首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
When challenged with the crucifer pathogen Colletotrichum higginsianum, Arabidopsis thaliana ecotype Columbia (Col-0) was colonized by the fungus within 2 to 3 days, developing brown necrotic lesions surrounded by a yellow halo. Lesions spread from the inoculation site within 3 to 4 days, and subsequently continued to expand until they covered the entire leaf. Electron microscopy confirmed that C. higginsianum is a hemibiotroph on Arabidopsis, feeding initially on living cells as a biotroph before switching to a necrotrophic mode of growth. A collection of 37 ecotypes of Arabidopsis varied in their responses to infection by C. higginsianum. The ecotype Eil-0 was highly resistant, with symptoms limited to necrotic flecking and with only very limited fungal colonization. Analyses suggested that the hypersensitive response and reactive oxygen species may be important in this defense response. Expression analyses with cDNA microarrays indicated that the defense reaction depends primarily on the jasmonic acid- and ethylene-dependent signaling pathways and, to a lesser extent, on the salicylate-dependent pathway. Crosses between the Eil-0 and Col-0 ecotypes suggested that the resistance in Eil-0 was dominant and was conferred by a single locus, which we named RCH1. RCH1 is the first resistance locus to be identified from Arabidopsis against the hemibiotrophic fungus genus Colletotrichum.  相似文献   

2.
Glycerol-3-phosphate (G3P) is an important component of carbohydrate and lipid metabolic processes. In this article, we provide evidence that G3P levels in plants are associated with defense to a hemibiotrophic fungal pathogen Colletotrichum higginsianum. Inoculation of Arabidopsis (Arabidopsis thaliana) with C. higginsianum was correlated with an increase in G3P levels and a concomitant decrease in glycerol levels in the host. Plants impaired in utilization of plastidial G3P (act1) accumulated elevated levels of pathogen-induced G3P and displayed enhanced resistance. Furthermore, overexpression of the host GLY1 gene, which encodes a G3P dehydrogenase (G3Pdh), conferred enhanced resistance. In contrast, the gly1 mutant accumulated reduced levels of G3P after pathogen inoculation and showed enhanced susceptibility to C. higginsianum. Unlike gly1, a mutation in a cytosolic isoform of G3Pdh did not alter basal resistance to C. higginsianum. Furthermore, act1 gly1 double-mutant plants were as susceptible as the gly1 plants. Increased resistance or susceptibility of act1 and gly1 plants to C. higginsianum, respectively, was not due to effects of these mutations on salicylic acid- or ethylene-mediated defense pathways. The act1 mutation restored a wild-type-like response in camalexin-deficient pad3 plants, which were hypersusceptible to C. higginsianum. These data suggest that G3P-associated resistance to C. higginsianum occurs independently or downstream of the camalexin pathway. Together, these results suggest a novel and specific link between G3P metabolism and plant defense.  相似文献   

3.
He Y  Gan S 《The Plant cell》2002,14(4):805-815
SAG101, a leaf senescence-associated gene, was cloned from an Arabidopsis leaf senescence enhancer trap line and functionally characterized. Reporter gene and RNA gel blot analyses revealed that SAG101 was not expressed until the onset of senescence in leaves. A recombinant SAG101 fusion protein overexpressed in Escherichia coli displayed acyl hydrolase activity. Antisense RNA interference in transgenic plants delayed the onset of leaf senescence for approximately 4 days. Chemically induced overexpression of SAG101 caused precocious senescence in both attached and detached leaves of transgenic Arabidopsis plants. These data suggest that SAG101 plays a significant role in leaf senescence.  相似文献   

4.
Conserved eukaryotic signaling proteins participate in development and disease in plant-pathogenic fungi. Strains with mutations in CGA1, a heterotrimeric G protein G alpha subunit gene of the maize pathogen Cochliobolus heterostrophus, are defective in several developmental pathways. Conidia from CGA1 mutants germinate as abnormal, straight-growing germ tubes that form few appressoria, and the mutants are female sterile. Nevertheless, these mutants can cause normal lesions on plants, unlike other filamentous fungal plant pathogens in which functional homologues of CGA1 are required for full virulence. Deltacga1 mutants of C. heterostrophus were less infective of several maize varieties under most conditions, but not all, as virulence was nearly normal on detached leaves. This difference could be related to the rapid senescence of detached leaves, since delaying senescence with cytokinin also had differential effects on the virulence of the wild type and the Deltacga1 mutant. In particular, detached leaves may provide a more readily available nutrient source than attached leaves. Decreased fitness of Deltacga1 as a pathogen may reflect conditions under which full virulence requires signal transduction through CGA1-mediated pathways. The virulence of these signal transduction mutants is thus affected differentially by the physiological state of the host.  相似文献   

5.
6.
Pathogenesis of nonadapted fungal pathogens is often terminated coincident with their attempted penetration into epidermal cells of nonhost plants. The genus Colletotrichum represents an economically important group of fungal plant pathogens that are amenable to molecular genetic analysis. Here, we investigated interactions between Arabidopsis and Colletotrichum to gain insights in plant and pathogen processes activating nonhost resistance responses. Three tested nonadapted Colletotrichum species differentiated melanized appressoria on Arabidopsis leaves but failed to form intracellular hyphae. Plant cells responded to Colletotrichum invasion attempts by the formation of PMR4/GSL5-dependent papillary callose. Appressorium differentiation and melanization were insufficient to trigger this localized plant cell response, but analysis of nonpathogenic C. lagenarium mutants implicates penetration-peg formation as the inductive cue. We show that Arabidopsis PEN1 syntaxin controls timely accumulation of papillary callose but is functionally dispensable for effective preinvasion (penetration) resistance in nonhost interactions. Consistent with this observation, green fluorescent protein-tagged PEN1 did not accumulate at sites of attempted penetration by either adapted or nonadapted Colletotrichum species, in contrast to the pronounced focal accumulations of PEN1 associated with entry of powdery mildews. We observed extensive reorganization of actin microfilaments leading to polar orientation of large actin bundles towards appressorial contact sites in interactions with the nonadapted Colletotrichum species. Pharmacological inhibition of actin filament function indicates a functional contribution of the actin cytoskeleton for both preinvasion resistance and papillary callose formation. Interestingly, the incidence of papilla formation at entry sites was greatly reduced in interactions with C. higginsianum isolates, indicating that this adapted pathogen may suppress preinvasion resistance at the cell periphery.  相似文献   

7.
Colletotrichum higginsianum is a fungal pathogen that infects a wide variety of cruciferous plants, causing important crop losses. We have used map-based cloning and natural variation analysis of 19 Arabidopsis ecotypes to identify a dominant resistance locus against C. higginsianum . This locus named RCH2 (for recognition of C. higginsianum ) maps in an extensive cluster of disease-resistance loci known as MRC-J in the Arabidopsis ecotype Ws-0. By analyzing natural variations within the MRC-J region, we found that alleles of RRS1 ( resistance to Ralstonia solanacearum 1 ) from susceptible ecotypes contain single nucleotide polymorphisms that may affect the encoded protein. Consistent with this finding, two susceptible mutants, rrs1-1 and rrs1-2 , were identified by screening a T-DNA-tagged mutant library for the loss of resistance to C. higginsianum . The screening identified an additional susceptible mutant ( rps4-21 ) that has a 5-bp deletion in the neighboring gene, RPS4-Ws , which is a well-characterized R gene that provides resistance to Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 ( Pst - avrRps4 ). The rps4-21 / rrs1-1 double mutant exhibited similar levels of susceptibility to C. higginsianum as the single mutants. We also found that both RRS1 and RPS4 are required for resistance to R. solanacearum and Pst-avrRps4 . Thus, RPS4-Ws and RRS1-Ws function as a dual resistance gene system that prevents infection by three distinct pathogens.  相似文献   

8.
9.
10.
Elevation of leaf auxin (indole-3-acetic acid; IAA) levels in intact plants has been consistently found to inhibit leaf expansion whereas excised leaf strips grow faster when treated with IAA. Here we test two hypothetical explanations for this difference in growth sensitivity to IAA by expanding leaf tissues in vivo versus in vitro. We asked if, in Arabidopsis, IAA-induced growth of excised leaf strips results from the wounding required to excise tissue and/or results from detachment from the plant and thus loss of some shoot or root derived growth controlling factors. We tested the effect of a range of exogenous IAA concentrations on the growth of intact attached, wounded attached, detached intact, detached wounded as well as excised leaf strips. After 24 h, the growth of intact attached, wounded attached, and detached intact leaves was inhibited by IAA concentrations as little as 1 µM in some experiments. Growth of detached wounded leaves and leaf strips was induced by IAA concentrations as low as 10 µM. Stress, in the form of high light, increased the growth response to IAA by leaf strips and reduced growth inhibition response by intact detached leaves. Endogenous free IAA content of intact attached leaves and excised leaf strips was found not to change over the course of 24 h. Together these results indicate growth induction of Arabidopsis leaf blade tissue by IAA requires both substantial wounding as well as detachment from the plant and suggests in vivo that IAA induces parallel pathways leading to growth inhibition.  相似文献   

11.
Conserved eukaryotic signaling proteins participate in development and disease in plant-pathogenic fungi. Strains with mutations in CGA1, a heterotrimeric G protein G alpha subunit gene of the maize pathogen Cochliobolus heterostrophus, are defective in several developmental pathways. Conidia from CGA1 mutants germinate as abnormal, straight-growing germ tubes that form few appressoria, and the mutants are female sterile. Nevertheless, these mutants can cause normal lesions on plants, unlike other filamentous fungal plant pathogens in which functional homologues of CGA1 are required for full virulence. Δcga1 mutants of C. heterostrophus were less infective of several maize varieties under most conditions, but not all, as virulence was nearly normal on detached leaves. This difference could be related to the rapid senescence of detached leaves, since delaying senescence with cytokinin also had differential effects on the virulence of the wild type and the Δcga1 mutant. In particular, detached leaves may provide a more readily available nutrient source than attached leaves. Decreased fitness of Δcga1 as a pathogen may reflect conditions under which full virulence requires signal transduction through CGA1-mediated pathways. The virulence of these signal transduction mutants is thus affected differentially by the physiological state of the host.  相似文献   

12.
L Fan  S Zheng    X Wang 《The Plant cell》1997,9(12):2183-2196
Membrane disruption has been proposed to be a key event in plant senescence, and phospholipase D (PLD; EC 3.1.4.4) has been thought to play an important role in membrane deterioration. We recently cloned and biochemically characterized three different PLDs from Arabidopsis. In this study, we investigated the role of the most prevalent phospholipid-hydrolyzing enzyme, PLD alpha, in membrane degradation and senescence in Arabidopsis. The expression of PLD alpha was suppressed by introducing a PLD alpha antisense cDNA fragment into Arabidopsis. When incubated with abscisic acid and ethylene, leaves detached from the PLD alpha-deficient transgenic plants showed a slower rate of senescence than did those from wild-type and transgenic control plants. The retardation of senescence was demonstrated by delayed leaf yellowing, lower ion leakage, greater photosynthetic activity, and higher content of chlorophyll and phospholipids in the PLD alpha antisense leaves than in those of the wild type. Treatment of detached leaves with abscisic acid and ethylene stimulated PLD alpha expression, as indicated by increases in PLD alpha mRNA, protein, and activity. In the absence of abscisic acid and ethylene, however, detached leaves from the PLD alpha-deficient and wild-type plants showed a similar rate of senescence. In addition, the suppression of PLD alpha did not alter natural plant growth and development. These data suggest that PLD alpha is an important mediator in phytohormone-promoted senescence in detached leaves but is not a direct promoter of natural senescence. The physiological relevance of these findings is discussed.  相似文献   

13.
The course of senescence in the first leaves of light-grown Avena seedlings when attached to the plant has been compared with that previously studied in detached leaves and leaf segments. Proteolysis in the leaf, whether attached or detached, is accompanied by markedly polar basipetal transport of amino acids. This polar transport can be superimposed on the known transport of amino acids towards a locally applied cytokinin. In the intact plant, it results in a strong movement into the roots. The reducing sugars, which are set free in senescence, do not participate appreciably in this polar transport phenomenon.  相似文献   

14.
The process of leaf senescence is biochemically characterized by the transition from nutrient assimilation to nutrient remobilization. The nutrient drain by developing vegetative and reproductive structures has been implicated in senescence induction. The steady-state levels of amino acids in senescing leaves are dependent on the rate of their release during protein degradation and on the rate of efflux into growing structures. To determine the possible regulatory role of amino acid content in leaf senescence, an in planta non-destructive, semi-quantitative method for the analysis of endogenous levels of free amino acids has been developed. The method is based on in vivo bioluminescence of amino acid-requiring strains of recombinant Escherichia coli carrying the lux gene. The luminescence signal was found to be proportional to the levels of added exogenous tryptophan and to the free amino acid levels in the plant tissues analysed. During the senescence of tobacco flowers and of detached leaves of oats and Arabidopsis, a progressive increase in the levels of free amino acids was monitored. By contrast to the detached leaves, the attached oat leaves displayed a decrease in the levels of free amino acids during senescence. In Arabidopsis, both the attached and detached leaves exhibited a similar pattern of gradual increase in amino acid content during senescence. The differences between the sink-source balance of the two species and the possible relationships between amino acid content and leaf senescence are discussed.  相似文献   

15.
Programmed cell death, developmental senescence, and responses to pathogens are linked through complex genetic controls that are influenced by redox regulation. Here we show that the Arabidopsis (Arabidopsis thaliana) low vitamin C mutants, vtc1 and vtc2, which have between 10% and 25% of wild-type ascorbic acid, exhibit microlesions, express pathogenesis-related (PR) proteins, and have enhanced basal resistance against infections caused by Pseudomonas syringae. The mutants have a delayed senescence phenotype with smaller leaf cells than the wild type at maturity. The vtc leaves have more glutathione than the wild type, with higher ratios of reduced glutathione to glutathione disulfide. Expression of green fluorescence protein (GFP) fused to the nonexpressor of PR protein 1 (GFP-NPR1) was used to detect the presence of NPR1 in the nuclei of transformed plants. Fluorescence was observed in the nuclei of 6- to 8-week-old GFP-NPR1 vtc1 plants, but not in the nuclei of transformed GFP-NPR1 wild-type plants at any developmental stage. The absence of senescence-associated gene 12 (SAG12) mRNA at the time when constitutive cell death and basal resistance were detected confirms that elaboration of innate immune responses in vtc plants does not result from activation of early senescence. Moreover, H2O2-sensitive genes are not induced at the time of systemic acquired resistance execution. These results demonstrate that ascorbic acid abundance modifies the threshold for activation of plant innate defense responses via redox mechanisms that are independent of the natural senescence program.  相似文献   

16.
Although defense responses mediated by the plant oxylipin jasmonic acid (JA) are often necessary for resistance against pathogens with necrotrophic lifestyles, in this report we demonstrate that jasmonate signaling mediated through COI1 in Arabidopsis thaliana is responsible for susceptibility to wilt disease caused by the root-infecting fungal pathogen Fusarium oxysporum . Despite compromised JA-dependent defense responses, the JA perception mutant coronatine insensitive 1 ( coi1 ), but not JA biosynthesis mutants, exhibited a high level of resistance to wilt disease caused by F. oxysporum . This response was independent from salicylic acid-dependent defenses, as coi1/NahG plants showed similar disease resistance to coi1 plants. Inoculation of reciprocal grafts made between coi1 and wild-type plants revealed that coi1 -mediated resistance occurred primarily through the coi1 rootstock tissues. Furthermore, microscopy and quantification of fungal DNA during infection indicated that coi1 -mediated resistance was not associated with reduced fungal penetration and colonization until a late stage of infection, when leaf necrosis was highly developed in wild-type plants. In contrast to wild-type leaves, coi1 leaves showed no necrosis following the application of F. oxysporum culture filtrate, and showed reduced expression of senescence-associated genes during disease development, suggesting that coi1 resistance is most likely achieved through the inhibition of F. oxysporum -incited lesion development and plant senescence. Together, our results indicate that F. oxysporum hijacks non-defensive aspects of the JA-signaling pathway to cause wilt-disease symptoms that lead to plant death in Arabidopsis.  相似文献   

17.
During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin‐dependent turnover of key proteins. Here, we identified a novel plant U‐box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE‐ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA‐insensitive mutants abi1‐1 and abi2‐1, but enhanced in the ABA‐hypersensitive mutant era1‐3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin‐dependent degradation via the 26S proteasome to prevent premature senescence.  相似文献   

18.
We studied the effects of cytokinin benzyladenine (BA) and ethylene on the senescence in the dark of detached leaves of Arabidopsis thaliana(L.) Heynh wild-type plants and theeti-5mutant, which was described in the literature as the ethylene-insensitive one. Leaf senescence was assessed from a decrease in the chlorophyll content. The content of endogenous cytokinins (zeatin and zeatin riboside) was estimated by the ELISA technique. We demonstrated that the content of endogenous cytokinins in the leaves of the three-week-old eti-5mutants exceeded that of the wild-type leaves by an order of magnitude; in the five-week-old mutants, by several times; and in the seven-week-old plants, the difference became insignificant. Due to the excess of endogenous cytokinins in the three–five-week-old mutant leaves, their senescence in the dark was retarded and exogenous cytokinin affected these leaves to a lesser extent. The seven-week-old mutant and the wild-type leaves, which contained practically similar amounts of endogenous cytokinins, did not differ in these indices. Thus, the level of endogenous cytokinins determined the rate of senescence and the leaf response to cytokinin treatment. Ethylene accelerated the senescence of detached wild-type leaves. Ethylene action increased with increasing its concentration from 0.1 to 100 l/l. BA (10–6M) suppressed ethylene action. Similar data were obtained for the eti-5mutant leaves. We therefore suggest that the mutant leaves comprised the pathways of the ethylene signal reception and transduction, which provided for the acceleration of their senescence.  相似文献   

19.
Kar M  Mishra D 《Plant physiology》1976,57(2):315-319
The activities of catalase, peroxidase, and polyphenoloxidase were studied in attached and detached rice (Oryza sativa L. cv. Ratna) leaves. Catalase activity decreased while peroxidase and polyphenoloxidase activities increased during senescence of both attached and detached rice leaves. Kinetic (5 mum) and benzimidazole (1 mm), which are known to delay the senescence of detached rice leaves, retarded the decrease of catalase activity during detached leaf senescence. On the other hand, these chemicals accelerated the increase of peroxidase and polyphenoloxidase activities over the water control. Total phenolics accumulated in detached and darkened rice leaves, but in attached leaf senescence in light no accumulation of phenolics was observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号