首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present work demonstrates the screening of extracts of the rare medicinal herb Euphorbia fusiformis for antifungal activity. The main aim was to investigate its antifungal properties against Candida albicans and Cryptococcus neoformans, the causative agents of human candidiasis and cryptococcosis, respectively. Aqueous and organic solvent extracts from the leaves and rootstock of the plant were tested against the fungi by the well-in-agar method. Almost all the organic solvent extracts exhibited an inhibitory effect against C. albicans and to some extent on C. neoformans, except for the aqueous extracts, which had no effect. The combined formulations of the extracts also had better activity against C. albicans than C. neoformans. This study thus concludes by demonstrating the antifungal properties of E. fusiformis and also the potential research in identifying the active principles, which may have future therapeutic value.  相似文献   

2.
Phospholipases have only been detected in a few fungi and yeasts, in particular in Candida albicans. Secreted phospholipases are considered by some researchers to be a potential factor of virulence and pathogenicity in C. albicans. Twenty-three Cryptococcus neoformans strains were tested in order to observe phospholipase production. Twenty-two of the 23 strains tested were able to produce phospholipases, and the ratio diameter of the colony to total diameter of the colony plus zone of precipitation (Pz) ranged between 0.271 and 0.949. C. neoformans, just like C. albicans, can be divided on the basis of the Pz into different strains according to their virulence and pathogenicity. There also appeared to be a correlation between the phospholipase production and the size of the capsule in the strains isolated from AIDS patients. For this reason, further studies on C. neoformans phospholipase activity would be useful in evaluating the virulence of different strains.  相似文献   

3.
Aspergillus species can cause mycoses in human and animals. Previously, we demonstrated that A. fumigatus conidia from a human isolate inhibited apoptosis in human pneumocytes and bronchial epithelial cells. In the current study, we studied the effects of A. fumigatus conidia non-human origin and A. flavus, A. nidulans, A. niger and A. oryzae conidia on human cells apoptosis. Human pneumocytes or bronchial epithelial cells were simultaneously exposed to apoptotic inductors and aspergilli conidia. The cell cultures were analyzed by flow cytometry, immunoblotting, and examination of nuclear morphology. Similar to A. fumigatus conidia, A. flavus conidia inhibited cellular apoptosis while A. nidulans, A. niger and A. oryzae conidia did not affect apoptosis. We further studied the species specificity of conidia: there were no differences in the inhibition of apoptosis by A. fumigatus conidia from either human or bird isolates. In order to determine whether the inhibition of apoptosis by conidia is limited to certain strains, the effect on human cell apoptosis of different A. fumigatus human clinical isolates and A. fumigatus of environmental origin was evaluated. All A. fumigatus isolates inhibited apoptosis; an anti-apoptotic factor was released by conidia. For TNF-induced apoptosis, the anti-apoptotic effect of conidia of all isolates was found to be associated with a reduction of caspase-3 in human cells. The results suggest that suppression of apoptosis may play a role in reducing the efficacy of host defense mechanisms during infection with Aspergillus species. F. Féménia and D. Huet made an equal contribution to this work.  相似文献   

4.
We previously demonstrated that conidia from Aspergillus fumigatus incubated with menadione and paraquat increases activity and expression of cyanide-insensitive alternative oxidase (AOX). Here, we employed the RNA silencing technique in A. fumigatus using the vector pALB1/aoxAf in order to down-regulate the aox gene. Positive transformants for aox gene silencing of A. fumigatus were more susceptible both to an imposed in vitro oxidative stress condition and to macrophages killing, suggesting that AOX is required for the A. fumigatus pathogenicity, mainly for the survival of the fungus conidia during host infection and resistance to reactive oxygen species generated by macrophages.  相似文献   

5.
The basis for resistance of yeast form of Histoplasma capsulatum to antifungal activity of human neutrophils was studied. In limiting dilution assays and short term coculture assays human neutrophils were ineffective in killing H. capsulatum whereas Candida albicans was readily killed. By contrast, in a cell free hydrogen peroxide-peroxidase-halide system H. capsulatum was as sensitive to killing as C. albicans. Moreover, lysate of human neutrophils effectively substituted for horse-radish peroxidase in a cell free system for killing H. capsulatum. H. capsulatum elicited significant products of the oxidative burst in human neutrophils as detected by luminol-enhanced chemiluminescence. However, the response was two-fold less (p<0.05) than that induced by C. albicans. Transmission electron microscopy studies showed that phagosome-lysosome fusion took place when neutrophils phagocytosed C. albicans or H. capsulatum. Taken together, these findings indicate that, even though H. capsulatum elicits an oxidative burst and phagosome-lysosome fusion within the phagosome, it is capable of evading damage in short term assays.Abbreviations CFU colony forming units - PMN polymorphonuclear neutrophil - CTCM complete tissue culture medium - CL chemiluminescence - HPO horseradish peroxidase - P-L lysosomal peroxidase positive material  相似文献   

6.
The ability of conidia of the human pathogenic fungus Aspergillus fumigatus to kill larvae of the insect Galleria mellonella was investigated. Conidia at different stages of the germination process displayed variations in their virulence as measured using the Galleria infection model. Non-germinating (‘resting’) conidia were avirulent except when an inoculation density of 1 × 107 conidia per insect was used. Conidia that had been induced to commence the germination process by pre-culturing in growth medium for 3 h were capable of killing larvae at densities of 1 × 106 and 1 × 107 per insect. An inoculation density of 1 × 105 conidia per insect remained avirulent. Conidia in the outgrowth phase of germination (characterised as the formation of a germ tube) were the most virulent and were capable of killing 100% of larvae after 5 or 24 h when 1 × 107 or 1 × 106 conidia, that had been allowed to germinate for 24 h, were used. Examination of the response of insect haemocytes to conidia at different stages of the germination process established that haemocytes could engulf non-germinating conidia and those in the early stages of the germination process but that conidia, which had reached the outgrowth stages of germination were not phagocytosed. The results presented here indicate that haemocytes of G. mellonella are capable of phagocytosing A. fumigatus conidia less than 3.0 μm in diameter but that conidia greater than this are too large to be engulfed. The virulence of A. fumigatus in G. mellonella larvae can be ascertained within 60–90 h if infection densities of 1 × 106 or 1 × 107 activated conidia (pre-incubated for 2–3 h) per insect are employed.  相似文献   

7.
Vidotto  Valerio  Defina  Nicola  Pugliese  Agostino  Aoki  Shigeji  Nakamura  Kenjrou  Takeo  Kanjj 《Mycopathologia》2003,156(3):171-176
Melanin synthesis in Cryptococcus neoformans, catalyzed by phenoloxidase activity, is one of the oldest virulence factors known. However, until now, the relationship between melanin production in C. neoformans and its virulence has been poorly understood. Among different chemical compounds only Fe3+ and Cu2+ cations enhance the phenoloxidase activity in C. neoformans. A few reports in the literature describe the influence of different cations on C. neoformans phenoloxidase activity, excluding iron [1–3]. In this study, 13 C. neoformans strains isolated from AIDS patients and 7 from bird droppings (B.D.), were examined in order to clarify the effect of different K+ concentrations on phenoloxidase activity. A new solid and liquid caffeic acid minimal synthetic medium (MSM-CAF) containing only caffeic acid and ferric citrate with different potassium concentrations was used to evaluate C. neoformans phenoloxidase activity. In the MSM-CAF solid medium the degree of brown pigmentation on the agar plates was read on days 1, 2 and 3 of incubation, and the pigmentation of the C. neoformans strains was classed into 5 categories. The brown pigment of the liquid MSM-CAF test tubes were checked after 24 hours of incubation by measuring the optical density (O.D.) at 480 nm. Three C. neoformans AIDS and B.D. strains, randomlychosen, were tested for phenoloxidase activity, according to the modified protocols of Polachecket al., Torres-Guerrero et al. and Rhodes [2–4]. According to the results obtained, it has been observed that K+ does not activate the phenoloxidase activity in the C. neoformans AIDS and B.D. strains. In particular, with an increase in potassium concentrations in the MSM-CAF solid and liquid medium, there was a corresponding inhibition of the phenoloxidase activity on both the C. neoformans AIDS and B.D. strains.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
A toxicological study of an axenic cell line of novel species Chattonella ovata Y. Hara et Chihara (Raphidophyceae) revealed that cultured species of sea bream (Pagrus major), horse mackerel (Trachurus japonicus), and yellowtail (Seriola quinqueradiata) were killed by 4.1–6.8 × 103, 5.4 × 103, and 2.8 × 103 cells/mL, respectively. The sensitivity of the gill lamellae to C. ovata differed among the fish species tested. This finding revealed that C. ovata was highly toxic to the cultured fish. Histological examination showed that edema and hyperplasia of the secondary gill lamellae of red sea bream and horse mackerel occurred when exposed to, or killed by C. ovata, whereas severe damage in the gill lamellae was not observed in yellowtail. Chattonella produced high amounts of superoxide anion radicals and hydrogen peroxide, possibly responsible for the fish death observed. Based on the results of this study and occurrence of a red tide by this organism in China in 2001, we consider this organism to be one of the harmful algae in coastal waters. This is the first report demonstrating that C. ovata is highly toxic to fish, and that it produces superoxide and hydrogen peroxide.  相似文献   

9.
Aspergillus fumigatus is an important pathogen of the immunocompromised host. Previously, it was shown that the polyketide synthase encoded by the pksP (alb1) gene represents a virulence determinant. pksP is part of a gene cluster involved in dihydroxynaphthalene (DHN)-like melanin biosynthesis. Because a putative laccase-encoding gene (abr2) is also part of the cluster and a laccase was found to represent a virulence factor in Cryptococcus neoformans, here, the Abr2 laccase was characterised. Deletion of the abr2 gene changed the gray-green conidial pigment to a brown color and the ornamentation of conidia was reduced compared with wild-type conidia. In contrast to the white pksP mutant, the susceptibility of the Δabr2 mutant against reactive oxygen species (ROS) was not increased, suggesting that the intermediate of DHN-like melanin produced up to the step catalysed by Abr2 already possesses ROS scavenging activity. In an intranasal mouse infection model, the Δabr2 mutant strain showed no reduction in virulence compared with the wild type. In the Δabr2 mutant, overall laccase activity was reduced only during sporulation, but not during vegetative growth. An abr2p-lacZ gene fusion was expressed during sporulation, but not during vegetative growth confirming the pattern of laccase activity due to Abr2.  相似文献   

10.
Selected strains of Candida albicans were examined to reveal the surface antigenicity and biochemical nature of major cell wall proteins that also were shown to serve as cellular adhesins on human buccal epithelial cells. Confirmation of the adhesive properties of these cells was made by scanning electron microscopy and immunofluorescence microscopy. Particular attention was directed at the clinical isolate KM-302. By means of indirect immunofluorescence staining, the KM-302 blastoconidia absorbed rabbit anti-C. albicans ATCC-32354 serum, revealing specific localization of surface antigens on germ tubes and pseudohyphae. Extracellular polymeric material and the cell wall extract of C. albicans KM-302 blastoconidia were found to contain a major surface antigen of 49 kDa that exhibited 42% adhesion inhibition in vitro. Of considerable significance is that immunogold localization by electron microscopy showed the antigen to be almost exclusively cell wall bound. This major antigen, identified in affinity and gel filtration chromatography fractions, was composed of 4% carbohydrate and 95.7% protein and had an isoelectric point of 6.1. The major antigen also showed a high level of similarity with that of C. albicans strain SC-5314 inasmuch as the major antigen of that strain had carbohydrate and protein compositions of 4 and 95.5%, respectively. Both of these strains also possessed the same percent of adhesion inhibition of human buccal epithelial cells.Abbreviations BECs buccal epithelial cells - CWE cell wall extract - EPP extracellular polymers and proteins - FITC fluorescein isothiocyanate - mAg major antigen - OD 600 optical density at 600 nm - PBS phosphate buffered saline - TEM transmission electron microscopy - YNB yeast nitrogen base  相似文献   

11.
Candida albicans and C. tropicalis obtained from whole saliva of patients presenting signs of oral candidosis were assayed for quantification of colony forming units, exoenzyme activity (phospholipase and proteinase) and antifungal drug sensitivity (amphotericin B, fluconazole and itraconazole) by the reference method of the Clinical and Laboratory Standards Institute. The number of colony forming units per milliliter varied according to the Candida species involved and whether a single or mixed infection was present. Proteinase activity was observed in both Calbicans and Ctropicalis, but phospholipase activity was noted only in Calbicans. In vitro resistance to antifungals was verified in both species, but Ctropicalis appears to be more resistant to the tested antifungals than Calbicans.  相似文献   

12.
Aspergillus fumigatus is an opportunistic fungal pathogen that causes invasive aspergillosis, a usually fatal infection. The disease has risen in prominence in recent years due to the increasing numbers of severely immunocompromised patients becoming infected. The fungus is ubiquitous in the environment, producing large numbers of conidia that are dispersed in the air. Humans inhale numerous conidia everyday, but infections are not seen in healthy individuals. As inhalation of conidia is the main route of infection, considerable efforts are required to prevent infection in susceptible patients. This review summarises the current knowledge on airborne concentrations of A. fumigatus conidia, their background levels in outdoor air and seasonal distribution patterns. New and established methods of air sampling for airborne A. fumigatus conidia are discussed. Common environmental sources of the fungus are reviewed, including its presence in compost heaps. Finally, the lack of stringent guidelines on the monitoring and control of airborne A. fumigatus concentrations in hospitals is discussed.  相似文献   

13.
Cortisone (CA) or cyclophosphamide (Cy) treatment of mice was used to investigate the relative contributions of pulmonary alveolar macrophages (PAM) and inflammatory neutrophils (PMN) in the initial defense against intratracheal challenge (IT) with Candida albicans. Mice treated with either CA or Cy were susceptible to IT challenge with 10–100 x less C. albicans than were untreated mice. Untreated mice rapidly eliminated C. albicans from their lungs with the majority of the organisms being cleared within three hours of challenge. Mice treated with CA initially cleared some of the C. albicans but were unable to clear all the C. albicans as did the untreated mice. Mice treated with Cy were unable to clear C. albicans from their lungs. Candida albicans did not disseminate from the lungs of untreated mice, while in both of the treated groups, C. albicans disseminated to the liver, spleen, brain and kidneys, rapidly killing the treated hosts. Analysis of the changes in cells in lung lavage fluids collected at various times after C. albicans challenge, revealed that large numbers of PMN accumulated in the lungs of both untreated and CA-treated mice, whereas PMN were virtually undetectable in lavage fluids from Cy-treated mice. Resident PAM from untreated mice were able to kill approximately 70 % of 105 C. albicans in a 3 hr in vitro killing assay. By contrast, at similar effector: target ratios, resident PAM from Cy-treated mice killed only about 20% of the inoculum and resident PAM from CA-treated mice were unable to kill C. albicans. PMNs from both untreated and CA-treated mice killed approximately 70% of 105 C. albicans in vitro. The data indicates that both PAM and PMN were critical to the initial clearance of C. albicans from pulmonary tissue. The accumulation of PMN in the lungs appeared to be required for the complete clearance of C. albicans from the lungs yet was not sufficient to inhibit dissemination of C. albicans from the lungs in CA-treated mice. The presence of PAM with in vitro candidacidal abilities appeared to be required for both the clearance of C. albicans and inhibition of dissemination of C. albicans from the lungs. Compromise of either PAM or PMN function can lead to increased pulmonary susceptibility to C. albicans.  相似文献   

14.
One hundred and six strains ofA. fumigatus were isolated from 21 sawmills in Sweden, and 73 of these strains were examined for production of fumitremorgen B and verruculogen (tremorgenic mycotoxins) on YES-medium using thin layer chromatography (TLC). Twenty-three strains (32%) were tremorgen producers and 50 strains (68%) were non-producers. Tremorgenic mycotoxins were detected in conidia of sevenA. fumigatus strains. The amount of toxin varied between 0.6–8.0 µg/108 conidia (mean value 2.3 µg/108 conidia, equivalent with 0.18%). No production of the mycotoxin gliotoxin was detected in 6 strains ofA. fumigatus. No tremorgens were detected during mould growth on wood substrates, in spite of the use of different wood species (Scots pine,Pinus sylvestris; Norway spruce,Picea abies and birch,Betula spp.), dried versus non-dried wood, bark (pine), leached wood, and wood after various sterilization methods.  相似文献   

15.
Candida albicans is an opportunistic fungal pathogen with comparably high respiratory activity. Thus, we established a viability test based on 2,6-dichlorophenolindophenol (DCIP), a membrane-permeable electron transfer agent. NADH dehydrogenases catalyze the reduction of DCIP by NADH, and the enzymatic activity can be determined either electrochemically via oxidation reactions of DCIP or photometrically. Among the specific respiratory chain inhibitors, only the complex I inhibitor rotenone decreased the DCIP signal from C. albicans, leaving residual activity of approximately 30%. Thus, the DCIP-reducing activity of C. albicans was largely dependent on complex I activity. C. albicans is closely related to the complex I-negative yeast Saccharomyces cerevisiae, which had previously been used in DCIP viability assays. Via comparative studies, in which we included the pathogenic complex I-negative yeast Candida glabrata, we could define assay conditions that allow a distinction of complex I-negative and -positive organisms. Basal levels of DCIP turnover by S. cerevisiae and C. glabrata were only 30% of those obtained from C. albicans but could be increased to the C. albicans level by adding glucose. No significant increases were observed with galactose. DCIP reduction rates from C. albicans were not further increased by any carbon source.  相似文献   

16.
Exposure to Aspergillus fumigatus is linked with respiratory diseases such as asthma, invasive aspergillosis, hypersensitivity pneumonitis, and allergic bronchopulmonary aspergillosis. Molecular methods using quantitative PCR (qPCR) offer advantages over culture and optical methods for estimating human exposures to microbiological agents such as fungi. We describe an assay that uses lyticase to digest A. fumigatus conidia followed by TaqMan™ qPCR to quantify released DNA. This method will allow analysis of airborne A. fumigatus samples collected over extended time periods and provide a more representative assessment of chronic exposure. The method was optimized for environmental samples and incorporates: single tube sample preparation to reduce sample loss, maintain simplicity, and avoid contamination; hot start amplification to reduce non-specific primer/probe annealing; and uracil-N-glycosylase to prevent carryover contamination. An A. fumigatus internal standard was developed and used to detect PCR inhibitors potentially found in air samples. The assay detected fewer than 10 A. fumigatus conidia per qPCR reaction and quantified conidia over a 4−log10 range with high linearity (R 2 > 0.99) and low variability among replicate standards (CV=2.0%) in less than 4 h. The sensitivity and linearity of qPCR for conidia deposited on filters was equivalent to conidia calibration standards. A. fumigatus DNA from 8 isolates was consistently quantified using this method, while non-specific DNA from 14 common environmental fungi, including 6 other Aspergillus species, was not detected. This method provides a means of analyzing long term air samples collected on filters which may enable investigators to correlate airborne environmental A. fumigatus conidia concentrations with adverse health effects.  相似文献   

17.
The greater wax moth Galleria mellonella has been widely used as a heterologous host for a number of fungal pathogens including Candida albicans and Cryptococcus neoformans. A positive correlation in pathogenicity of these yeasts in this insect model and animal models has been observed. However, very few studies have evaluated the possibility of applying this heterologous insect model to investigate virulence traits of the filamentous fungal pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. Here, we have examined the impact of mutations in genes involved in melanin biosynthesis on the pathogenicity of A. fumigatus in the G. mellonella model. Melanization in A. fumigatus confers bluish-grey color to conidia and is a known virulence factor in mammal models. Surprisingly, conidial color mutants in B5233 background that have deletions in the defined six-gene cluster required for DHN-melanin biosynthesis caused enhanced insect mortality compared to the parent strain. To further examine and confirm the relationship between melanization defects and enhanced virulence in the wax moth model, we performed random insertional mutagenesis in the Af293 genetic background to isolate mutants producing altered conidia colors. Strains producing conidia of previously identified colors and of novel colors were isolated. Interestingly, these color mutants displayed a higher level of pathogenicity in the insect model compared to the wild type. Although some of the more virulent color mutants showed increased resistance to hydrogen peroxide, overall phenotypic characterizations including secondary metabolite production, metalloproteinase activity, and germination rate did not reveal a general mechanism accountable for the enhanced virulence of these color mutants observed in the insect model. Our observations indicate instead, that exacerbated immune response of the wax moth induced by increased exposure of PAMPs (pathogen-associated molecular patterns) may cause self-damage that results in increased mortality of larvae infected with the color mutants. The current study underscores the limitations of using this insect model for inferring the pathogenic potential of A. fumigatus strains in mammals, but also points to the importance of understanding the innate immunity of the insect host in providing insights into the pathogenicity level of different fungal strains in this model. Additionally, our observations that melanization defective color mutants demonstrate increased virulence in the insect wax moth, suggest the potential of using melanization defective mutants of native insect fungal pathogens in the biological control of insect populations.  相似文献   

18.
Flowers from two Eucalyptus camaldulensis trees in the Qutur area and one tree from the Tanta area yielded three isolates of Cryptococcus neoformans var. gattii. Pigeon and sparrow droppings were also investigated for the occurrence of C. neoformans within the study area. Ninety five isolates of the neoformans variety of C. neoformans were recovered from 550 samples of avian droppings. This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
We investigated phagocytosis and intracellular killing of clinical and environmental isolates of Aspergillus spp. by human monocyte-derived macrophages (MDMs). Serial pathogens such as Aspergillus fumigatus, Aspergillus flavus and Aspergillus terreus were examined with a microbiological assay. Phagocytosis for resting conidia of Aspergillus spp. was similar for all isolates tested. During 30 min of incubation phagocytosis ranged from 49.9% to 85.5% for clinical isolates and from 40.3% to 87.1% for environmental isolates. MDMs killed A. fumigatus, A. flavus and A. terreus conidia after ingestion for 120 min, as shown by a decrease in colony forming units (cfu) count of intracellular fungi. The killing index for all isolates of Aspergillus spp., ranged from 12.1 ± 1.1% to 90.3 ± 10.4%; isolate-dependent (P < 0.01) differences against the fungicidal action of MDMs were observed. In conclusion, significant differences were noted for killing indices between several strains of Aspergillus spp. whereas phagocytosis was similar for all isolates tested in vitro. No differences were observed within environmental and clinical isolates.  相似文献   

20.
Phospholipases are important pathogenicity determinants inCandida albicans. They play a significant role in damaging cell membranes and invading host cells. High phospholipase production is correlated with an increased ability of adherence and a higher mortality rate in animal models. By means of an egg yolk-containing agar and thePz (= phospholipase activity zone) value according to Price, the present study investigated phospholipase production in 170 strains ofC. albicans. At an incubation temperature of 37 °C,Pz values ranged from 0.395 to 1; no clear relationship was found between clinical origin of the isolates and severity of the disease. In addition toC. albicans, a total of 110 strains of 16 other yeast species were investigated for possible phospholipase production. Only yeasts of the speciesRhodotorula rubra showed phospholipase activity, with mean values exceeding those observed inC. albicans. This result was confirmed by an assay using sterile culture filtrates and phosphatidyl-[3H-methyl]-choline-dipalmitoyl as a substrate. SinceRh. rubra has only rarely been demonstrated as a pathogen in humans, we believe that factors such as reduced growth at 37 °C, absence of dimorphism and low ability of adherence lessen the importance of high phospholipase activity inRh.rubra as a pathogenicity determinant. Therefore, potential virulence factors should always be considered in the context of the whole spectrum of pathogenic determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号