首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a new selective liquid chromatography-electrospray ionization-tandem mass spectrometry method for the identification and quantification of anandamide (AEA), an endogenous cannabinoid receptor ligand, and other bioactive fatty acid ethanolamides (FAEs) in biological samples. Detection limit (0.025 pmol for AEA and 0.1 pmol for palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)) and quantification limit (0.2 pmol for AEA and 0.4 pmol for OEA and PEA) were in the high fmol to low pmol range for all analytes. Linear correlations (r(2)=0.99) were observed in the calibration curves for standard AEA over the range of 0.025-25 pmol and for standard PEA and OEA over the range of 0.1-500 pmol. This method provides a time-saving and sensitive alternative to existing methods for the analysis of FAEs in biological samples.  相似文献   

2.
Endocannabinoids and N-acylethanolamines are lipid mediators regulating a wide range of biological functions including food intake. We investigated short-term effects of feeding rats five different dietary fats (palm oil (PO), olive oil (OA), safflower oil (LA), fish oil (FO) and arachidonic acid (AA)) on tissue levels of 2-arachidonoylglycerol, anandamide, oleoylethanolamide, palmitoylethanolamide, stearoylethanolamide, linoleoylethanolamide, eicosapentaenoylethanolamide, docosahexaenoylethanolamide and tissue fatty acid composition. The LA-diet increased linoleoylethanolamide and linoleic acid in brain, jejunum and liver. The OA-diet increased brain levels of anandamide and oleoylethanolamide (not 2-arachidonoylglycerol) without changing tissue fatty acid composition. The same diet increased oleoylethanolamide in liver. All five dietary fats decreased oleoylethanolamide in jejunum without changing levels of anandamide, suggesting that dietary fat may have an orexigenic effect. The AA-diet increased anandamide and 2-arachidonoylglycerol in jejunum without effect on liver. The FO-diet decreased liver levels of all N-acylethanolamines (except eicosapentaenoylethanolamide and docosahexaenoylethanolamide) with similar changes in precursor lipids. The AA-diet and FO-diet had no effect on N-acylethanolamines, endocannabinoids or precursor lipids in brain. All N-acylethanolamines activated PPAR-alpha. In conclusion, short-term feeding of diets resembling human diets (Mediterranean diet high in monounsaturated fat, diet high in saturated fat, or diet high in polyunsaturated fat) can affect tissue levels of endocannabinoids and N-acylethanolamines.  相似文献   

3.
A simple and rapid analytical method is described for the simultaneous quantitative analysis of three different N-acylethanolamides in human biological samples: anandamide (AEA), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA). The method is based on a new hybrid solid phase extraction-precipitation technology followed by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) analysis using d4-AEA as the internal standard. The method is linear up to 100 ng/ml with a limit of quantitation of 50 pg/ml for AEA and 100 pg/ml for OEA and PEA. Good reproducibility, accuracy, and precision were demonstrated during the method validation. Application of this new methodology to the analysis of clinical study samples is presented.  相似文献   

4.
Butyrylcholinesterase (BChE), a serine hydrolase biochemically related to the cholinergic enzyme Acetylcholinesterase (AChE), is found in many mammalian tissues, such as serum and central nervous system, but its physiological role is still unclear. BChE is an important human plasma esterase, where it has detoxifying roles. Furthermore, recent studies suggest that brain BChE can have a role in Alzheimer’s disease (AD). The endocannabinoid arachidonoylethanolamide (anandamide) and other acylethanolamides (NAEs) are almost ubiquitary molecules and are physiologically present in many tissues, including blood and brain, where they show neuroprotective and anti-inflammatory properties. This paper demonstrates that they are uncompetitive (oleoylethanolamide and palmitoylethanolamide) or non competitive (anandamide) inhibitors of BChE (Ki in the range 1.32-7.48 nM). On the contrary, NAEs are ineffective on AChE kinetic features. On the basis of the X-ray crystallographic structure of human BChE, and by using flexible docking procedures, an hypothesis on the NAE-BChE interaction is formulated by molecular modeling studies. Our results suggest that anandamide and the other acylethanolamides studied could have a role in the modulation of the physiological actions of BChE.  相似文献   

5.
In the last several years, interest has increased significantly about the endocannabinoids anandamide and 2-arachidonylglycerol, two lipid messengers that activate cannabinoid receptors. Quantification of these compounds in biological samples presents numerous technical challenges. Because of their low abundance, endocannabinoids are usually quantified by isotope dilution assays using mass spectrometry coupled to either gas chromatography or high-performance liquid chromatography. Although endocannabinoid levels in biological fluids, such as plasma and cerebrospinal fluid, can be directly determined by these techniques, the complex lipid profile of brain tissue samples mandates purification of lipid extracts before GC/MS analysis; this step is not necessary when using HPLC/MS. We have found that when silica gel chromatography is used for endocannabinoid purification, poor recovery and loss of deuterium from the internal standards lead to inaccurate estimation of endocannabinoid levels. By contrast, purification strategies using C(18) solid-phase extraction permits precise and reproducible GC/MS quantification of endocannabinoids in tissue samples.  相似文献   

6.
Fatty acid ethanolamides (FAE) represent a group of lipid signaling molecules associated with many physiological and pharmacological actions; however, low FAE tissue levels pose challenges in terms of analytical characterization. The objective was to develop a competent ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method for analysis of multiple FAE in animal and human tissue samples. Analytes were extracted using lipid-phase and solid-phase extraction procedures. Chromatographic separation was achieved using a gradient elution in 8 min. FAE were quantified by MS/MS in positive electrospray ionization mode. Linearity was shown in lower and higher FAE concentration ranges, with a limit of quantification (LOQ) ≤0.2 ng/ml for FAE including alpha-linolenoylethanolamide (ALEA), arachidonoylethanolamide (AEA), docosahexaenoylethanolamide (DHEA), linoleoylethanolamide (LEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Accuracy was shown to be between 92.4% and 108.8%, and precision was <10% for all FAE species. In sum, this sensitive and reproducible method can be used to simultaneously determine multiple FAE at low concentrations in order to facilitate further study of the role of FAE on physiological state.  相似文献   

7.
The endocannabinoid anandamide (AEA) is shown to induce apoptotic bodies formation and DNA fragmentation, hallmarks of programmed cell death, in human neuroblastoma CHP100 and lymphoma U937 cells. RNA and protein synthesis inhibitors like actinomycin D and cycloheximide reduced to one-fifth the number of apoptotic bodies induced by AEA, whereas the AEA transporter inhibitor AM404 or the AEA hydrolase inhibitor ATFMK significantly increased the number of dying cells. Furthermore, specific antagonists of cannabinoid or vanilloid receptors potentiated or inhibited cell death induced by AEA, respectively. Other endocannabinoids such as 2-arachidonoylglycerol, linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide did not promote cell death under the same experimental conditions. The formation of apoptotic bodies induced by AEA was paralleled by increases in intracellular calcium (3-fold over the controls), mitochondrial uncoupling (6-fold), and cytochrome c release (3-fold). The intracellular calcium chelator EGTA-AM reduced the number of apoptotic bodies to 40% of the controls, and electrotransferred anti-cytochrome c monoclonal antibodies fully prevented apoptosis induced by AEA. Moreover, 5-lipoxygenase inhibitors 5,8,11,14-eicosatetraynoic acid and MK886, cyclooxygenase inhibitor indomethacin, caspase-3 and caspase-9 inhibitors Z-DEVD-FMK and Z-LEHD-FMK, but not nitric oxide synthase inhibitor Nomega-nitro-l-arginine methyl ester, significantly reduced the cell death-inducing effect of AEA. The data presented indicate a protective role of cannabinoid receptors against apoptosis induced by AEA via vanilloid receptors.  相似文献   

8.
Epilepsy is a highly common chronic neurological disorder, manifested in many different types, affecting ~ 1% of the worldwide human population. The molecular mechanisms of epileptogenesis have not yet been clarified, and pharmacoresistance exhibited by 30–40% of epilepsy patients remains a major obstacle in medical care. Growing evidence indicates a role of lipid signalling pathways in epileptogenesis, thus lipid signals emerge as potential biomarkers for the onset and evolving course of the epileptic disorder, as well as potential therapeutic agents and targets. For this purpose, we applied a lipidomic strategy to unravel lipid alterations in brain regions, periphery tissues and plasma that are specific for acute epileptic seizures in mice at 1 h after seizure induction by systemic kainic acid injection as compared to vehicle controls. Specifically, levels of (i) selected phospholipids and sphingomyelins, (ii) the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), and the endocannabinoid-related compounds oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), (iii) arachidonic acid (AA), (iv) selected eicosanoids, and (v) fatty acyl content of lipidome were determined in pulverized tissues from six brain regions of kainic acid induced epileptic seizure models and vehicle controls: hypothalamus, hippocampus, thalamus, striatum, cerebellum and cerebral cortex, and from peripheral organs, such as heart and lungs, and in plasma. Alterations in lipid levels after acute epileptic seizures as compared to non-seizure controls were found to be brain region- and periphery tissue-specific, including specific plasma lipid correlates, highlighting their value as marker candidates in translational research studies, and/or drug discovery and response monitoring.  相似文献   

9.
The abilities of 19 analogues of palmitoylethanolamide and two analogues of oleoylethanolamide to affect the Ca(2+) influx into human embryonic kidney cells expressing the human vanilloid receptor (hVR1-HEK293 cells) in response to anandamide (AEA) have been investigated using a FLIPR assay and a bovine serum albumin-containing assay medium. Only palmitoylethanolamide produced any effect in the absence of AEA. The ability of palmitoylethanolamide to potentiate the response to AEA was retained when the N-CH(2)CH(2)OH group was replaced by N-CH(2)CH(2)Cl,whereas replacement with N-alkyl substituents [from -H up to -(CH(2))(12)CH(3)] resulted either in a reduction or in a complete loss of this activity. The tertiary amide N-(CH(2)CH(3))(2) (19) and N-morpholino (20) analogues of palmitoylethanolamide potentiated the response to 1 microM AEA to a greater degree than the parent compound, whereas the N-(CH(3))(2) analogue was inactive. 19 and 20 produced leftward shifts in the dose-response curve for AEA activation of Ca(2+) influx into hVR1-HEK293 cells. EC(50) values for AEA to produce Ca(2+) influx into hVR1-HEK293 cells were 1.1, 1.1, 0.54 and 0.36 microM in the presence of 0, 1, 3 and 10 microM 19, respectively. The corresponding values for 20 were 1.5, 1.3, 0.77 and 0.17 microM, respectively. The compounds did not affect the dose-response curves to capsaicin. The ability of oleoylethanolamide to potentiate AEA is retained by the N-CH(2)CH(3) and N-CH(CH(3))(2) analogues (22 and 23, respectively). 22 and 23 produced a small ( approximately 25%) inhibition of the binding of [(3)H]-CP55,940 and [(3)H]-WIN 55,212-2 to CB(1) and CB(2) receptors, respectively, expressed in CHO cells. The compounds inhibited the metabolism of 2 microM [(3)H]-AEA by rat brain fatty acid amidohydrolase with IC(50) values of 5.6 and 11 microM, respectively. In contrast, 19 and 20 were without effect on either binding to CB receptors or fatty acid amidohydrolase activity. Minor reductions in the accumulation of 10 microM [(3)H]-AEA into C6 glioma cells were seen at 10 microM concentrations of 19 and 20. It is concluded that 19 and 20 selectively enhance AEA effects upon VR1 receptors without potentially confounding effects upon CB receptors or fatty acid amidohydrolase activity.  相似文献   

10.

Background

The discovery of the endocannabinoid system and of its role in the regulation of energy balance has significantly advanced our understanding of the physiopathological mechanisms leading to obesity and type 2 diabetes. New knowledge on the role of this system in humans has been acquired by measuring blood endocannabinoids. Here we explored endocannabinoids and related N-acylethanolamines in saliva and verified their changes in relation to body weight status and in response to a meal or to body weight loss.

Methodology/Principal Findings

Fasting plasma and salivary endocannabinoids and N-acylethanolamines were measured through liquid mass spectrometry in 12 normal weight and 12 obese, insulin-resistant subjects. Salivary endocannabinoids and N-acylethanolamines were evaluated in the same cohort before and after the consumption of a meal. Changes in salivary endocannabinoids and N-acylethanolamines after body weight loss were investigated in a second group of 12 obese subjects following a 12-weeks lifestyle intervention program. The levels of mRNAs coding for enzymes regulating the metabolism of endocannabinoids, N-acylethanolamines and of cannabinoid type 1 (CB1) receptor, alongside endocannabinoids and N-acylethanolamines content, were assessed in human salivary glands.The endocannabinoids 2-arachidonoylglycerol (2-AG), N-arachidonoylethanolamide (anandamide, AEA), and the N-acylethanolamines (oleoylethanolamide, OEA and palmitoylethanolamide, PEA) were quantifiable in saliva and their levels were significantly higher in obese than in normal weight subjects. Fasting salivary AEA and OEA directly correlated with BMI, waist circumference and fasting insulin. Salivary endocannabinoids and N-acylethanolamines did not change in response to a meal. CB1 receptors, ligands and enzymes were expressed in the salivary glands. Finally, a body weight loss of 5.3% obtained after a 12-weeks lifestyle program significantly decreased salivary AEA levels.

Conclusions/Significance

Endocannabinoids and N-acylethanolamines are quantifiable in saliva and their levels correlate with obesity but not with feeding status. Body weight loss significantly decreases salivary AEA, which might represent a useful biomarker in obesity.  相似文献   

11.
Cannabinoids, as a result of their ability to activate cannabinoid CB1 receptors, have been shown to possess neuroprotective properties in vivo. In vitro studies into neuroprotective effects mediated by CB1 receptors have in general used primary neuronal cultures derived from embryonic rodents. In the present study, we have investigated whether embryonic chick telencephalon primary cultures in serum-free medium are a useful alternative for such in vitro studies. The CB agonist CP 55940 reduced the cAMP response to 5 microM forskolin by 40 and 50% at concentrations of 3 nM and 30 nM, respectively. This reduction was blocked by the CB1 receptor antagonist AM251, indicating the presence of functional CB1 receptors in the cultures. Incubation of the cultures with glutamate (100 microM or 1 mM) for 1 h followed by medium change and incubation for 24 h produced a release of the cytoplasmic enzyme lactate dehydrogenase into the medium. This release was prevented by MK-801 confirming the central role of NMDA receptors in the glutamate toxicity. However, 3-30 nM CP 55940 did not produce any neuroprotection in this model regardless as to whether dibutyryl cyclic AMP was added to the culture medium. The endocannabinoid anandamide was also without effect when added either per se or together with the related N-acyl ethanolamines palmitoylethanolamide, oleoylethanolamide and stearoylethanolamide (at relative concentrations matching those seen in rat brain after excitotoxic insult). It is concluded that embryonic chick neurons in primary serum-free culture are not a useful model for the study of neuroprotective effects mediated by CB1 receptors in vitro.  相似文献   

12.
N-Acylethanolamines (NAEs) are an important family of lipid-signaling molecules. Arachidonylethanolamide (anandamide) (AEA), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) are co-produced from similar phospholipid precursors when neurons are stimulated. AEA is an endogenous agonist (endocannabinoid) for cannabinoid receptors. It binds with higher affinity to type CB1 than to type CB2 cannabinoid receptors. PEA does not bind to CB1, while the hypothesis that it reacts with putative CB2-like receptors has been questioned. OEA does not activate currently known cannabinoid receptors, but it mimics the effects of AEA and cannabinoids in reducing the fertilizing capacity of sea urchin sperm. OEA and PEA also act as entourage compounds by inhibiting the hydrolysis of AEA by fatty acid amide hydrolase. Cannabinoid receptors and/or AEA are present in mammalian reproductive organs including the testis, epididymis, prostate, ovary, uterus, sperm, preimplantation embryo and placenta, as well as prostatic and mammary carcinomas. We now report that analysis by high-performance liquid chromatography/mass spectrometry (HPLC/MS) shows the presence of AEA, PEA, and OEA in human seminal plasma, mid-cycle oviductal fluid, follicular fluid, amniotic fluid, milk, and fluids from malignant ovarian cysts. Previous studies showed that AEA-signaling via cannabinoid receptors regulates capacitation and fertilizing potential of human sperm, early embryonic development and blastocyst implantation into the uterine mucosa of rodents, as well as proliferation of human mammary and prostatic carcinomas. Current results imply that NAEs also may modulate follicular maturation and ovulation, normal and pathological ovarian function, placental and fetal physiology, lactation, infant physiology, and behavior. Collectively, these findings suggest that NAEs in human reproductive fluids may help regulate multiple physiological and pathological processes in the reproductive system, and imply that exogenous cannabinoids delivered by marijuana smoke might impact these processes. This study has potential medical and public policy ramifications because of the incidence of marijuana abuse by adolescents and adults in our society, previously documented reproductive effects of marijuana, and the ongoing debate about medicinal use of marijuana and cannabinoids.  相似文献   

13.
A method for the determination of tetrabromobisphenol A (TBBPA) in human serum utilizing solid-phase extractions (SPEs) and liquid chromatography (LC) with electrospray ionization tandem MS (MS/MS) has been developed. After purification and concentration of TBBPA using consecutive SPEs on reversed-phase and normal-phase cartridges, the serum sample was subjected to LC. TBBPA was separated on a C18 reversed-phase column by gradient elution with a mixture of water, methanol, and acetonitrile as the mobile phase, and then detected with electrospray ionization MS/MS in negative ion mode. 13C12-TBBPA was suitable as an internal standard for the reproducible determination of TBBPA in human serum samples (5 g). The method has been validated in TBBPA concentration range of 5-100 pg per g serum, and the recoveries in the concentration range were higher than 83.3%. The repeatabilities of the proposed method of non-spiked control serum (6.3 pg per g serum) and spiked serum (added 5-100 pg per g serum) were within 10.0% as relative standard deviations. The limit of quantification (LOQ) for TBBPA was 4.1 pg per g serum, which was corresponded to 0.63 fmol on column.  相似文献   

14.
To support animal studies and clinical pharmacokinetic trials, we developed and validated an automated, specific and highly sensitive LC-MS/MS method for the quantification of naltrexone and 6beta-naltrexol in the same run. In human plasma, the assay had a lower limit of quantitation of only 5pg/mL. This was of critical importance to follow naltrexone pharmacokinetics during its terminal elimination phase. The assay had the following key performance characteristics for naltrexone in human plasma: range of reliable quantification: 0.005-100ng/mL (r2>0.99), inter-day accuracy (0.03ng/mL): 103.7% and inter-day precision: 10.1%. There were no ion suppression, matrix interferences or carry-over.  相似文献   

15.
A sensitive and specific LC–MS/MS method for the quantification of the endocannabinoids and related structures anandamide, 2-arachidonoyl glycerol, 2-arachidonyl glycerol ether, O-arachidonoyl ethanolamide, dihomo-γ-linolenoyl ethanolamide, docosatetraenoyl ethanolamide, N-arachidonoyl dopamine, N-arachidonyl glycine, N-oleoyl dopamine, oleoyl ethanolamide, palmitoyl ethanolamide, and stearoyl ethanolamide in human plasma was developed and validated. Compounds were extracted using acetonitrile followed by solid-phase extraction. Separation was performed on a Xterra C8 column using gradient elution coupled to a triple-quadrupole MS. LLOQ levels ranged from 0.02 to 1.75 μg/mL, LODs ranged from 0.0002 to 0.1266 ng/mL, and accuracies were >80% (except stearoyl ethanolamide at lowest spike level) at all spike levels.  相似文献   

16.
Treatment of intact human neuroblastoma CHP100 cells with anandamide (arachidonoylethanolamide, AEA) or 2-arachidonoylglycerol (2-AG) inhibits intracellular fatty acid amide hydrolase (FAAH). This effect was not associated with covalent modifications of FAAH, since specific inhibitors of farnesyltransferase, kinases, phosphatases, glycosyltransferase or nitric oxide synthase were ineffective. Electrophoretic analysis of (33)P-labelled proteins, Western blot with anti-phosphotyrosine antibodies, and glycan analysis of cellular proteins confirmed the absence of covalent modifications of FAAH. The inhibition by AEA was paralleled by an increased arachidonate release, which was not observed upon treatment of cells with linoleoylethanolamide, palmitoylethanolamide, or oleoylethanolamide. Moreover, cell treatment with AEA or 2-AG increased the activity of cyclooxygenase and 5-lipoxygenase, and the hydro(pero)xides generated from arachidonate by lipoxygenase were shown to inhibit FAAH, with inhibition constants in the low micromolar range. Consistently, inhibitors of 5-lipoxygenase, but not those of cyclooxygenase, significantly counteracted the inhibition of FAAH by AEA or 2-AG.  相似文献   

17.
We describe a new sensitive and specific method for the quantification of serum malonate (malonic acid, MA), which could be a new biomarker for de novo lipogenesis (fatty acid synthesis). This method is based upon a stable isotope-dilution technique using LC-MS/MS. MA from 50 μl of serum was derivatized into di-(1-methyl-3-piperidinyl)malonate (DMP-MA) and quantified by LC-MS/MS using the positive electrospray ionization mode. The detection limit of the DMP-MA was approximately 4.8 fmol (500 fg) (signal-to-noise ratio = 10), which was more than 100 times more sensitive compared with that of MA by LC-MS/MS using the negative electrospray ionization mode. The relative standard deviations between sample preparations and measurements made using the present method were 4.4% and 3.2%, respectively, by one-way ANOVA. Recovery experiments were performed using 50 μl aliquots of normal human serum spiked with 9.6 pmol (1 ng) to 28.8 pmol (3 ng) of MA and were validated by orthogonal regression analysis. The results showed that the estimated amount within a 95% confidence limit was 14.1 ± 1.1 pmol, which was in complete agreement with the observed X¯0 = 15.0 ± 0.6 pmol, with a mean recovery of 96.0%. This method provides reliable and reproducible results for the quantification of MA in human serum.  相似文献   

18.

Background

Several evidences suggest that the position of palmitic acid (PA) in dietary triacylglycerol (TAG) influences different biological functions. We aimed at evaluating whether dietary fat with highly enriched (87%) PA in sn-2 position (Hsn-2 PA), by increasing PA incorporation into tissue phospholipids (PL), modifies fatty acid profile and biosynthesis of fatty acid—derived bioactive lipids, such as endocannabinoids and their congeners.

Study Design

Rats were fed for 5 weeks diets containing Hsn-2 PA or fat with PA randomly distributed in TAG with 18.8% PA in sn-2 position (Lsn-2 PA), and similar total PA concentration. Fatty acid profile in different lipid fractions, endocannabinoids and congeners were measured in intestine, liver, visceral adipose tissue, muscle and brain.

Results

Rats on Hsn-2 PA diet had lower levels of anandamide with concomitant increase of its congener palmitoylethanolamide and its precursor PA into visceral adipose tissue phospholipids. In addition, we found an increase of oleoylethanolamide, an avid PPAR alpha ligand, in liver, muscle and brain, associated to higher levels of its precursor oleic acid in liver and muscle, probably derived by elongation and further delta 9 desaturation of PA. Changes in endocannabinoids and congeners were associated to a decrease of circulating TNF alpha after LPS challenge, and to an improved feed efficiency.

Conclusions

Dietary Hsn-2 PA, by modifying endocannabinoids and congeners biosynthesis in different tissues may potentially concur in the physiological regulation of energy metabolism, brain function and body fat distribution.  相似文献   

19.
A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.  相似文献   

20.
We developed a high-performance liquid chromatography/mass spectrometry (HPLC/MS) method for the identification and quantification of anandamide, an endogenous cannabinoid substance, and other fatty acid ethanolamides (AEs) in biological samples. Using a mobile-phase system of methanol/water and gradient elution, we achieved satisfactory resolution of all major AEs, including anandamide, palmitylethanolamide (PEA), and oleylethanolamide (OEA). Electrospray-generated quasi-molecular species were used as diagnostic ions and detected by selected ion monitoring (SIM). Synthetic deuterium-labeled AEs were used as internal standards, and quantification was carried out by isotope dilution. A linear correlation (r2 = 0.99) was observed in the calibration curves for standard AEs over the range 0-0.5 nmol. Detection limits between 0.1 and 0.3 pmol per sample and quantification limits between 0.5 and 1.2 pmol per sample were obtained. The method was applied to the quantification of anandamide, PEA, and OEA in plasma prepared from rat blood collected either by cardiac puncture or by decapitation. After cardiac puncture, AE levels were in the low-nanomolar range: anandamide, 3.1 +/- 0.6 pmol/ml; PEA, 9.4 +/- 1.6 pmol/ml; OEA, 9.2 +/- 1.8 pmol/ml (mean +/- SE, n = 9). By contrast, after decapitation AEs were dramatically elevated (anandamide, 144 +/- 13 pmol/ml; PEA, 255 +/- 55 pmol/ml; OEA, 175 +/- 48 pmol/ml). Thus, disruptive procedures of blood collection may result in gross overestimates in the concentrations of circulating AEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号