggest that mitochondrial regulation of apoptosis might also contribute to life span determination.  相似文献   

20.
Steroid hormones exhibit diverse biological activities. Despite intensive studies on steroid function at the genomic level, their nongenomic actions remain an enigma. In this study, we investigated the role of reactive oxygen species (ROS) in androgen-stimulated prostate cancer (PCa) cell proliferation. In androgen-treated PCa cells, increased cell growth and ROS production correlated with elevated p66Shc protein, an authentic oxidase. This growth stimulation was blocked by antioxidants. Further, elevated expression of p66Shc protein by cDNA transfection encoding wild-type protein, but not a redox-deficient (W134F) mutant, was associated with increased PCa cell proliferation. Conversely, knockdown of p66Shc expression by shRNA resulted in diminished cell growth. Increased p66Shc expression in PCa cells enhanced their tumorigenicity in xenograft animals. Importantly, p66Shc protein level is higher in clinical prostate adenocarcinomas than in adjacent noncancerous cells. Expression of redox-deficient p66Shc mutant protein abolished androgen-stimulated cell growth. In androgen-treated, H(2)O(2)-treated, and p66Shc cDNA-transfected PCa cells, cellular prostatic acid phosphatase, an authentic tyrosine phosphatase, was inactivated by reversible oxidation; subsequently, ErbB-2 was activated by phosphorylation at tyrosine-1221/1222. These results together support the notion that androgens induce ROS production through the elevation of p66Shc protein, which inactivates tyrosine phosphatase activity for the activation of interacting tyrosine kinase, leading to increased cell proliferation and enhanced tumorigenicity. Our results thus suggest that p66Shc protein functions at the critical junction point between androgens and tyrosine phosphorylation signaling in human PCa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号