首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stress of the endoplasmic reticulum (ER stress) is caused by the accumulation of misfolded proteins, which occurs in many neurodegenerative diseases. ER stress can lead to adaptive responses or apoptosis, both of which follow activation of the unfolded protein response (UPR). Heat shock proteins (HSP) support the folding and function of many proteins, and are important components of the ER stress response, but little is known about the role of one of the major large HSPs, HSP105. We identified several new partners of HSP105, including glycogen synthase kinase-3 (GSK3), a promoter of ER stress-induced apoptosis, and GRP78, a key component of the UPR. Knockdown of HSP105 did not alter UPR signaling after ER stress, but blocked caspase-3 activation after ER stress. In contrast, caspase-3 activation induced by genotoxic stress was unaffected by knockdown of HSP105, suggesting ER stress-specificity in the apoptotic action of HSP105. However, knockdown of HSP105 did not alter cell survival after ER stress, but instead diverted signaling to a caspase-3-independent cell death pathway, indicating that HSP105 is necessary for apoptotic signaling after UPR activation by ER stress. Thus, HSP105 appears to chaperone the responses to ER stress through its interactions with GRP78 and GSK3, and without HSP105 cell death following ER stress proceeds by a non-caspase-3-dependent process.  相似文献   

2.
A large number of correlative studies have established that the activation of the unfolded protein response (UPR) alters the cell's sensitivity to chemotherapeutic agents. Although the induction of the glucose-regulated proteins (GRPs) is commonly used as an indicator for the UPR, the direct role of the GRPs in conferring resistance to DNA damaging agents has not been proven. We report here that without the use of endoplasmic reticulum (ER) stress inducers, specific overexpression of GRP78 results in reduced apoptosis and higher colony survival when challenged with topoisomerase II inhibitors, etoposide and doxorubicin, and topoisomerase I inhibitor, camptothecin. While investigating the mechanism for the GRP78 protective effect against etoposide-induced cell death, we discovered that in contrast to the UPR, GRP78 overexpression does not result in G1 arrest or depletion of topoisomerase II. Caspase-7, an executor caspase that is associated with the ER, is activated by etoposide. We show here that specific expression of GRP78 blocks caspase-7 activation by etoposide both in vivo and in vitro, and this effect can be reversed by addition of dATP in a cell-free system. Recently, it was reported that ectopically expressed GRP78 and caspases-7 and -12 form a complex, thus coupling ER stress to the cell death program. However, the mechanism of how GRP78, a presumably ER lumen protein, can regulate cytosolic effectors of apoptosis is not known. Here we provide evidence that a subpopulation of GRP78 can exist as an ER transmembrane protein, as well as co-localize with caspase-7, as confirmed by fluorescence microscopy. Co-immunoprecipitation studies further reveal endogenous GRP78 constitutively associates with procaspase-7 but not with procaspase-3. Lastly, a GRP78 mutant deleted of its ATP binding domain fails to bind procaspase-7 and loses its protective effect against etoposide-induced apoptosis.  相似文献   

3.
The endoplasmic reticulum (ER) is the site of assembly of polypeptide chains destined for secretion or routing into various subcellular compartments. It also regulates cellular responses to stress and intracellular Ca(2+) levels. A variety of toxic insults can result in ER stress that ultimately leads to apoptosis. Apoptosis is initiated by the activation of members of the caspase family and serves as a central mechanism in the cell death process. The present study was carried out to determine the role of caspases in triggering ER stress-induced cell death. Treatment of cells with ER stress inducers such as brefeldin-A or thapsigargin induces the expression of caspase-12 protein and also leads to translocation of cytosolic caspase-7 to the ER surface. Caspase-12, like most other members of the caspase family, requires cleavage of the prodomain to activate its proapoptotic form. Caspase-7 associates with caspase-12 and cleaves the prodomain to generate active caspase-12, resulting in increased cell death. We propose that any cellular insult that causes prolonged ER stress may induce apoptosis through caspase-7-mediated caspase-12 activation. The data underscore the involvement of ER and caspases associated with it in the ER stress-induced apoptotic process.  相似文献   

4.
5.
L Chen  S Xu  L Liu  X Wen  Y Xu  J Chen  J Teng 《Cell death & disease》2014,5(5):e1219
Disturbance of endoplasmic reticulum (ER) homeostasis causes ER stress and leads to activation of the unfolded protein response, which reduces the stress and promotes cell survival at the early stage of stress, or triggers cell death and apoptosis when homeostasis is not restored under prolonged ER stress. Here, we report that Cab45S, a member of the CREC family, inhibits ER stress-induced apoptosis. Depletion of Cab45S increases inositol-requiring kinase 1 (IRE1) activity, thus producing more spliced forms of X-box-binding protein 1 mRNA at the early stage of stress and leads to phosphorylation of c-Jun N-terminal kinase, which finally induces apoptosis. Furthermore, we find that Cab45S specifically interacts with 78-kDa glucose-regulated protein/immunoglobulin heavy chain binding protein (GRP78/BiP) on its nucleotide-binding domain. Cab45S enhances GRP78/BiP protein level and stabilizes the interaction of GRP78/BiP with IRE1 to inhibit ER stress-induced IRE1 activation and apoptosis. Together, Cab45S, a novel regulator of GRP78/BiP, suppresses ER stress-induced IRE1 activation and apoptosis by binding to and elevating GRP78/BiP, and has a role in the inhibition of ER stress-induced apoptosis.  相似文献   

6.
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

7.
《Autophagy》2013,9(11):1921-1936
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.  相似文献   

8.

Osteogenic activity was identified in medicarpin (Med), a natural pterocarpan. Further, it was decided to study the differentially regulated protein expression during osteoblast differentiation in the presence of Med. Using 2D proteomic approach, we found that Med treatment to osteoblasts significantly downregulated GRP78, an ER chaperone with anti-apoptotic properties which also controls the activation of unfolded protein response signaling, a pro-survival strategy for normal ER functioning. However, severe stress leads to triggering of apoptotic responses and signaling switches to pro-apoptotic. In order to elucidate the effect of Med downregulation of GRP78, osteoblasts were transfected with SiGRP78 or SiGRP78+ Med or Med alone. It was seen that mRNA and protein levels of ER stress markers like GRP78, ATF-4, and CHOP were decreased in all the three groups with maximum reduction in SiGRP78+ Med group. Med targets GRP78 by inhibiting mitochondrial-mediated apoptosis which is evident by reduced levels of cytochrome c, caspase-3, Bax/BCL2 ratio, and enhanced expression of survivin. Finally, Annexin-PI staining of apoptotic cells revealed that MED inhibition of GRP78 leads to reduced osteoblast apoptosis and increased osteoblast survival. Altogether, our data show that Med inhibits ER stress-induced apoptosis and promotes osteoblast cell survival by targeting GRP78.

  相似文献   

9.
DY Lu  CS Chang  WL Yeh  CH Tang  CW Cheung  YM Leung  JF Liu  KL Wong 《Phytomedicine》2012,19(12):1093-1100
Prenyl-phloroglucinol derivatives from hop plants have been shown to have anticancer activities. This study is the first to investigate the anticancer effects of the new phloroglucinol derivative (2,4-bis(4-fluorophenylacetyl)phloroglucinol; BFP). BFP induced cell death and anti-proliferation in three glioma, U251, U87 and C6 cells, but not in primary human astrocytes. BFP-induced concentration-dependently cell death in glioma cells was determined by MTT and SRB assay. Moreover, BFP-induced apoptotic cell death in glioma cells was measured by Hochest 33258 staining and fluorescence-activated cell sorter (FACS) of propidine iodine (PI) analysis. Treatment of U251 human glioma cells with BFP was also found to induce reactive oxygen species (ROS) generation, which was detected by a fluorescence dye used FACS analysis. Treatment of BFP also increased a number of signature endoplasmic reticulum (ER) stress markers glucose-regulated protein (GRP)-78, GRP-94, IRE1, phosphorylation of eukaryotic initiation factor-2α (eIF-2α) and up-regulation of CAAT/enhancer-binding protein homologous protein (CHOP). Moreover, treatment of BFP also increased the down-stream caspase activation, such as pro-caspase-7 and pro-caspase-12 degradation, suggesting the induction of ER stress. Furthermore, BFP also induced caspase-9 and caspase-3 activation as well as up-regulation of cleaved PARP expression. Treatment of antioxidants, or pre-transfection of cells with GRP78 or CHOP siRNA reduced BFP-mediated apoptotic-related protein expression. Taken together, the present study provides evidences to support that ROS generation, GRP78 and CHOP activation are mediating the BFP-induced human glioma cell apoptosis.  相似文献   

10.
This study is the first to investigate the anticancer effects of the new phloroglucinol derivative (3,6-bis(3-chlorophenylacetyl)phloroglucinol; MCPP) in human colon cancer cells. MCPP induced cell death and antiproliferation in three human colon cancer, HCT-116, SW480, and Caco-2 cells, but not in primary human dermal fibroblast cells. MCPP-induced concentration-dependent apoptotic cell death in colon cancer cells was measured by fluorescence-activated cell sorter (FACS) analysis. Treatment of HCT-116 human colon cancer cells with MCPP was found to induce a number of signature endoplasmic reticulum (ER) stress markers; and up-regulation of CCAAT/enhancer-binding protein homologous protein (CHOP) and glucose-regulated protein (GRP)-78, phosphorylation of eukaryotic initiation factor-2α (eIF-2α), suggesting the induction of ER stress. MCPP also increased GSK3α/β(Tyr270/216) phosphorylation and reduced GSK3α/β(Ser21/9) phosphorylation time-dependently. Transfection of cells with GRP78 or CHOP siRNA, or treatment of GSK3 inhibitor SB216163 reduced MCPP-mediated cell apoptosis. Treatment of MCPP also increased caspase-7, caspase-9, and caspase-3 activity. The inhibition of caspase activity by z-DEVE-FMK or z-VAD-FMK significantly reduced MCPP-induced apoptosis. Furthermore, treatment of GSK3 inhibitor SB216763 also dramatically reversed MCPP-induced GRP and CHOP up-regulation, and pro-caspase-3 and pro-caspase-9 degradation. Taken together, the present study provides evidences to support that GRP78 and CHOP expression, and GSK3α/β activation in mediating the MCPP-induced human colon cancer cell apoptosis.  相似文献   

11.
Respiratory syncytial virus (RSV) infection induced programmed cell death or apoptosis in the cultured lung epithelial cell line, A549. The apoptotic cells underwent multiple changes, including fragmentation and degradation of genomic DNA, consistent with the activation of the DNA fragmentation factor or caspase-activated DNase (DFF or CAD). The infection led to activation of FasL; however, a transdominant mutant of FAS-downstream death domain protein, FADD, did not inhibit apoptosis. Similarly, modest activation of cytoplasmic apoptotic caspases, caspase-3 and -8, were observed; however, only a specific inhibitor of caspases-3 inhibited apoptosis, while an inhibitor of caspase-8 had little effect. No activation of caspase-9 and -10, indicators of the mitochondrial apoptotic pathway, was observed. In contrast, RSV infection strongly activated caspase-12, an endoplasmic reticulum (ER) stress response caspase. Activation of the ER stress response was further evidenced by upregulation of ER chaperones BiP and calnexin. Antisense-mediated inhibition of caspase-12 inhibited apoptosis. Inhibitors of NF-kappa B had no effect on apoptosis. Thus, RSV-induced apoptosis appears to occur through an ER stress response that activates caspase-12, and is uncoupled from NF-kappa B activation.  相似文献   

12.
Endoplasmic reticulum (ER) stress elicits protective responses of chaperone induction and translational suppression and, when unimpeded, leads to caspase-mediated apoptosis. Alzheimer's disease-linked mutations in presenilin-1 (PS-1) reportedly impair ER stress-mediated protective responses and enhance vulnerability to degeneration. We used cleavage site-specific antibodies to characterize the cysteine protease activation responses of primary mouse cortical neurons to ER stress and evaluate the influence of a PS-1 knock-in mutation on these and other stress responses. Two different ER stressors lead to processing of the ER-resident protease procaspase-12, activation of calpain, caspase-3, and caspase-6, and degradation of ER and non-ER protein substrates. Immunocytochemical localization of activated caspase-3 and a cleaved substrate of caspase-6 confirms that caspase activation extends into the cytosol and nucleus. ER stress-induced proteolysis is unchanged in cortical neurons derived from the PS-1 P264L knock-in mouse. Furthermore, the PS-1 genotype does not influence stress-induced increases in chaperones Grp78/BiP and Grp94 or apoptotic neurodegeneration. A similar lack of effect of the PS-1 P264L mutation on the activation of caspases and induction of chaperones is observed in fibroblasts. Finally, the PS-1 knock-in mutation does not alter activation of the protein kinase PKR-like ER kinase (PERK), a trigger for stress-induced translational suppression. These data demonstrate that ER stress in cortical neurons leads to activation of several cysteine proteases within diverse neuronal compartments and indicate that Alzheimer's disease-linked PS-1 mutations do not invariably alter the proteolytic, chaperone induction, translational suppression, and apoptotic responses to ER stress.  相似文献   

13.
In this study, experiments were performed to characterize further the pathways responsible for neuronal death induced by endoplasmic reticulum (ER) stress in cultured hippocampal neurons (HPN) and cerebellar granule neurons (CGN) using tunicamycin (TM) and amyloid beta-peptide (Abeta). Exposure of HPN to Abeta or TM resulted in a time-dependent increase in the expression of 78-kDa glucose-regulated protein (GRP78) and caspase-12, an ER-resident caspase. In contrast, in CGN, although a drastic increase in the expression of GRP78 was found as was the case in HPN, no up-regulation of caspase-12 was detected. These results were consistent with immunohistochemical results that there were far lower number of caspase-12-positive cells in the cerebellum than in the cerebral cortex and hippocampus, and that caspase-12-positive cells were not identified in the external granule cell layer of the cerebellum of P7 rats. In CGN, a significant increase in the expression of C/EBP homologous protein (CHOP) protein was detected after exposure to Abeta or TM, whereas no such an increase in the protein expression was observed in HPN. In addition, S-allyl-L-cysteine (SAC), an organosulfur compound purified from aged garlic extract, protected neurons against TM-induced neurotoxicity in HPN but not in CGN, as in the case of Abeta-induced neurotoxicity. These results suggest that the pathway responsible for neuronal death induced by Abeta and TM in HPN differs from that in CGN, and that a caspase-12-dependent pathway is involved in HPN while a CHOP-dependent pathway is involved in CGN in ER stress-induced neuronal death.  相似文献   

14.
Calcium ion is a secondary messenger that mediates a variety of physiological responses of neurons, including cell survival responses. To determine the role of calcium in regulating neuronal survival and death, we examined whether chelation of extracellular calcium with EGTA induces caspase-dependent apoptotic cell death and whether glycogen synthase kinase-3 is involved in EGTA-induced cell death in PC12 cells. EGTA increased apoptotic cell death with morphological changes characterized by cell shrinkage and nuclear condensation and fragmentation accompanied by caspase activation. EGTA increased GRP78 protein expression, suggesting that EGTA induces ER stress. Glycogen synthase kinase-3 inhibitors prevented EGTA-induced apoptosis. In addition, nerve growth factor and insulin growth factor-I completely blocked EGTA-induced cell death. Moreover, caspase-3 activation was inhibited by glycogen synthase kinase-3 inhibitors. These results suggest that chelation of extracellular calcium with EGTA induces caspase-dependent apoptosis, and the activation of glycogen synthase kinase-3 is involved in the death of PC12 cells.  相似文献   

15.
Lou LX  Geng B  Yu F  Zhang J  Pan CS  Chen L  Qi YF  Ke Y  Wang X  Tang CS 《Life sciences》2006,79(19):1856-1864
Stress gastric ulcer is a serious complication, but the mechanism involved is not fully clarified. It is well known that mucosal cell apoptosis plays a crucial role in the pathogenesis of gastric ulceration. Recent studies have shown that endoplasmic reticulum (ER) stress is an important pathway leading to cellular apoptosis. To investigate the role of ER stress in the pathogenesis of stress gastric ulcer, we studied the alteration in the expression of ER stress markers GRP78 (glucose-regulated protein 78) and caspase-12 (an ER stress-specific proapoptotic molecule) and their relations with gastric mucosal apoptosis during development of stress gastric lesions in the water-immersion and restraint stress (WRS) model in rats. Rats developed severe gastric lesions after 6 h of WRS. Typical apoptosis was observed at the edge cells of WRS induced gastric lesions. Western blot analysis showed that GRP78 and activated caspase-12 were over-expressed in the gastric tissues of WRS rats. Immunohistochemical analysis demonstrated that increased GRP78 and caspase-12 were distributed only under the lesions. In addition, dithiothreitol and tunicamycin (ER stress inducers), which increased the expression of GRP78 and activated caspase-12, caused gastric mucosal injury and mucosal cell apoptosis in vitro. These findings suggest that ER stress might be involved in the development of stress gastric ulcer through an apoptotic mechanism.  相似文献   

16.
Parecoxib, a novel COX-2 inhibitor, functions as a neuroprotective agent and rescues neurons from cerebral ischemic reperfusion injury-induced apoptosis. However, the molecular mechanisms underlying parecoxib neuroprotection remain to be elucidated. There is growing evidence that endoplasmic reticulum (ER) stress plays an important role in neuronal death caused by brain ischemia. However, very little is known about the role of parecoxib in mediating pathophysiological reactions to ER stress induced by ischemic reperfusion injury. Therefore, in the present study, we investigated whether delayed administration of parecoxib attenuates brain damage via suppressing ER stress-induced cell death. Adult male Sprague–Dawley rats were administered parecoxib (10 or 30 mg kg?1, IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. The expressions of glucose-regulated protein 78 (GRP78) and oxygen-regulated protein 150 (ORP150) and C/EBP-homologous protein (CHOP) and forkhead box protein O 1 (Foxo1) in cytoplasmic and nuclear fraction were determined by Western blotting. The levels of caspase-12 expression were checked by immunohistochemistry analysis, served as a marker for ER stress-induced apoptosis. Parecoxib significantly suppressed cerebral ischemic injury-induced nuclear translocation of CHOP and Foxo1 and attenuated the immunoreactivity of caspase-12 in ischemic penumbra. Furthermore, the protective effect of delayed administration of parecoxib was accompanied by an increased GRP78 and ORP150 expression. Therefore, our study suggested that elevation of GRP78 and ORP150, and suppression of CHOP and Foxo1 nuclear translocation may contribute to parecoxib-mediated neuroprotection during ER stress responses.  相似文献   

17.
18.
Renal proximal tubule injury is induced by agents/conditions known to cause endoplasmic reticulum (ER) stress, including cyclosporine A (CsA), an immunosuppressant drug with nephrotoxic effects. However, the underlying mechanism by which ER stress contributes to proximal tubule cell injury is not well understood. In this study, we report lipid accumulation, sterol regulatory element-binding protein-2 (SREBP-2) expression, and ER stress in proximal tubules of kidneys from mice treated with the classic ER stressor tunicamycin (Tm) or in human renal biopsy specimens showing CsA-induced nephrotoxicity. Colocalization of ER stress markers [78-kDa glucose regulated protein (GRP78), CHOP] with SREBP-2 expression and lipid accumulation was prominent within the proximal tubule cells exposed to Tm or CsA. Prolonged ER stress resulted in increased apoptotic cell death of lipid-enriched proximal tubule cells with colocalization of GRP78, SREBP-2, and Ca(2+)-independent phospholipase A(2) (iPLA(2)β), an SREBP-2 inducible gene with proapoptotic characteristics. In cultured HK-2 human proximal tubule cells, CsA- and Tm-induced ER stress caused lipid accumulation and SREBP-2 activation. Furthermore, overexpression of SREBP-2 or activation of endogenous SREBP-2 in HK-2 cells stimulated apoptosis. Inhibition of SREBP-2 activation with the site-1-serine protease inhibitor AEBSF prevented ER stress-induced lipid accumulation and apoptosis. Overexpression of the ER-resident chaperone GRP78 attenuated ER stress and inhibited CsA-induced SREBP-2 expression and lipid accumulation. In summary, our findings suggest that ER stress-induced SREBP-2 activation contributes to renal proximal tubule cell injury by dysregulating lipid homeostasis.  相似文献   

19.
The endoplasmic reticulum (ER) is the principal organelle for the biosynthesis of proteins, steroids and many lipids, and is highly sensitive to alterations in its environment. Perturbation of Ca(2+) homeostasis, elevated secretory protein synthesis, deprivation of glucose or other sugars, altered glycosylation and/or the accumulation of misfolded proteins may all result in ER stress, and prolonged ER stress triggers cell death. Studies from multiple laboratories have identified the roles of several ER stress-induced cell-death modulators and effectors through the use of biochemical, pharmacological and genetic tools. In the present work, we describe the role of p23, a small chaperone protein, in preventing ER stress-induced cell death. p23 is a highly conserved chaperone protein that modulates HSP90 activity and is also a component of the steroid receptors. p23 is cleaved during ER stress-induced cell death; this cleavage, which occurs close to the carboxy-terminus, requires caspase-3 and/or caspase-7, but not caspase-8. Blockage of the caspase cleavage site of p23 was associated with decreased cell death induced by ER stress. Immunodepletion of p23 or inhibition of p23 expression by siRNA resulted in enhancement of ER stress-induced cell death. While p23 co-immunoprecipitated with the BH3-only protein PUMA (p53-upregulated modulator of apoptosis) in untreated cells, prolonged ER stress disrupted this interaction. The results define a protective role for p23, and provide further support for a model in which ER stress is coupled to the mitochondrial intrinsic apoptotic pathway through the activities of BH3 family proteins.  相似文献   

20.
Shimoke K  Kudo M  Ikeuchi T 《Life sciences》2003,73(5):581-593
Glucose-regulated protein 78 (GRP78)/Immunoglobulin binding protein (Bip) is a chaperone which functions to protect cells from endoplasmic reticulum (ER) stress. GRP78/Bip is expressed following ER stress induced by thapsigargin, tunicamycin or chemical factors. However, the mechanism of progression of ER stress against stress factors is still obscure. We examined whether reactive oxygen species (ROS) were involved in GRP78/Bip expression and caspase-3 activity was induced in PC12 cells using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to produce ROS. We report that PC12 cells lost viability in the presence of MPTP for 24 hours as a partial effect of ROS. We also show that N-acetyl-L-cysteine diminished the MPTP-induced apoptosis with expunction of ROS. Furthermore, we observed that GRP78/Bip was not up-regulated and the caspase-3 activity was increased in the presence of MPTP. These results suggest that insubstantial ROS do not contribute to the ER stress-mediated cell death while caspase-3 is involved in ROS-promoted cell death in MPTP-treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号