共查询到20条相似文献,搜索用时 15 毫秒
1.
Denis E O'Donnell Katherine A Webb 《Journal of applied physiology》2008,105(2):753-5; discussion 755-7
2.
Diego A. Rodríguez Gema Alcarraz-Vizán Santiago Díaz-Moralli Michelle Reed Federico P. Gómez Francesco Falciani Ulrich Günther Josep Roca Marta Cascante 《Metabolomics : Official journal of the Metabolomic Society》2012,8(3):508-516
The study examines plasma metabolic profiles of patients with chronic obstructive pulmonary disease (COPD) to prove whether the disease influences metabolism at rest and after endurance training. This is based on the hypothesis that metabolome levels should reflect impaired skeletal muscle bioenergetics in COPD. The study aims to test this hypothesis by evaluating plasma metabolic profiles in COPD patients before and after 8?weeks of endurance exercise training. We studied blood samples from 18 COPD patients and 12 healthy subjects. Pre- and post-training blood plasma samples at rest and after constant-work rate exercise (CWRE) at 70% of pre-training Watts peak were analyzed by 1H-nuclear magnetic resonance spectroscopy to assess metabolite profiles. The two groups presented training-induced physiological changes in the VO2 peak and in blood lactate levels (P?<?0.01 each). Before training, the two groups also showed differences in metabolic profiles at rest (P?<?0.05). Levels of valine (r?=?0.51, P?<?0.01), alanine (r?=?0.45, P?<?0.05) and isoleucine (r?=?0.51, P?<?0.01) were positively associated with body composition (Fat Free Mass Index). While training showed a significant impact on the metabolic profile in healthy subjects (P?<?0.001), with changes in levels of amino acids, creatine, succinate, pyruvate, glucose and lactate (P?<?0.05 each), no equivalent training-induced effects were seen in COPD patients in whom only lactate decreased (P?<?0.05). This study shows that plasma metabolic profiling contributes to the phenotypic characterization of COPD patients. 相似文献
3.
目的:探究慢性阻塞性肺疾病(COPD)患者呼吸困难与呼吸驱动及呼吸肌功能之间的关系.方法:对31例COPD患者和26例正常对照者分别检测静息常规肺功能、肺弥散功能(DLCO)、口腔阻断压(P0.1)、最大吸气压(PImax)及最大呼气压(PEmax),并进行运动负荷试验观测氧耗量(VO2)、二氧化碳产生量(VCO2)、分钟通气量(VE)、潮气量(VT)等气体代谢指标,受试者呼吸困难感的评价采用呼吸困难指数(BS)表示.运动负荷前、后检测动脉血气分析.结果:①COPD组患者PImax(5.33±1.95)kPa明显低于正常人组(7.02±2.53)kPa(P<0.05),PEmax在两组中无明显差别(P>0.05),COPD组患者P0 1(0.37±0.12)kPa明显高于正常人组(0.26±0.09)kPa(P<0.05),P0.1/PImax(0.069±0.021)也明显高于正常人组(0.037±0.009)(P<0.01).②COPD组患者极量负荷时BS与P0.1及PImax未发现明显的相关关系(P>0.05),但与P0 1/PImax明显正相关(r=0.48,P<0.05),且运动前后BS的变化(△BS)与P0.1/PImax亦明显正相关(r=0.44,P<0.05).结论:COPD患者运动负荷时呼吸困难的产生除与残气的增加及弥散障碍等有关外,呼吸驱动调节异常及呼吸肌功能障碍也是引起其呼吸困难的重要因素. 相似文献
4.
Rationale
The endurance time (Tend) during constant-workrate cycling exercise (CET) is highly variable in COPD. We investigated pulmonary and physiological variables that may contribute to these variations in Tend.Methods
Ninety-two patients with COPD completed a CET performed at 80% of peak workrate capacity (Wpeak). Patients were divided into tertiles of Tend [Group 1: <4 min; Group 2: 4–6 min; Group 3: >6 min]. Disease severity (FEV1), aerobic fitness (Wpeak, peak oxygen consumption [ peak], ventilatory threshold [ VT]), quadriceps strength (MVC), symptom scores at the end of CET and exercise intensity during CET (heart rate at the end of CET to heart rate at peak incremental exercise ratio [HRCET/HRpeak]) were analyzed as potential variables influencing Tend.Results
Wpeak, peak, VT, MVC, leg fatigue at end of CET, and HRCET/HRpeak were lower in group 1 than in group 2 or 3 (p≤0.05). VT and leg fatigue at end of CET independently predicted Tend in multiple regression analysis (r = 0.50, p = 0.001).Conclusion
Tend was independently related to the aerobic fitness and to tolerance to leg fatigue at the end of exercise. A large fraction of the variability in Tend was not explained by the physiological parameters assessed in the present study. Individualization of exercise intensity during CET should help in reducing variations in Tend among patients with COPD. 相似文献5.
J Alberto Neder 《Journal of applied physiology》2008,105(2):758-759
6.
K Froberg P K Pedersen 《European journal of applied physiology and occupational physiology》1984,52(4):446-450
In order to test for possible sex differences in endurance capacity, groups of young, physically active women (n = 6) and men (n = 7) performed bicycle ergometer exercise at 80% and 90% of their maximal oxygen uptakes (VO2 max). The groups were matched for age and physical activity habits. At 80% VO2 max the women performed significantly longer (P less than 0.05), 53.8 +/- 12.7 min vs 36.8 +/- 12.2 min, respectively (means +/- SD). Mid-exercise and terminal respiratory exchange ratio (R) values were significantly lower in women, suggesting a later occurrence of muscle glycogen depletion as a factor in their enhanced endurance. At 90% VO2 max the endurance times were similar for men and women, 21.2 +/- 10.3 min and 22.0 +/- 5.0 min, respectively. The blood lactate levels reached in these experiments were only marginally lower (mean differences 1.5 to 2 mmol X l-1) than those obtained at VO2 max, suggesting high lactate levels as a factor in exhaustion. The changes in body weight during the 80% experiments and the degree of hemoconcentration were not significantly different between men and women. 相似文献
7.
Davidson WJ Verity WS Traves SL Leigh R Ford GT Eves ND 《Journal of applied physiology (Bethesda, Md. : 1985)》2012,112(12):2049-2056
Airway and systemic inflammation are features of chronic obstructive pulmonary disease (COPD), and there is growing interest in clarifying the inflammatory processes. Strenuous exercise induces an intensified systemic inflammatory response in patients with COPD, but no study has investigated the airway inflammatory and anti-inflammatory responses to exercise. Twenty steroid-na?ve, ex-smokers with diagnosed COPD (forced expired volume in 1 s = 66 ± 12%) underwent baseline collection of venous blood and induced sputum followed by an incremental exercise test to symptom limitation 48 h later. Additional venous blood samples were collected following exercise at 0, 2, and 24 h, while induced sputum was collected 2 and 24 h after exercise. Sputum and blood samples were analyzed for differential cell count, CD4(+) and CD8(+) T lymphocytes (serum only), interleukin (IL)-6, IL-8, IL-10, chemokine (C-C motif) ligand 5 (CCL5), and high sensitivity C-reactive protein (serum only). There was an increase in the number of sputum eosinophils (cells/gram, P = 0.012) and a reduction in sputum IL-6 (P = 0.01) 24 h postexercise. Sputum IL-8 and CCL5 were also persistently decreased after exercise (P = 0.0098 and P = 0.0012, respectively), but sputum IL-10 did not change. There was a decrease in serum eosinophils 2 h after exercise (P = 0.0014) and a reduction in serum CCL5 immediately following and 2 h postexercise (P < 0.0001). Both serum eosinophils and CCL5 returned to baseline levels within 24 h. An acute bout of exercise resulted in a significant increase in the number of sputum eosinophils, which may be mediated by serum CCL5. However, there was also a reduction in sputum proinflammatory cytokines, suggesting some anti-inflammatory effect of exercise in the lungs of steroid-na?ve patients with COPD. 相似文献
8.
A S Haffor R L Bartels T E Kirby R L Hamlin A L Kunz 《Archives internationales de physiologie et de biochimie》1987,95(2):81-90
The purpose of this study was to compare CO2 storage capacity of endurance and sprint-trained athletes during steady state exercise. Ten subjects, five sprinters and five distance runners, performed a submaximal treadmill exercise at two different work rates, 45% and 65% of VO2max. CO2 storage capacity was determined by measuring the excess CO2 washout associated with hyperventilation, normalized for body weight and expressed per unit change in mixed venous PCO2 (ml kg-1 Torr-1). Mixed venous PCO2 (PvCO2) was measured by rebreathing equilibration. It was found that CO2 storage capacities of the runners were significantly (P less than 0.05) greater than the sprinters at the two work rates. The sprinters CO2 storage capacities were 2.69 and 2.14 ml kg-1 Torr-1 at low and high work rates, respectively. The corresponding mean values for the runners were 4.56 and 3.92 ml kg-1 Torr-1, respectively. These results may be explained by the metabolic differences between the sprinters and runners. The sprinters' musculature depends more heavily on the glycolytic metabolic pathway, which is associated with an increased lactate production and hence a reduction in the combining power of the blood for CO2 during exercise. At the low work rate, the body's storage capacity for CO2 was significantly (P less than 0.05) greater than the higher work rate for both groups. Obviously, at the higher work level more blood would be presented to the lungs per unit time allowing an increase in CO2 clearance from the body stores. 相似文献
9.
Linda Nici 《Journal of applied physiology》2008,105(2):760-761
10.
Norman L Jones 《Journal of applied physiology》2008,105(2):759-760
11.
Patients with obstructive lung disease are exposed to expiratory loads (ELs) and dynamic hyperinflation as a consequence of expiratory flow limitation. To understand how these alterations in lung mechanics might affect cardiac function, we examined the influence of a 10-cm H2O EL, alone and in combination with voluntary hyperinflation (ELH), on pulmonary pressures [esophageal (Pes) and gastric (Pg)] and cardiac output (CO) in seven healthy subjects. CO was determined by using an acetylene method at rest and at 40 and 70% of peak work. At rest and during exercise, EL resulted in an increase in Pes and Pg (7-18 cm H2O; P < 0.05) and a decrease in CO (from 5.3 +/- 1.8 to 4.5 +/- 1.4, 12.2 +/- 2.2 to 11.2 +/- 2.2, and 16.3 +/- 3.3 to 15.2 +/- 3.2 l/min for rest, 40% peak work, and 70% peak work, respectively; P < 0.05), which remained depressed after an additional 2 min of EL. With ELH, CO increased at rest and both exercise loads (relative to EL only) but remained below control values. The changes in CO were due to a reduction in stroke volume with a tendency for stroke volume to fall further with prolonged EL. There was a negative correlation between CO and the increase in expiratory Pes and Pg with EL (R = -0.58 and -0.60; P < 0.01), whereas the rise in CO with subsequent hyperinflation was related to a more negative Pes (R = 0.72; P < 0.01). In conclusion, EL leads to a reduction in CO, which appears to be primarily related to increases in expiratory abdominal and intrathoracic pressure, whereas ELH resulted in an improved CO, suggesting that lung inflation has little impact on cardiac function. 相似文献
12.
Krista R Howarth Paul J LeBlanc George J F Heigenhauser Martin J Gibala 《Journal of applied physiology》2004,97(2):579-584
We tested the theory that links the capacity to perform prolonged exercise with the size of the muscle tricarboxylic acid (TCA) cycle intermediate (TCAI) pool. We hypothesized that endurance training would attenuate the exercise-induced increase in TCAI concentration ([TCAI]); however, the lower [TCAI] would not compromise cycle endurance capacity. Eight men (22 +/- 1 yr) cycled at approximately 80% of initial peak oxygen uptake before and after 7 wk of training (1 h/day, 5 days/wk). Biopsies (vastus lateralis) were obtained during both trials at rest, after 5 min, and at the point of exhaustion during the pretraining trial (42 +/- 6 min). A biopsy was also obtained at the end of exercise during the posttraining trial (91 +/- 6 min). In addition to improved performance, training increased (P < 0.05) peak oxygen uptake and citrate synthase maximal activity. The sum of four measured TCAI was similar between trials at rest but lower after 5 min of exercise posttraining [2.7 +/- 0.2 vs. 4.3 +/- 0.2 mmol/kg dry wt (P < 0.05)]. There was a clear dissociation between [TCAI] and endurance capacity because the [TCAI] at the point of exhaustion during the pretraining trial was not different between trials (posttraining: 2.9 +/- 0.2 vs. pretraining: 3.5 +/- 0.2 mmol/kg dry wt), and yet cycle endurance time more than doubled in the posttraining trial. Training also attenuated the exercise-induced decrease in glutamate concentration (posttraining: 4.5 +/- 0.7 vs. pretraining: 7.7 +/- 0.6 mmol/kg dry wt) and increase in alanine concentration (posttraining: 3.3 +/- 0.2 vs. pretraining: 5.6 +/- 0.3 mmol/kg dry wt; P < 0.05), which is consistent with reduced carbon flux through alanine aminotransferase. We conclude that, after aerobic training, cycle endurance capacity is not limited by a decrease in muscle [TCAI]. 相似文献
13.
Segerström AB Holmbäck AM Hansson O Elgzyri T Eriksson KF Ringsberg K Groop L Wollmer P Thorsson O 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(1):16-22
The aim of the study was to determine the relation between peak oxygen uptake V(O2)peak), peak work rate (WRpeak), fiber-type composition, and lower extremity strength and endurance during a maximal incremental cycle test. Thirty-nine healthy sedentary men, aged 30-46, participated in the study. Subjects performed a maximal incremental cycle test and isokinetic knee extension (KE) and flexion (KF) strength and endurance tests at velocities of 60 and 180° · s(-1). Muscle biopsies were taken from m. vastus lateralis and analyzed for fiber-type composition. A significant correlation existed between KE strength and V(O2)peak and WRpeak. Also, KF endurance correlated significantly to V(O2)peak and WRpeak. The KE endurance correlated significantly to WRpeak (rp = 0.32, p < 0.05) and almost significantly to V(O2)peak (rp = 0.28, p = 0.06). Stepwise multiple regression analyses showed that KE strength, KF endurance, and the percentage of type I fibers could explain up to 40% of the variation in V(O2) and WRpeak. The performance of sedentary subjects in a maximal incremental cycle test is highly affected by knee muscle strength and endurance. Fiber-type composition also contributes but to a smaller extent. 相似文献
14.
Vogiatzis I Habazettl H Aliverti A Athanasopoulos D Louvaris Z LoMauro A Wagner H Roussos C Wagner PD Zakynthinos S 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,300(6):R1549-R1559
Emerging evidence indicates that, besides dyspnea relief, an improvement in locomotor muscle oxygen delivery may also contribute to enhanced exercise tolerance following normoxic heliox (replacement of inspired nitrogen by helium) administration in patients with chronic obstructive pulmonary disease (COPD). Whether blood flow redistribution from intercostal to locomotor muscles contributes to this improvement currently remains unknown. Accordingly, the objective of this study was to investigate whether such redistribution plays a role in improving locomotor muscle oxygen delivery while breathing heliox at near-maximal [75% peak work rate (WR(peak))], maximal (100%WR(peak)), and supramaximal (115%WR(peak)) exercise in COPD. Intercostal and vastus lateralis muscle perfusion was measured in 10 COPD patients (FEV(1) = 50.5 ± 5.5% predicted) by near-infrared spectroscopy using indocyanine green dye. Patients undertook exercise tests at 75 and 100%WR(peak) breathing either air or heliox and at 115%WR(peak) breathing heliox only. Patients did not exhibit exercise-induced hyperinflation. Normoxic heliox reduced respiratory muscle work and relieved dyspnea across all exercise intensities. During near-maximal exercise, quadriceps and intercostal muscle blood flows were greater, while breathing normoxic heliox compared with air (35.8 ± 7.0 vs. 29.0 ± 6.5 and 6.0 ± 1.3 vs. 4.9 ± 1.2 ml·min(-1)·100 g(-1), respectively; P < 0.05; mean ± SE). In addition, compared with air, normoxic heliox administration increased arterial oxygen content, as well as oxygen delivery to quadriceps and intercostal muscles (from 47 ± 9 to 60 ± 12, and from 8 ± 1 to 13 ± 3 mlO(2)·min(-1)·100 g(-1), respectively; P < 0.05). In contrast, normoxic heliox had neither an effect on systemic nor an effect on quadriceps or intercostal muscle blood flow and oxygen delivery during maximal or supramaximal exercise. Since intercostal muscle blood flow did not decrease by normoxic heliox administration, blood flow redistribution from intercostal to locomotor muscles does not represent a likely mechanism of improvement in locomotor muscle oxygen delivery. Our findings might not be applicable to patients who hyperinflate during exercise. 相似文献
15.
A W Gardner E T Poehlman D L Corrigan 《Human biology; an international record of research》1989,61(4):559-569
We compared the effect of endurance exercise training on gross energy expenditure (GEE) during steady-state exercise in 20 younger men (31.2 +/- 0.6 years) and 20 middle-aged men (49.2 +/- 1.1 years). The subjects trained for eight months. The training program consisted of three 45-min walking and jogging exercise sessions per week at an intensity of approximately 60-85% of the heart rate at peak VO2. We administered bicycle ergometer tests at 0, 4, and 8 months into training. Participants exercised at a power output of 100 W for 10 min using a pedaling frequency of 50 rpm. We determined GEE (kcal/min) by measuring the oxygen consumption and respiratory exchange ratio. We found a significant reduction (p less than 0.05) in GEE (0.7-1.3 kcal/min) following 4 months of endurance training in both age groups, with a further reduction (p less than 0.05) noted in only the middle-aged group at month 8. We found no difference (p greater than 0.05) in GEE between the younger and middle-aged men. We conclude that chronic exercise may modify GEE during a submaximal exercise bout and that this adaptation is similar in magnitude in younger and middle-aged men. 相似文献
16.
Ken D Sumida Steven M Arimoto Michael J Catanzaro Frank Frisch 《Journal of applied physiology》2003,95(2):712-719
The effects of endurance training on hepatic glucose production (HGP) from lactate were examined in 24-h-fasted young (4 mo) and old (24 mo) male Fischer 344 rats by using the isolated-hepatocyte technique. The liver cells were incubated for 30 min with 5 mM lactate ([U-14C]lactate; 25000 dpm/ml) and nine different concentrations of epinephrine (Epi). Basal HGP (with lactate only and no Epi) was significantly greater for young trained (T) (99.6 +/- 6.2 nmol/mg protein) compared with young controls (C) (78.2 +/- 6.0 nmol/mg protein). The basal HGP was also significantly greater for old T (97.3 +/- 5.9 nmol/mg protein) compared with old C (72.2 +/- 3.9 nmol/mg protein). After the incubation with the various concentrations of Epi, Hanes-Woolf plots were generated to determine kinetic constants (Vmax and EC50). Maximal Epi-stimulated hepatic glucose production (Vmax) was significantly greater for young T (142.5 +/- 6.5 nmol/mg protein) compared with young C (110.9 +/- 4.8 nmol/mg protein). Similarly, the Vmax was significantly greater for old T (138.2 +/- 5.0 nmol/mg protein) compared with old C (103.9 +/- 2.5 nmol/mg protein). Finally, there was an increase in the EC50 from the hepatocytes of old T (56.2 +/- 6.2 nM) compared with young T (32.6 +/- 4.9 nM). In like manner, there was an increase in the EC50 from the hepatocytes of old C (59.7 +/- 5.8 nM) compared with young C (33.1 +/- 2.7 nM). The results suggest that training elevates HGP in the basal and maximally Epi-stimulated condition, but with age there is a decline in EC50 that is independent of training status. 相似文献
17.
Ora J Laveneziana P Wadell K Preston M Webb KA O'Donnell DE 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,111(1):10-19
The presence of obesity in COPD appears not to be a disadvantage with respect to dyspnea and weight-supported cycle exercise performance. We hypothesized that one explanation for this might be that the volume-reducing effects of obesity convey mechanical and respiratory muscle function advantages. Twelve obese chronic obstructive pulmonary disease (COPD) (OB) [forced expiratory volume in 1 s (FEV(1)) = 60%predicted; body mass index (BMI) = 32 ± 1 kg/m(2); mean ± SD] and 12 age-matched, normal-weight COPD (NW) (FEV(1) = 59%predicted; BMI = 23 ± 2 kg/m(2)) subjects were compared at rest and during symptom-limited constant-work-rate exercise at 75% of their maximum. Measurements included pulmonary function tests, operating lung volumes, esophageal pressure, and gastric pressure. OB vs. NW had a reduced total lung capacity (109 vs. 124%predicted; P < 0.05) and resting end-expiratory lung volume (130 vs. 158%predicted; P < 0.05). At rest, there was no difference in respiratory muscle strength but OB had greater (P < 0.05) static recoil and intra-abdominal pressures than NW. Peak ventilation, oxygen consumption, and exercise endurance times were similar in OB and NW. Pulmonary resistance fell (P < 0.05) at the onset of exercise in OB but not in NW. Resting inspiratory capacity, dyspnea/ventilation plots, and the ratio of respiratory muscle effort to tidal volume displacement were similar, as was the dynamic performance of the respiratory muscles including the diaphragm. In conclusion, the lack of increase in dyspnea and exercise intolerance in OB vs. NW could not be attributed to improvement in respiratory muscle function. Potential contributory factors included alterations in the elastic properties of the lungs, raised intra-abdominal pressures, reduced lung hyperinflation, and preserved inspiratory capacity. 相似文献
18.
Cotter JD Sleivert GG Roberts WS Febbraio MA 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2001,128(4):217-677
Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (P<0.05). They remained lower at 20 min [e.g. Tc: CON 38.4+/-0.2 (+/-S.E.), LW 37.9+/-0.1, and LC 37.8+/-0.1 degrees C; HR: 177+/-3, 163+/-3 and 167+/-3 b.p.m.), except that FBF was equivalent (P=0.10) between CON (15.5+/-1.6) and LW (13.6+/-1.0 ml.100 ml tissue(-1) x min(-1)). Subsequent power output was higher in LW (2.95+/-0.24) and LC (2.91+/-0.25) than in CON (2.52+/-0.28 W kg(-1), P=0.00, N=8), yet final Tc remained lower. Pre-cooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled. 相似文献
19.