首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cardiovascular endothelial barrier dysfunction is associated with a number of cardiovascular diseases. This study aims to investigate the role of platelet endothelial cell adhesion molecule‐1 (PECAM1) in the maintenance of the vascular endothelial barrier integrate. Human umbilical vein endothelial cells (HUVECs) were cultured into monolayers using as an in vitro model to assess the endothelial barrier function. Knockdown of the gene of PECAM1 markedly reduced the transendothelial resistance and increased the permeability of the HUVEC monolayers. From the wild HUVECs, we detected a complex of PECAM1, claudin1, occluding and endothelial cell selective adhesion molecule (ESAM); such a complex was not detected in the PECAM1‐deficient HUVECs. Knockdown of either claudin1, or occludin, or ESAM, did not affect the formation of the tight junction (TJ) complex. Exposure to recombinant interleukin (IL)‐13 inhibited the expression of PECAM1 and down‐regulated the HUVEC monolayer barrier function. PECAM1 plays an important role in the formation of TJ complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Although angiogenesis is viewed as a fundamental component of inflammatory bowel disease (IBD) pathogenesis, we presently lack a thorough knowledge of the cell type(s) involved in its induction and maintenance in the inflamed intestinal mucosa. This study aimed to determine whether platelet (PLT) adhesion to inflamed intestinal endothelial cells of human origin may favour angiogenesis. Unstimulated or thrombin‐activated human PLT were overlaid on resting or tumour necrosis factor (TNF)‐α‐treated human intestinal microvascular endothelial cells (HIMEC), in the presence or absence of blocking antibodies to either vascular cell adhesion molecule (VCAM)‐1, intercellular adhesion molecule (ICAM)‐1, integrin αvβ3, tissue factor (TF) or fractalkine (FKN). PLT adhesion to HIMEC was evaluated by fluorescence microscopy, and release of angiogenic factors (VEGF and soluble CD40L) was measured by ELISA. A matrigel tubule formation assay was used to estimate PLT capacity to induce angiogenesis after co‐culturing with HIMEC. TNF‐α up‐regulated ICAM‐1, αvβ3 and FKN expression on HIMEC. When thrombin‐activated PLT were co‐cultured with unstimulated HIMEC, PLT adhesion increased significantly, and this response was further enhanced by HIMEC activation with TNF‐α. PLT adhesion to HIMEC was VCAM‐1 and TF independent but ICAM‐1, FKN and integrin αvβ3 dependent. VEGF and sCD40L were undetectable in HIMEC cultures either before or after TNF‐α stimulation. By contrast, VEGF and sCD40L release significantly increased when resting or activated PLT were co‐cultured with TNF‐α‐pre‐treated HIMEC. These effects were much more pronounced when PLT were derived from IBD patients. Importantly, thrombin‐activated PLT promoted tubule formation in HIMEC, a functional estimate of their angiogenic potential. In conclusion, PLT adhesion to TNF‐α‐pre‐treated HIMEC is mediated by ICAM‐1, FKN and αvβ3, and is associated with VEGF and sCD40L release. These findings suggest that inflamed HIMEC may recruit PLT which, upon release of pro‐angiogenic factors, actively contribute to inflammation‐induced angiogenesis.  相似文献   

5.
H2S is the third endogenous gaseous mediator, after nitric oxide and carbon monoxide, possessing pleiotropic effects, including cytoprotection and anti‐inflammatory action. We analyzed, in an in vitro model entailing monocyte adhesion to an endothelial monolayer, the changes induced by H2S on various potential targets, including cytokines, chemokines, and proteases, playing a crucial role in inflammation and cell adhesion. Results show that H2S prevents the increase in monocyte adhesion induced by tumor necrosis factor‐α (TNF‐α). Under these conditions, downregulation of monocyte chemoattractant protein‐1 (MCP‐1), chemokine C‐C motif receptor 2, and increase of cluster of differentiation 36 could be detected in monocytes. In endothelial cells, H2S treatment reduces the increase in MCP‐1, inter‐cellular adhesion molecule‐1, vascular cell adhesion molecule‐1, and of a disintegrin and metalloproteinase metallopeptidase domain 17 (ADAM17), both at the gene expression and protein levels. Cystathionine γ‐lyase and 3‐mercaptopyruvate sulfurtransferase, the major H2S forming enzymes, are downregulated in endothelial cells. In addition, H2S significantly reduces activation of ADAM17 by PMA in endothelial cells, with consequent reduction of both ADAM17‐dependent TNF‐α ectodomain shedding and MCP‐1 release. In conclusion, H2S is able to prevent endothelial activation by hampering endothelial activation, triggered by TNF‐α. The mechanism of this protective effect is mainly mediated by down‐modulation of ADAM17‐dependent TNF‐converting enzyme (TACE) activity with consequent inhibition of soluble TNF‐α shedding and its relevant MCP‐1 release in the medium. These results are discussed in the light of the potential protective role of H2S in pro‐inflammatory and pro‐atherogenic processes, such as chronic renal failure. J. Cell. Biochem. 114: 1536–1548, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Platelet endothelial cell adhesion molecule 1 (PECAM‐1) is an adhesion and signaling receptor that is expressed on endothelial and hematopoietic cells and plays important roles in angiogenesis, vascular permeability, and regulation of cellular responsiveness. To better understanding the tissue specificity of PECAM‐1 functions, we generated mice in which PECAM1, the gene encoding PECAM‐1, could be conditionally knocked out. A targeting construct was created that contains loxP sites flanking PECAM1 exons 1 and 2 and a neomycin resistance gene flanked by flippase recognition target (FRT) sites that was positioned upstream of the 3′ loxP site. The targeting construct was electroporated into C57BL/6 embryonic stem (ES) cells, and correctly targeted ES cells were injected into C57BL/6 blastocysts, which were implanted into pseudo‐pregnant females. Resulting chimeric animals were bred with transgenic mice expressing Flippase 1 (FLP1) to remove the FRT‐flanked neomycin resistance gene and mice heterozygous for the floxed PECAM1 allele were bred with each other to obtain homozygous PECAM1 flox/flox offspring, which expressed PECAM‐1 at normal levels and had no overt phenotype. PECAM1 flox/flox mice were bred with mice expressing Cre recombinase under the control of the SRY‐box containing gene 2 (Sox2Cre) promoter to delete the floxed PECAM1 allele in offspring (Sox2Cre;PECAM1 del/WT), which were crossbred to generate Sox2Cre; PECAM1 del/del offspring. Sox2Cre; PECAM1 del/del mice recapitulated the phenotype of conventional global PECAM‐1 knockout mice. PECAM1 flox/flox mice will be useful for studying distinct roles of PECAM‐1 in tissue specific contexts and to gain insights into the roles that PECAM‐1 plays in blood and vascular cell function.  相似文献   

7.
Little is known about how adhesion molecules on APCs accumulate at immunological synapses. We show here that ICAM‐1 on APCs is continuously internalized and rapidly recycled back to the interface after antigen‐priming T‐cell contact. The internalization rate is high in APCs, including Raji B cells and dendritic cells, but low in endothelial cells. Internalization is significantly reduced by inhibitors of Na+/H+ exchangers (NHEs), suggesting that members of the NHE‐family regulate this process. Once internalized, ICAM‐1 is co‐localized with MHC class II in the polarized recycling compartment. Surprisingly, not only ICAM‐1, but also MHC class II, is targeted to the immunological synapse through LFA‐1‐dependent adhesion. Cytosolic ICAM‐1 is highly mobile and forms a tubular structure. Inhibitors of microtubule or actin polymerization can reduce ICAM‐1 mobility, and thereby block accumulation at immunological synapses. Membrane ICAM‐1 also moves to the T‐cell contact zone, presumably through an active, cytoskeleton‐dependent mechanism. Collectively, these results demonstrate that ICAM‐1 can be transported to the immunological synapse through the recycling compartment. Furthermore, the high‐affinity state of LFA‐1 on T cells is critical to induce targeted movements of both ICAM‐1 and MHC class II to the immunological synapse on APCs. J. Cell. Biochem. 111: 1125–1137, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
There is evidence that angiotensin II (Ang II) may impair the functions of endothelial progenitor cells (EPCs). It was revealed that DJ‐1 could resist oxidative stress. In this study, we investigated whether DJ‐1 could protect EPCs against Ang II‐induced cell damage. The proliferation and migration of EPCs were strongly reduced in the Ang II group and were increased by overexpression of DJ‐1. Western blotting indicated that the increased expression of the senescence marker β‐galactosidase and decreased expression of adhesion molecules (ICAM‐1, VCAM‐1) induced by Ang II were reversed after Ad‐DJ‐1 transfection. The reduced angiogenic capacity of EPCs caused by Ang II was also improved after Ad‐DJ‐1 transfection. Moreover, Ang II significantly increased the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and inflammatory cytokines (TNF‐α and IL‐1β), reduced the levels of superoxide dismutase (SOD), glutathione (GSH), and these were reversed by Ad‐DJ‐1 transfection. Expression of peroxisome proliferator‐activated receptor‐γ (PPARγ) and heme oxygenase (HO‐1) was increased by DJ‐1. Therefore, HO‐1 siRNA were constructed and transfected into EPCs, and the results showed that HO‐1 siRNA transfection inhibited the effects of DJ‐1 on EPC function. Thus, our study implies that DJ‐1 may protect EPCs against Ang II‐induced dysfunction by activating the PPARγ/HO‐1. J. Cell. Biochem. 119: 392–400, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

9.
Exposure of human endothelial progenitor cells (EPCs) to tumor necrosis factor‐α (TNF‐α) reduced their number and biological activity. Yet, signal transduction events linked to TNF‐α action are still poorly understood. To address this issue, we examined the possible effect of fasudil and Y27632, two inhibitors of Rho kinase pathway, which is involved in endothelial dysfunction, atherosclerosis, and in‐ flammation. Results demonstrated that incubation with fasudil starting from 50 μM but not Y27632 determined a dose‐dependent improvement of EPC number during exposure to TNF‐α (P < 0.05 vs. TNF‐α alone). Analysis of the signal transduction pathway activated by TNF‐α revealed that the increased expression of p‐p38 was not significantly altered by fasudil. Instead, fasudil blocked the TNF‐α induced phosphorylation of Erk1/2 (P < 0.05 vs. TNF‐α) as well as the inhibitor of Erk1/2‐specific phosphorylated form, i.e., PD98059 (P < 0.05 vs. TNF‐α). These results were confirmed by analysis of these kinases by confocal microscopy. Finally, 2D‐DIGE and MALDI‐TOF/TOF analysis of EPCs treated with fasudil revealed increased expression levels of an actin‐related protein and an adenylyl cyclase associated protein and decreased expression levels of proteins related to radical scavenger and nucleotide metabolism. These findings suggest that fasudil positively affects EPC number and that other major signals might take part to this complex pathway. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:351–360, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20345  相似文献   

10.
To investigate the pharmacological mechanism of the traditional Chinese medicine, Pulsatilla decoction (PD), the levels of nitric oxide (NO), endothelin‐1 (ET‐1), tumor necrosis factor‐α (TNF‐α), and interleukin‐1α (IL‐1α) secreted by cultured rat intestinal microvascular endothelial cells (RIMECs) were determined after treatment with PD and its seven active ingredients, namely anemoside B4, anemonin, berberine, jatrorrhizine, palmatine, aesculin, and esculetin. RIMECs were challenged with lipopolysaccharide (LPS) at 1 µg ml?1 for 3 h and then treated with PD at 1, 5, and 10 mg ml?1 and its seven ingredients at 1, 5, and 10 µg ml?1 for 21 h, respectively. The results revealed that PD, anemonin, berberine, and esculetin inhibited the production of NO; PD, anemonin, and esculetin inhibited the secretion of ET‐1; PD, anemoside B4, berberine, jatrorrhizine, and aesculin downregulated TNF‐α expression; PD, anemoside B4, berberine, and palmatine decreased the content of IL‐1α. It showed that PD and its active ingredients could significantly inhibit the secretion of NO, ET‐1, TNF‐α, and IL‐1α in LPS‐induced RIMECs and suggested they would reduce inflammatory response via these cytokines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

13.
Interleukin (IL)‐27 is a member of IL‐6/IL‐12 family cytokines produced by antigen‐presenting cells in immune responses. IL‐27 can drive the commitment of naive T cells to a T helper type 1 (Th1) phenotype and inhibit inflammation in later phases of infection. Human bronchial epithelial cells have been shown to express IL‐27 receptor complex. In this study, we investigated the in vitro effects of IL‐27, alone or in combination with inflammatory cytokine tumor necrosis factor (TNF)‐α on the pro‐inflammatory activation of human primary bronchial epithelial cells and the underlying intracellular signaling mechanisms. IL‐27 was found to enhance intercellular adhesion molecule 1 (ICAM‐1) expression on the surface of human bronchial epithelial cells, and a synergistic effect was observed in the combined treatment of IL‐27 and TNF‐α on the expression of ICAM‐1. Although IL‐27 did not alter the basal IL‐6 secretion from bronchial epithelial cells, it could significantly augment TNF‐α‐induced IL‐6 release. These synergistic effects on the up‐regulation of ICAM‐1 and IL‐6 were partially due to the elevated expression of TNF‐α receptor (p55TNFR) induced by IL‐27. Further investigations showed that the elevation of ICAM‐1 and IL‐6 in human bronchial epithelial cells stimulated by IL‐27 and TNF‐α was differentially regulated by phosphatidylinositol 3‐OH kinase (PI3K)‐Akt, p38 mitogen‐activated protein kinase, and nuclear factor‐κB pathways. Our results therefore provide a new insight into the molecular mechanisms involved in airway inflammation. J. Cell. Physiol. 223:788–797, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Whether dendritic cell (DC) derived exosomes play a role in the progression of endothelial inflammation and atherosclerosis remains unclear. Using a transwell system and exosome release inhibitor GW4869, we demonstrated that mature DCs contributed to endothelial inflammation and exosomes were involved in the process. To further confirm this finding, we isolated exosomes from bone marrow dendritic cell (BMDC) culture medium (named DC‐exos) and stimulated human umbilical vein endothelial cell (HUVEC) with these DC‐exos. We observed that mature DC‐exos increased HUVEC inflammation through NF‐κB pathway in a manner similar to that of lipopolysaccharide. After a protein array analysis of exosomes, we identified and confirmed tumour necrosis factor (TNF)‐α on exosome membrane being the trigger of NF‐κB pathway in HUVECs. We then performed an in vivo study and found that the aorta endothelial of mice could uptake intravenously injected exosomes and was activated by these exosomes. After a period of 12 weeks of mature DC‐exos injection into ApoE?/? mice, the atherosclerotic lesions significantly increased. Our study demonstrates that mature DCs derived exosomes increase endothelial inflammation and atherosclerosis via membrane TNF‐α mediated NF‐κB pathway. This finding extends our knowledge on how DCs affect inflammation and provides a potential method to prevent endothelial inflammation and atherosclerosis.  相似文献   

15.
Orai1-dependent Ca2+ entry plays an essential role in inflammatory response through regulating T cell and macrophage activation and neutrophil infiltration. However, whether Orai1 Ca2+ entry contributes to endothelial activation, one of the early steps of vascular inflammation, remains elusive. In the present study, we observed that knockdown of Orai1 reduced, whereas overexpression of Orai1 potentiated, TNFα-induced expression of adhesion molecules such as ICAM-1 and VCAM-1 in HUVECs, and subsequently blocked adhesion of monocyte to HUVECs. In vivo, Orai1 downregulation attenuated TNFα-induced ICAM-1 and VCAM-1 expression in mouse aorta and the levels of pro-inflammatory cytokines in the serum. In addition, Orai1 knockdown also dramatically decreased the expression of pro-inflammatory cytokines and neutrophil infiltration in the lung after TNFα treatment, and thus protected lung tissue injury. Notably, among all isoforms of nuclear factor of activated T cells (NFATs), TNFα only triggered NFATc4 nuclear accumulation in HUVECs. Knockdown of Orai1 or inhibition of calcineurin prevented TNFα-induced NFATc4 nuclear translocation and reduced ICAM-1 and VCAM-1 expression in HUVECs. Overexpression of NFATc4 further enhanced ICAM-1 and VCAM-1 expression induced by TNFα. Our study demonstrates that Orai1-Ca2+-calcineurin-NFATc4 signaling is an essential inflammatory pathway required for TNFα-induced endothelial cell activation and vascular inflammation. Therefore, Orai1 may be a potential therapeutic target for treatment of inflammatory diseases.  相似文献   

16.
Inflammation plays a major role in progression of rheumatoid arthritis, a disease treated with antagonists of tumor necrosis factor‐alpha (TNF‐α) and interleukin 1β (IL‐1β). New in vitro testing systems are needed to evaluate efficacies of new anti‐inflammatory biological drugs, ideally in a patient‐specific manner. To address this need, we studied microspheroids containing 10,000 human osteoarthritic primary chondrocytes (OACs) or chondrogenically differentiated mesenchymal stem cells (MSCs), obtained from three donors. Hypothesizing that this system can recapitulate clinically observed effects of anti‐inflammatory drugs, spheroids were exposed to TNF‐α, IL‐1β, or to supernatant containing secretome from activated macrophages (MCM). The anti‐inflammatory efficacies of anti‐TNF‐α biologicals adalimumab, infliximab, and etanercept, and the anti‐IL‐1β agent anakinra were assessed in short‐term microspheroid and long‐term macrospheroid cultures (100,000 OACs). While gene and protein expressions were evaluated in microspheroids, diameters, amounts of DNA, glycosaminoglycans, and hydroxiproline were measured in macrospheroids. The tested drugs significantly decreased the inflammation induced by TNF‐α or IL‐1β. The differences in potency of anti‐TNF‐α biologicals at 24 h and 3 weeks after their addition to inflamed spheroids were comparable, showing high predictability of short‐term cultures. Moreover, the data obtained with microspheroids grown from OACs and chondrogenically differentiated MSCs were comparable, suggesting that MSCs could be used for this type of in vitro testing. We propose that in vitro gene expression measured after the first 24 h in cultures of chondrogenically differentiated MSCs can be used to determine the functionality of anti‐TNF‐α drugs in personalized and preclinical studies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1045–1058, 2018  相似文献   

17.
18.
Aims: To estimate the efficacy of specific egg yolk immunoglobulin (IgY) for the treatment of lipopolysaccharide (LPS)‐induced endotoxemia using a mouse model. Methods and Results: Specific IgY was obtained from the yolk of hens immunized with formaldehyde‐killed Escherichia coli O111 and showed a high binding activity to LPS when subjected to an ELISA. Endotoxemia was induced in mice by intraperitoneal injection of LPS at a dose of 20 mg kg?1 for measuring survival rate and 10 mg kg?1 for cytokine measurement. The survival rate of mice treated with 200 mg kg?1 specific IgY or 5 mg kg?1 dexamethasone was 70% while none of the mice in the normal saline–treated group survived more than 7 days. Specific IgY significantly (P < 0·05) decreased tumour necrosis factor‐α (TNF‐α) level and increased interleukin‐10 (IL‐10) level in the serum of endotoxemia mice. Specific IgY had less of an effect on TNF‐α than dexamthasone, while its effect on increasing IL‐10 was stronger than dexamethasone. Haematoxylin and eosin–stained sections indicated that IgY attenuated the damage to the lung and liver observed in mice with endotoxemia. Conclusions: The specific IgY increased the survival rate of mice with endotoxemia induced by LPS, down‐regulated TNF‐α and up‐regulated IL‐10 in serum and attenuated the extent of damage to the lung and liver. Significance and Impact of the Study: The specific IgY has potential for the treatment of LPS‐induced endotoxemia.  相似文献   

19.
The ability to discriminate cell adhesion molecule expression between healthy and inflamed endothelium is critical for therapeutic intervention in many diseases. This study explores the effect of laminar flow on TNFα‐induced E‐selectin surface expression levels in human umbilical vein endothelial cells (HUVECs) relative to IL‐1β‐induced expression via flow chamber assays. HUVECs grown in static culture were either directly (naïve) activated with cytokine in the presence of laminar shear or pre‐exposed to 12 h of laminar shear (shear‐conditioned) prior to simultaneous shear and cytokine activation. Naïve cells activated with cytokine in static served as control. Depending on the cell shear history, fluid shear is found to differently affect TNFα‐induced relative to IL‐1β‐induced HUVEC expression of E‐selectin. Specifically, E‐selectin surface expression by naïve HUVECs is enhanced in the 8–12 h activation time range with simultaneous exposure to shear and TNFα (shear‐TNFα) relative to TNFα static control whereas enhanced E‐selectin expression is observed in the 4–24 h range for shear‐IL‐1β treatment relative to IL‐1β static control. While exposure of HUVECs to shear preconditioning mutes shear‐TNFα‐induced E‐selectin expression, it enhances or down‐regulates shear‐IL‐1β‐induced expression dependent on the activation period. Under dual‐cytokine‐shear conditions, IL‐1β signaling dominates. Overall, a better understanding of E‐selectin expression pattern by human ECs relative to the combined interaction of cytokines, shear profile and history can help elucidate many disease pathologies. Biotechnol. Bioeng. 2013; 110: 999–1003. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Intermittent hypoxia (IH), the key property of obstructive sleep apnea (OSA), is closely associated with endothelial dysfunction. Endothelial-cell-specific molecule-1 (ESM-1, Endocan) is a novel, reported molecule linked to endothelial dysfunction. The aim of this study is to evaluate the effect of IH on ESM-1 expression and the role of ESM-1 in endothelial dysfunction. We found that serum concentration of ESM-1, inter-cellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) is significantly higher in patients with OSA than healthy volunteers (p < 0.01). The expression of ESM-1, hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) was significantly increased in human umbilical vein endothelial cells (HUVECs) by treated IH in a time-dependent manner. HIF-1α short hairpin RNA and vascular endothelial growth factor receptor (VEGFR) inhibitor inhibited the expression of ESM-1 in HUVECs. ICAM-1 and VCAM-1 expressions were significantly enhanced under IH status, accompanied by increased monocyte–endothelial cell adhesion rate ( p < 0.001). Accordingly, ESM-1 silencing decreased the expression of ICAM-1 and VCAM-1 in HUVECs, whereas ESM-1 treatment significantly enhanced ICAM-1 expression accompanied by increasing adhesion ability. ESM-1 is significantly upregulated by the HIF-1α/VEGF pathway under IH in endothelial cells, playing a critical role in enhancing adhesion between monocytes and endothelial cells, which might be a potential target for IH-induced endothelial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号