首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   

2.
H+ translocation driven by NO3, NO2 and N2O reductionswith endogenous substrates in cells of Rhodopseudomonas sphaeroidesforma sp. denitrificans was investigated by the oxidant pulsemethod. Upon injection of nitrogenous oxides to anaerobic cellsin darkness, an alkaline transient in the external medium wasobserved, followed by acidification. The alkaline transientwas enhanced by carbonyl cyanide m-chlorophenylhydrazone. When a viologen dye was used as an electron donor in the presenceof 1 mM Af-ethylmaleimide and 0.1 mM 2-n-heptyl-4-hydroxyquinoline-N-oxideto preclude respiration-linked H+ extrusion, addition of KNO3,KNO2 and N2O caused only a rapid alkalinization. The H+ consumptionstoichiometries, H+/2e ratios for NO3 reductionto NO2, NO2 reduction to 1/2 N2O and N2O reductionto N2 were –1.90, –3.18 and –2.04, respectively.These values agreed well with the fact that all reductions ofnitrogenous oxides in denitrification occur on the periplasmicside of the cytoplasmic membrane. When corrected for H+ consumption in the periplasm, the H+ extrusionstoichiometries, H+/2e ratios with endogenous substratesin the presence of K+/valinomycin for NO3 reduction toNO2, NO2 reduction to 1/2 N2O and N2O reductionto N2 were 4.05, 4.95 and 6.01, respectively. (Received August 4, 1982; Accepted January 13, 1983)  相似文献   

3.
Ion Composition of the Chara Internode   总被引:2,自引:0,他引:2  
Ion compositions of the cytoplasm and the vacuole of Chara australiswere analyzed according to Kishimoto and Tazawa (1964) and Kiyosawa(1979a). The ions in the cytoplasm and the vacuole analyzedwere K+, Na+, Ca2+, Mg2+, Cl, NO3 and H2PO4.Assuming that the volume of the cytoplasm Vp is 10% of thatof the whole cell V, the concentrations of K+, Na+, Ca2+, Mg2+,Cl, NO3 and H2PO4 in the cytoplasm averaged70, 15, 13, 4.6, 31, 2.2 and 16 mM, respectively. If the volumeof the cytoplasm was assumed to be 5% of that of the whole cell,their averaged concentrations were 139, 31, 25, 9.2, 62, 4.4and 33 mM, respectively. The averaged ion compositions of thecell sap were K+, 111; Na+, 47; Ca2+, 4.4; Mg2+, 8.9; Cl,91; NO3, 3.3 and H2PO4, 6.0 mM. These values,taking the concentrations and the charges of the protein (Kiyosawa1979b) and amino acids (Sakano and Tazawa 1984) into accountand assuming the presence of some uni- or oligovalent anionsand/or small nonelectrolyte molecules, could explain fairlywell both the electroneutrality and the osmotic pressure ofthe cell, except when Vp/V = 5%. (Received May 18, 1987; Accepted September 29, 1987)  相似文献   

4.
Diurnal K+ and Anion Transport in Phaseolus Pulvinus   总被引:1,自引:0,他引:1  
Diurnal movement of Phaseolus leaf is caused by deformationof the laminar pulvinus located at the joint of the leaf bladeand the petiole. The plants were cultured in solutions withvarious ion compositions, and changes of K+, Na+, Ca2+, Mg2+,Cl, NO3– and P1 concentrations both in the upperand lower parts of the laminar pulvinus were measured. Culturein 10 mM KCl solution caused an increase in K+ and Clconcentrations both in the upper and lower parts without anysignificant change in the concentration of NO3; culturein 10 mM KNO3 solution caused an increase in K+ and NO3concentration without any significant change in the concentrationof Cl; and culture in 10 mM KH2PO4 solution caused anincrease in K+ and P1 concentrations without any significantchange in the concentrations of NO3- and Cl. K+ moved from the upper to lower parts or from the lower toupper parts diurnally in all plants cultured in any solutionmentioned above. The main inorganic anion that accompanied thisK+ movement was Cl in KCl solution, and NO3 inKNO3 solution. When the seedlings were cultured in distilledwater or in KH2PO4 solution, neither Cl NO3 norP1 accompanied this K+ movement. In these cases, mainly H+ and/ororganic anions are supposed to move in exchange for and/or incombination with K+ movement. (Received November 8, 1982; Accepted June 13, 1983)  相似文献   

5.
Experiments were conducted to investigate the effect of concentrationof NH4+ in nutrient solution on root assimilation of NO3and to determine whether the NH4+NO3 interaction wasmodified in the presence of K+. Dark-grown, detopped corn seedlings(cv. Pioneer 3369A) were exposed for 8 h to 0.15 mM Ca(NO3)2and varying concentrations of (NH4)2SO4 in the absence or presenceof 0.15 mM K2SO4. The accelerated phase of NO3 uptakeappeared most sensitive to restriction by additions of 0.15mM (NH4)2SO4. In the absence of K+, the restriction increasedonly slightly even when solution (NH4)2SO4, was increased from0.15 mM to 12.5 mM which was accompanied by an increase of NH4+in the tissue from about 7.0 to 35 µmol g–1 fr.wt. of root. Increasing concentrations of solution NH4+ progressivelyinhibited net K+ uptake. At the highest solution NH4+ concentrations,there was an initial net efflux of K+ and no net influx occurredduring the treatment period. The severity of the NH4)SO4 restrictionof NO3 uptake was moderated considerably in the presenceof K+ as long as a net influx of K+ occurred. However, net influxof K+ was not associated with alteration of NH4+ uptake, assimilation,or accumulation in the root tissue. The lack of correlationbetween the severity of restriction of NO3 uptake andendogenous NHJ suggested the restriction resulted from an effectexerted by exogenous NH4+ which tended to saturate at lowersolution NHJ concentrations or by inhibitory factors generatedduring assimilation of NH4+. Several mechanisms were postulatedto account for the moderating influence of K+. In all experiments,root NO3 reduction was restricted by the presence ofambient NH4+. The quantitative decreases in reduction tendedto be less than decreases in NO3 uptake and therefore,could result from inhibition solely of uptake with subsequentlimitation in availability of substrate for the reduction process,but the possibility of a direct effect on reduction could notbe excluded.  相似文献   

6.
Soybean [Glycine max (L.) Merrill] plants that had been subjectedto 15 d of nitrogen deprivation were resupplied for 10 d with1.0 mol m–3 nitrogen provided as NO3, NH4+, orNH4++NO3 in flowing hydroponic culture. Plants in a fourthhydroponic system received 1.0 mol m–3 NO3 duringboth stress and resupply periods. Concentrations of solublecarbohydrates and organic acids in roots increased 210 and 370%,respectively, during stress. For the first day of resupply,however, specific uptake rates of nitrogen, determined by ionchromatography as depletion from solution, were lower for stressedthan for non-stressed plants by 43% for NO3- resupply, by 32%for NH4+ + NO3 resupply, and 86% for NH4+ resupply. Whenspecific uptake of nitrogen for stressed plants recovered torates for non-stressed plants at 6 to 8 d after nitrogen resupply,carbohydrates and organic acids in their roots had declinedto concentrations lower than those of non-stressed plants. Recoveryof nitrogen uptake capacity of roots thus does not appear tobe regulated simply by the content of soluble carbon compoundswithin roots. Solution concentrations of NH4+ and NO3 were monitoredat 62.5 min intervals during the first 3 d of resupply. Intermittent‘hourly’ intervals of net influx and net effluxoccurred. Rates of uptake during influx intervals were greaterfor the NH4+ -resupplied than for the NO3 -resuppliedplants. For NH4+ -resupplied plants, however, the hourly intervalsof efflux were more numerous than for NO3 -resuppliedplants. It thus is possible that, instead of repressing NH4+influx, increased accumulation of amino acids and NH4+ in NH4+-resupplled plants inhibited net uptake by stimulation of effluxof NH4+ absorbed in excess of availability of carbon skeletonsfor assimilation. Entry of NH4+ into root cytoplasm appearedto be less restricted than translocation of amino acids fromthe cytoplasm into the xylem. Key words: Ammonium, nitrate, nitrogen-nutrition, nitrogen-stress, soybean  相似文献   

7.
The effects of a range of applied nitrate (NO3) concentrations(0–20 mol m3) on germination and emergence percentageof Triticum aestivum L. cv. Otane were examined at 30, 60, 90and 120 mm sowing depths. Germination percentage was not affectedby either sowing depth or applied NO3 concentration whereasemergence percentage decreased with increased sowing depth regardlessof applied NO3 concentration. Nitrate did not affectemergence percentage at 30 mm sowing depth, but at 60 to 120mm depth, emergence percentage decreased sharply with an increasedapplied NO3 concentration of 0 to 1·0 mol m–3then decreased only slightly with further increases in appliedNO3 of about 5·0 mol m–3. Root and shoot growth, NO3 accumulation and nitrate reductaseactivity (NRA) of plants supplied with 0, 1·0 and 1·0mol m–3 NO3 at a sowing depth of 60 mm were measuredprior to emergence. The coleoptile of all seedlings opened withinthe substrate. Prior to emergence from the substrate, shootextension growth was unaffected by additional NO3 butshoot fr. wt. and dry wt. were both greater at 1·0 and1·0 mol m–3 NO3 than with zero NO3.Root dry wt. was unaffected by NO3. Nitrate concentrationand NRA in root and shoot were always low without NO3.At 1·0 and 10 mol m3 NO3, NO3 accumulatedin the root and shoot to concentrations substantially greaterthan that applied and caused the induction of NRA. Regardlessof the applied NO3 concentration, seedlings which failedto emerge still had substantial seed reserves one month afterplanting. Coleoptile length was substantially less for seedlingswhich did not emerge than for seedlings which emerged, but wasnot affected by NO3. It is proposed that (a) decreasedemergence percentage with increased sowing depth was due tothe emergence of leaf I from the coleoptile within the substrateand (b) decreased emergence percentage with additional NO3was due to the increased expansion of leaf 1 within the substrateresulting in greater folding and damage of the leaf. Key words: Triticum aestivwn L., nitrate, sowing depth, seedling growth, seedling emergence  相似文献   

8.
Acclimation of NO3 transport fluxes (influx, efflux)in roots of oilseed rape (Brassica napus L. cv. Bien venu) andtheir sensitivity to growth at low root temperature was studiedin relation to external NO3 supply, defined by constantconcentrations ranging from sub- to supra-optimal with respectto plant growth rate. Plants were grown from seed in flowingnutrient solutions containing 250 mmol m–3 NO3at 17°C for 20d, and solution temperature in half the cultureunits was then lowered decrementally over 3 d to 7°C. Threedays later plants were supplied with NO3 at 1, 10, 100or 1000 mmol m–3 maintained for 18 d. Dry matter productionwas decreased more by low root zone temperature than low [NO3]e. Root specific growth rates were inversely related to [NO3]eand shoot:root ratios increased with time at [NO3]e between10–1000 mmol m–3. Net uptake of NO3 at 17°Cwas twice that at 7°C, and at both temperatures it doubledwith increasing [NO3]e between 1–10 mmol m–3with further small increases at higher [NO3]e. Mean unitabsorption rates of NO3 between 0–6 d and 6–14d were linearly related (r2 of 0.79–0.99) to log10[NO].Steady-state Q10 (7–17°C) for uptake between 0–6d were 0.91, 1.62, 1.27, and 1.10, respectively, at [NO3]eof 1, 10, 100, and 1000 mmol m–3, compared with correspondingvalues of 0.98, 1.38, 1.68, and 1.89 between 6–14 d. Thedata indicated that net uptake rates at 7 and 17°C divergedover time at high [NO3]e. Short-term uptake rates from1 mol m–3 NO3 measured at 17°C were higherin plants grown with roots at 7°C than at 17°C; for7°C plants there was a strong inverse linear relationship(r2=0.94) between uptake rate and treatment log10 [NO3]ewhilst rates in 17°C plants were independent of prior [NO3]e. Rates of NO3 influx and efflux under different steady-stateconditions of NO3 supply and root temperature were calculatedfrom dilution of 15N added to culture solutions. Efflux wassubstantial relative to net uptake in all treatments, and wasinversely related to [NO3]e at 17°C but not at 7°C.Ratios of influx: efflux ranged from 1.6–2.9 at 17°Cand 1.3–1.8 at 7°C, indicating the proportionatelygreater impact of efflux at low root temperature. Ratios ofefflux: net uptake were 0.53–1.56 at 17°C and 1.21–3.58at 7°C. The apparent sensitivities of influx and effluxto steady-state root temperature varied with [NO3]e.Both fluxes were higher at 17°C than 7°C in the presenceof 100–1000 mmol m–3 NO3 but the trend wasreversed at 1–10 mmol m–3 NO. Concentrations oftotal N measured in xylem exudate were at least 2-fold higherat 7°C compared with 17°C, attributable mainly to higherconcentrations of NO3 glutamine and proline. The resultsare discussed in terms of acclimatory and other responses shownby the NO3 transport system under conditions of limitingNO3 supply and low root temperature. Key words: Brassica napus, nitrate supply, efflux, influx, root temperature, xylem exudate  相似文献   

9.
In non-nodulated soybean [Glycine max (L.) Merrill cv. Ransom]plants that were subjected to 15 d of nitrogen deprivation inflowing hydroponic culture, concentrations of nitrogen declinedto 1.0 and 1.4mmol Ng–1 dry weight in shoots and roots,respectively, and the concentration of soluble amino acids (determinedas primary amines) declined to 40µmol g–1 dry weightin both shoots and roots. In one experiment, nitrogen was resuppliedfor 10 d to one set of nitrogen-depleted plants as 1.0 mol m–3NH4+ to the whole root system, to a second set as 0.5 mol m–3NH4+ plus 0.5 mol m–3 NO3 to the whole root system,and to a third set as 1.0 mol m–3 NH4+ to one-half ofa split-root system and 1.0 mol m–3 NO3 to theother half. In a second experiment, 1.0 mol m–3 of nitrogenwas resupplied for 4 d to whole root systems in NH4+ : NO3ratios of 1:0, 9:1, and 1:1. Nutrient solutions were maintainedat pH 6.0. When NH4+ was resupplied in combination with NO3 to thewhole root system in Experiment I, cumulative uptake of NH4+for the 10 d of resupply was about twice as great as when NH4+was resupplied alone. Also, about twice as much NH4+ as NO3was taken up when both ions were resupplied to the whole rootsystem. When NH4+ and NO3 were resupplied to separatehalves of a split-root system, however, cumulative uptake ofNH4+ was about half that of NO3. The uptake of NH4+,which is inhibited in nitrogen-depleted plants, thus is facilitatedby the presence of exogenous NO3, and the stimulatingeffect of NO3 on uptake of NH4+ appears to be confinedto processes within root tissues. In Experiment II, resupplyof nitrogen as both NH4+ and NO3 in a ratio of either1:1 or 9:1 enhanced the uptake of NH4+. The enhancement of NH4+uptake was 1.8-fold greater when the NH4+: NO3-resupplyratio was 1:1 than when it was 9:1; however, only 1.3 timesas much NO3 was taken up by plants resupplied with the1 :1 exogenous ratio. The effect of NO3 on enhancementof uptake of NH4+ apparently involves more than net uptake ofNO3 itself and perhaps entails an effect of NO3uptake on maintenance of K+ availability within the plant. Theconcentration of K+ in plants declined slightly during nitrogendeprivation and continued to decline following resupply of nitrogen.The greatest decline in K+ concentration occurred when nitrogenwas resupplied as NH4+ alone. It is proposed that decreasedavailability of K+ within the NH4+-resup-plied plants inhibitedNH4+ uptake through restricted transfer of amino acids fromthe root symplasm into the xylem. Key words: Ammonium, Glycine max, nitrate, nitrogen-nutrition, nitrogen stress, split-root cultures  相似文献   

10.
We have examined the long-term effects of NO3 concentrationson NO3 (15NO3) fluxes and cellular pool sizesin roots of intact 30-d-old wheat (Triticum aestivum cv. Courtot)grown hydroponically. Compartmental analysis was performed understeady-state conditions at five different levels of NO3concentration (from 0.1 up to 5 mol m–3 taking into accountmetabolism and secretion into the xylem (Devienne et al., 1994).Nitrate and reduced nitrogen levels in the tissues were largelyindependent of external NO3 concentration although below1.5 mol m–3 NO3; concentration limited plant growth.In the chamber, marked diurnal variations in net uptake occurredand, in the light, higher NO3 concentrations yieldedhigher NO3 uptake rates. After transfer of the plantsto the laboratory, the increase in net uptake linked to elevationof NO3; concentrations was even larger (from 0.1 to 8.8µmolh–1 g–1 FW) as a result of a marked increase (x10–11) in the unidirectional influx at the plasmalemmawhile NO3 efflux was less enhanced (x 4–5). Underthese conditions, influx into the vacuole was also higher (x2–4) while efflux from the vacuole was little affected(x 1–3). NO3 concentrations within the cell compartmentswere estimated under the clas sical assumptions. The vacuolarconcentration was a little modified by NO3 availabilitywhereas that in the cytosol increased from about 10 mol m–3to about 20 mol m–3 indicating that (1) the absolute valuefor the cytosol was high and (2) it displayed only a small increasedespite very large changes in NO3 fluxes. NO3distribution within the cells did not seem to involve an activeaccumulation of NO3 in the vacuole. Key words: Wheat, ion transport, nitrate, 15N, compartmentation  相似文献   

11.
The short-term dependence of NO3 uptake upon photosynthesisand sugar supply to the roots of soybean plants was investigatedin a series of experiments where CO2 availability, light intensityor conduction of phloem sap to the roots were severely limited.Removal of CO2 from the atmosphere or girdling of the stem equallyprevented the stimulation of NO3 uptake when plants weretransferred from darkness to the light. The effect of thesetwo treatments can be reversed by CO2 re-supply or by additionof 10 mM glucose in the nutrient solution, respectively. Glucosewas also more effective in stimulating NO3 uptake byintact plants in darkness than in light. Collectively, theseobservations are interpreted as evidence that the diurnal changesin NO3 uptake are due to decreased phloem transport ofphotosynthates in darkness. Accordingly, the magnitude of thesechanges was much dependent on starch accumulation in the leavesat the end of the photo-period. Shading the plants lowered thisaccumulation, and resulted in an amplification of the diurnalchanges in NO3 uptake. These results are discussed inconnection with the hypothesis that the carbon-dependent plasticityof the night/day ratio of NO3 uptake is an importantfeature of the co-ordination of the acquisition of N and C bythe plant. Key words: Glycine max, light/dark cycle, NO3 uptake, C and N acquisition  相似文献   

12.
Net accumulation of Cl by intact barley plants was virtuallyeliminated in roots and reduced by 40% in shoots when externalmedia (0.5 mol m–3 CaSO4 plus 0–5 mol m–3KCI) were supplemented with 0.25 mol m Ca(NO3)2. Plasmalemma36Cl influx (oc) was shown to be insensitive to externalNO3- in plants which had previously been grown in solutionslacking –3, but oc became sensitive to NO3-after a lagperiod of 3–6 h. Kinetic analyses revealed that the inhibitionof 36C1 influx by external NO3- was complex. At 0.25mol m–3 NO3- the Vmax for Cl influx was reducedby greater than 50%, with insignificant effects upon Km. At0.5 mol m–3 NO3- there was no further effect upon Vmaxbut Km for influx increased from 38±5 mmol m–3to 116±26 mmol m–3. By contrast, Cl effluxwas found to be insensitive to external NO3-. A model for theregulation of Cl influx is proposed which involves bothnegative feedback effects from vacuolar NO3- +Cl) concentrationand (external) NO3- inhibition of Cl influx at the plasmalemma.These combined effects serve to discriminate against Claccumulation, favouring NO3- accumulation, when the latter ionis available. Such observations are inconsistent with recentproposals for the existence of bona fide homeostats for chlorideaccumulation in higher plants. Key words: Nitrate inhibition, Chloride influx, Barley  相似文献   

13.
Seedlings of Italian ryegrass (Lolium multiflorum Lam. cv. RVP)and clonal stolon cuttings of white clover (Trifolium repensL. cv. Blanca) were grown for 19 d in flowing solution culture,with N supplied as either 250 mmol m–3 NO3 or NH3+.Rates of net uptake, influx and translocation of NO3and NH4+ were then determined using 15N and 13N labelling techniques:between 3–5 h into the photoperiod following 8 h darknessfor white clover (CL), and for ryegrass plants that were eitherentire (IL) or with shoots excised 90 min prior to 13N influx(IC); and 75 min into the photoperiod following 37–39h darkness for ryegrass (ID). Rates of net uptake, influx andefflux of NH4+ exceeded those of NO3 in IL and IC ryegrassplants: the opposite occurred in white clover (CL). The decreasein net uptake following defoliation of ryegrass was greaterfor NH4+ (62%) than NO3 (40%). For NH4+ this was associatedwith a large decrease in influx from 110 to 6.0µmol h–1g–1 root fr. wt; but for NO3, influx only decreasedfrom 42 to 37 µmol h–1 g–1. Prolonged exposureto darkness (ID plants) also lowered net uptake of NO3and NH4+ by, respectively, 86% and 95% of IL levels. For NH4+this was characterized by a large decrease in influx and a smalldecrease in efflux; whilst for NO3 the effect of a largedecrease in influx was reinforced by a smaller increase in efflux. The data were used to estimate the translocatory fluxes of NO3(03–20µmol h–1 g–1) and NH4+ (003–0.4µmolh–1 g–1), assimilation in the roots of NO3(02–26µmol h–1 g–1) and NH+4 (05–89 µmolh–1 g–1), and the concentrations of NO3 (9–15mol m–3) in the cytoplasmic compartment of the roots.The relevance of variable influx and efflux to models for theregulation of N uptake is discussed. Key words: Lolium multiflorum, Trifolium repens, influx, efflux, nitrate, ammonium, 13N  相似文献   

14.
Tobacco shoots were grown in vitro for 35 d, in MS culture mediummodified to include various sources (nitrate-N, ammonium-N ora mixture) and levels (0–120 mM) of N, and in the presenceof 0–180 mM NaCI or iso-osmotic concentrations of mannitol.Growth of control plantlets was significantly inhibited whenNH4+-N was the sole N source, and at high (120 mM) NO3-N supply. Under conditions of salt stress (90 and 180 mM NaCI)growth was repressed, with roots being more severely affectedthan shoots. Salinity also inhibited root emergence in vitro.The only alleviation of the salt stress by nitrate nutritionobserved in this study was on shoot growth parameters of plantletsgrown on 60 mM NO3-N and 90 mM NaCI. Although both weresignificantly inhibited by NaCI, nitrate reduc-tase activitywas more severely affected than nitrate uptake. When mannitolreplaced NaCI in the culture medium, similar Inhibition of growth,nutrient uptake and enzyme activity were recorded. These observations,together with the relatively low recorded values for Na+ andCI uptake, indicate that under in vitro salt stress conditionsthe negative effects of NaCI are primarily osmotic. Key words: Growth, nitrogen metabolism, osmotic stress, salinity  相似文献   

15.
From compartmental analysis of 15N elution measurements, concentrationsand fluxes of NH+4 and NO3 were estimated for corticalcells in excised root segments, when bathed in a complete nutrientsolution, in which 20 mol m–3 NH4+ or NO3 werethe single N sources. The results were compared with those fornutrient solution containing 20 mol m–3 NH4NO3. No nitratereductase activity was detected in the roots but rapid assimilationof NH4+ occurred, due to glutamine synthetase activity. Theefflux curves for NH4+, on a 'µg 15N remaining againsttime' basis, deviated from the criteria determining conformityto first order kinetics, since the slowest rate constant wasan order of magnitude lower than that exhibited by the curvefor efflux versus time. The data were transformed to conformto the appropriate criteria, revealing a large slowly exchangingpool equated with assimilated NH4+. The presence of NO3had little effect on NH4+ uptake and exchange, but NH4+ suppressedNOj uptake and reduced exchange across plasmalemma and tonoplast.It was established that NH4+ absorption was an active process.However, NH4+ entering and leaving the vacuole was overestimated,since the flux equation used did not differentiate between total15NH4 influx at the plasmalemma and that at the tonoplast, afterassimilation. The only active NO3 transfer was influxat the plasmalemma. The results were compared with those ofothers using13N and 36C1O3 analogues to measure NH4+ and NO3fluxes in cereal roots. Key words: Ammonium, nitrate, compartmental analysis, 15N, active transport  相似文献   

16.
Dunaliella tertiolecta grew in a medium that contained MgSO4(MgSO4 medium), while this alga did not grow at all in mediathat contained MgCl2 or Mg(NO3)2. The growth in the MgSO4mediumwas inhibited in comparison with that in media that containedsodium salts, such as NaCl, NaNO3, and Na2SO4. The energy chargeobtained from measurements of levels of adenine nucleotidesby HPLC were almost constant in Na- and Mg-containing media(about 0.87), indicating that the failure of growth in MgCl2medium and Mg(NO3)2 medium was not directly related to.changesin the energy metabolism. K+ and Mg2+ were the dominant intracellularcations not only in Na-containing media (Na-media) but alsoin Mg-cohtaining media (Mg-media). The intracellular concentrationof Ca2+ was lower in Mg-media (1.6 mM) than that in Na-media(6mM). The concentrations of HPO42– in cells incubatedin Mg-media were lower (less than 60 mM) than those in Na-media(greater than 110 mM). By contrast, the intracellular concentrationof SO42– was higher in a MgSO4 medium (26 mM) than thatin a Na2SO4 medium (4 mM) which, at least, compensated by 40%for the decrease in HPO42–. The ability to grow in a MgSO4medium may be related to the high intracellular concentrationof SO42–. (Received September 20, 1990; Accepted March 22, 1991)  相似文献   

17.
Larsson, C.-M., Larsson, M. and Guerrero, M. G. 1985. Photosyntheticnitrogen metabolism in high and low CO2-adapted Scenedesmus.II. Effect of ammonium and methionine sulphoximine on nitrateutilization.—J. exp. Bot. 36: 1387–1395 In 3% CO2-grown Scenedesmus obtusiusculus Chod. utilizing NO3J as the N source, NH4+ addition caused a prompt inhibitionof NO3 utilization. Nitrate reductase (NR) activity declinedrapidly in response to the presence of NO4+, but the cessationof NO3 utilization was too rapid to be accounted forby the loss in NR activity. The first site of NO4+ inhibitionin these cells seems to be the entrance of NO3 into thecells. Upon exhaustion of NO4+ from the medium, NO3 utilizationwas rapidly restored and NR activity increased. Air-grown cellswere much less sensitive to the effect of NO4+, more than 30min being required for added NO4+ to cause complete inhibitionof NO3 utilization. In these cells, NO3 uptakeand NR activity decreased in parallel in response to NO4+ addition.In 3% CO2-grown cells simultaneously subjected to NO4+ and air-levelof CO2, NO4+ initially inhibited NO3 utilization completely,but a slight recovery took place after approximately 20 min The glutamine synthetase (GS) inhibitor L-methionine D, L-sulphoximine(MSO) behaved as a potent inhibitor of NO3 uptake in3% CO2-grown cells, but had considerably less effect in air-growncells, although the time-course of the MSO-induced inhibitionof GS was the same in both cases Key words: Ammonium, nitrate utilization, Scenedesmus  相似文献   

18.
Nitrate provision has been found to regulate the capacity forChara corallina cells to take up nitrate. When nitrate was suppliedto N sufficient cells maximum nitrate uptake was reached after8 h. Prolonged treatment of the cells in the absence of N alsoresulted in the apparent ability of these cells to take up nitrate.Chlorate was found to substitute partially for nitrate in the‘induction’ step. The effects on nitrate reductionwere separated from those on nitrate uptake by experiments usingtungstate. Tungstate pretreatment had no effect on NO3uptake ‘induced’ by N starvation, but inhibitedNO3 uptake associated with NO3 pretreatment. Chloridepretreatment similarly had no effect on NO3 uptake ‘induced’by N deprivation, but inhibited NO3 uptake followingNO3 pretreatment. The data suggest that there are atleast two mechanisms responsible for the ‘induction’of nitrate uptake by Chara cells, one associated with NO3reduction and ‘induced’ by CIO3 or NO3and one associated with N deprivation. Key words: Nitrate, Chlorate, Chara corallina, Induction  相似文献   

19.
The seminal roots of N-free-grown barley seedlings were ableto take up NO3 immediately upon initial exposure; theuptake rate in the tip was half of that in the older root zones(middle and base). A lag of 60 min was required in all rootzones before the uptake rates started to increase during inductionwith external NO3. This increase could be prevented bythe addition of pFPA; we thus assume that additional NO3transport proteins were synthesized during NO3 induction.During the time-course of NO3 induction different uptakerates were measured in morphologically different regions ofthe tip (1 mm segments) indicating a regulation of NO3induction on a narrow local scale. In NO3 grown plants, NO3 uptake as well as NO3content increased basipetally along the root axis concomitantlywith increasing vacuolization of the cells. Although NO3uptake into the tip was only half of that into the older rootzones, this NO3 uptake was very important for the entireroot. Firstly, it provided the substrate for protein biosynthesisin the meristematic region: nitrate reductase activity and totalsoluble protein were highest in the first apical mm of the tip.Secondly, 3% of the NO3 taken up by the tip was foundin the base where it induced NO3 uptake: NO3 wastranslocated almost exclusively basipetally and as little as20nmolg1 root fr. wt. translocated from the tip weresufficient for acceleration of NO3 induction in the rootbase of N-free-grown plants. This clearly shows that the inductionof NO3 uptake does not depend exclusively on the availabilityof external NO3, but can be mediated also with internallytranslocated NO3.The root tip, therefore, may be consideredthe NO3 sensing region of the root. Key words: Barley, Hordeum vulgare L, internal NO3, NO3 uptake, root zones  相似文献   

20.
Lamaze, T., Sentenac, H. and Grignon, C. 1987. Orthophosphaterelations of root: NO3effects on orthophosphate influx,accumulation and secretion into the xylem.—J. exp. Bot.38: 923–934. Orthophosphate (Pi) accumulation by barley (Hordeum vulgareL.) roots was specifically inhibited by NO3 as comparedto Cl and SO42 –, and Pi secretion into the xylemwas stimulated. The inhibition of Pi accumulation by NO3was also observed in roots of intact photosynthesizing horsebean(Vicia faba L.), rice (Oryza sativa L.) and soybean (Glycinemax L.) plants. NO3 effects on Pi transport by rootswere more thoroughly investigated with corn (Zea mays L.). Theywere due to intracellular NO3. Pi secretion was stillstimulated by NO3 after Pi withdrawal from the absorptionsolution. 32Pi influx decreased during Pi accumulation, supportingthe hypothesis that this ion allosterically regulated its owntransport system by feedback control. This control was modulatedby other anions: the decrease was more pronounced in the presenceof nitrate. Chronologically, the depressive effect of NO3on 32Pi influx appeared after the inhibition of Pi accumulation.Furthermore, under conditions where Pi accumulation was notaffected by NO3, 32Pi influx and Pi secretion into thexylem became insensitive to the presence of nitrate. Our hypothesisis that the stimulative effect of NO3 on Pi secretionand the depressive one on 32Pi influx are the repercussionsof an increase in the Pi cytosolic concentration due to an NO3-induced decrease in Pi uptake by the vacuoles. Key words: Root, orthophosphate fluxes, orthophosphate accumulation, nitrate, ionic interaction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号